首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To explore the molecular basis of egg-sperm recognition in the brown alga , Fucus serratus L., we developed an in vitro binding assay involving egg plasma membrane vesicles (PMVs) and proteins contained in a KCl extract of sperm. Binding between the two components was measured using biotinylated PMVs followed by the addition of streptavidin conjugated to alkaline phosphatase and the appropriate substrate. Biotinylation did not affect the ability of egg PMVs to inhibit fertilization in a species-preferential manner. Binding of labeled egg PMVs to the sperm KCl extract was saturable and competable with unlabeled PMVs but was not species-specific. Protease treatment of the KCl extract abolished binding, whereas periodate had no effect, suggesting that sperm protein rather than carbohydrate was involved. Preincubation of the sperm extract with sulfated polysaccharides (e.g. fucoidan and ascophyllan) inhibited binding of egg plasma membranes. Sulfation seems to be important for this effect since desulfated fucoidan was far less effective at blocking binding. Polysaccharides which inhibited binding also inhibited fertilization. Overall, the results indicate that at least some aspects of binding between Fucus sperm and eggs are mediated by a protein(s) derived from sperm which recognizes sulfated glycoconjugates on the egg plasma membrane .  相似文献   

2.
Chapman T  Davies SJ 《Peptides》2004,25(9):1477-1490
The study of insect seminal fluid proteins provides a unique window upon adaptive evolution in action. The seminal fluid of Drosophila melanogaster contains over 80 proteins and peptides, which are transferred together with sperm by mating males. The functions of many of these substances are not yet known. However, those that have been characterized have marked effects on the reproductive success of males and females. For example, seminal fluid proteins and peptides can decrease female receptivity, can increase egg production and can increase sperm storage, and are necessary for sperm transfer and success in sperm competition. In this review we focus on the currently known functions of seminal fluid molecules and on new technologies and approaches that are enabling novel questions about their form and function to be addressed. We discuss how techniques for disrupting the production of seminal fluid proteins, such as homologous recombination and RNA interference, along with the use of microarrays and yeast two hybrid systems, should allow us to address ever more sophisticated questions about seminal fluid protein function. These and similar techniques promise to reveal the function of naturally-occurring variants of these proteins and hence the evolutionary significance of genetic variation for them.  相似文献   

3.
Binding of sperm to egg in the mouse has been proposed to depend primarily on interactions between lectin-like egg-binding proteins on the sperm plasma membrane and complementary carbohydrates on the specialized extracellular matrix of the egg known as the zona pellucida. An alternative model posits that initial sperm-egg binding depends on the interaction of a sperm surface protein with a supramolecular complex of the three mouse zona pellucida glycoproteins (mZP1, mZP2, mZP3); the role of carbohydrate recognition in this paradigm is thought to be minimal (Gahlay G, Gauthier L, Baibakov B, Epifano O,Dean J. 2010. Gamete recognition in mice depends on the cleavage status of an egg's zona pellucida protein. Science.329:216-219). This perspective reviews these recent findings,and considers them in light of evidence favoring a major role for lectin-like interactions. An alternative model, the domain specific model for mammalian gamete binding, could reconcile some of the conflicting observations.  相似文献   

4.
The plasma membrane of the spermatozoa of Drosophila melanogaster contains two integral proteins with glycosidase activity, beta-N-acetylglucosaminidase and alpha-D-mannosidase. Biochemical analysis and ultrastructural cytochemistry of spermatozoa of the autosomal male sterile mutant casanova reveal that at least one of these enzymes, beta-N-acetylglucosaminidase, is crucial for sperm-egg interactions. casanova sperm are motile, morphologically normal, are transferred to the female at mating, but are unable to fertilize the eggs. The mutation was localised by deficiency mapping to the chromosomal region 95E8-F7. Fluorimetric assays showed that the mutant's sperm have the same level of alpha-D-mannosidase activity as wild-type sperm, whereas beta-N-acetylglucosaminidase activity reaches only 51% of the wild-type level. The biochemical characteristics of alpha-D-mannosidase and of the residual beta-N-acetylglucosaminidase are the same as in wild-type males. Ultrastructural localization of the enzymes indicated that casanova spermatozoa lacks beta-N-acetylglucosaminidase on the plasma membrane covering the acrosome, whereas the location of this glycosidase at the terminal part of the sperm tail is indistinguishable from the wild-type situation. The results strongly suggest that in Drosophila the beta-N-acetylglucosaminidase of the plasma membrane covering the acrosome functions as a receptor for the glycoconjugates on the egg surface. We named the putative egg receptor EROS. This is the first evidence for an egg/sperm recognition system in insects. The mechanism is similar to those known from higher animals.  相似文献   

5.
Drosophila melanogaster male accessory gland proteins (Acps) that are transferred in the ejaculate with sperm mediate post-mating competition for fertilizations between males. The actions of Acps include effects on oviposition and ovulation, receptivity and sperm storage. Two Acps that modulate egg production are Acp26Aa (ovulin) and Acp70A (the sex peptide). Acp26Aa acts specifically on the process of ovulation (the release of mature eggs from the ovaries), which is initiated 1.5 h after mating. In contrast, sperm storage can take as long as 6-9 h to complete. Initial ovulations after matings by virgin females will therefore occur before all sperm are fully stored and the extra eggs initially laid as a result of Acp26Aa transfer are expected to be inefficiently fertilized. Acp26Aa-mediated release of existing eggs should not cause a significant energetic cost or lead to a decrease in female lifespan assuming, as seems likely, that the energetic cost of egg laying comes from de novo egg synthesis (oogenesis) rather than from ovulation. We tested these predictions using Acp26Aa(1) mutant males that lack Acp26Aa but are normal for other Acps and Acp26Aa(2) males that transfer a truncated but fully functional Acp26Aa protein. Females mating with Acp26Aa(2) (truncation) males that received functional Acp26Aa produced significantly more eggs following their first matings than did mates of Acp26Aa(1) (null) males. However, as predicted above, these extra eggs, which were laid as a result of Acp26Aa transfer to virgin females, showed significantly lower egg hatchability. Control experiments indicated that this lower hatchability was due to lower rates of fertilization at early post-mating times. There was no drop in egg hatchability in subsequent non-virgin matings. In addition, as predicted above, females that did or did not receive Acp26Aa did not differ in survival, lifetime fecundity or lifetime progeny, indicating that Acp26Aa transfer does not represent a significant energetic cost for females and does not contribute to the survival cost of mating. Acp26Aa appears to remove a block to oogenesis by causing the clearing out of existing mature eggs and, thus, indirectly allowing oogenesis to be initiated immediately after mating. The results show that subtle processes coordinate the stimulation of egg production and sperm storage in mating pairs.  相似文献   

6.
Glycobiology of fertilization in the pig   总被引:1,自引:0,他引:1  
By adopting internal fertilization, the meeting of both gametes - the sperm and the egg - and thus the highly coordinated sequence of interactions leading to fertilization, occur in the female reproductive tract. In mammals, the oviduct has been shown to translate the requirements of the female, coordinating sperm activation (capacitation) and sperm transport with the arrival of the ovulated egg. A hierarchy of carbohydrate-based interactions accompanies these events ranging from the binding of uncapacitated sperm to the oviductal epithelium (establishment of the female sperm reservoir), to the primary and secondary binding processes contributing to gamete recognition and sperm penetration of the oocyte zona pellucida. The current perspective will focus on the carbohydrate-recognition systems in the binding events during fertilization in the pig. The roles of the major carbohydrate-binding proteins, the spermadhesins and the acrosomal serine proteinase, pro/acrosin are discussed under consideration of recent structural data. The glycans and the glycoproteins of the porcine oviduct with a focus on the candidate sperm receptors as well as the zona pellucida N-glycans of prepuberal pigs have been characterized by a mass spectrometric approach. Furthermore, some preliminary data supporting the hypothesis that the zona pellucida has to undergo a maturation process during oocyte development are presented.  相似文献   

7.
Carbohydrates and fertilization in animals   总被引:7,自引:0,他引:7  
A frequently used mechanism for sperm-egg recognition in many species involves complementary protein-carbohydrate interaction. The usual paradigm includes complex glycoconjugates in reproductive tract fluids or on the eggs which are recognized by carbohydrate-binding proteins on the sperm surface. Various glycoconjugates are utilized in the steps of sperm capacitation, sperm binding to the egg extracellular matrix and vitelline membrane and induction of the acrosome reaction. Several types of complex glycoconjugates are involved in these processes, including proteoglycans, lactosaminoglycans, sulfated fucose-containing glycoconjugates, and glycoproteins. There appear to be some structural similarities between active glycoconjugates; they are large in molecular weight and complex, and they are often sulfated, fucosylated, and attached to a protein through serine or threonine residues. In some species, the protein core of the glycoconjugates also participates in the interaction by limiting the binding of carbohydrates to sperm only of the relevant species, likely by providing the proper steric arrangement for the interaction. In other cases the protein core seems to serve more as a crosslinker of the carbohydrate moieties. This review discusses the types of glycoconjugates implicated in fertilization and the complementary lectin-like proteins found on sperm.  相似文献   

8.
Ensslin MA  Shur BD 《Cell》2003,114(4):405-417
We report the identification of SED1, a protein required for mouse sperm binding to the egg zona pellucida. SED1 is homologous to a small group of secreted cell-matrix adhesive proteins that contain Notch-like EGF repeats and discoidin/F5/8 type C domains. SED1 is expressed in spermatogenic cells and is secreted by the initial segment of the caput epididymis, resulting in SED1 localization on the sperm plasma membrane overlying the acrosome. SED1 binds specifically to the zona pellucida of unfertilized oocytes, but not to the zona of fertilized eggs. Recombinant SED1 and anti-SED1 antibodies competitively inhibit sperm-egg binding, as do truncated SED1 proteins containing a discoidin/C domain. SED1 null males are subfertile and their sperm are unable to bind to the egg coat in vitro. These studies illustrate that Notch-like EGF and discoidin/C domains, protein motifs that facilitate a variety of cellular interactions, participate in gamete recognition as well.  相似文献   

9.
A quantitative assay was developed to study the interaction of Xenopus laevis sperm and eggs. Using this assay it was found that sperm bound in approximately equal numbers to the surface of both hemispheres of the unfertilized egg, but not to the surface of the fertilized egg. To understand the molecular basis of sperm binding to the egg vitelline envelope (VE), a competition assay was used and it was found that solubilized total VE proteins inhibited sperm-egg binding in a concentration-dependent manner. Individual VE proteins were then isolated and tested for their ability to inhibit sperm binding. Of the seven proteins in the VE, two related glycoproteins, gp69 and gp64, inhibited sperm-egg binding. Polyclonal antibody was prepared that specifically recognized gp69 and gp64. This gp69/64 specific antibody bound to the VE surface and blocked sperm binding, as well as fertilization. Moreover, agarose beads coated with gp69/64 showed high sperm binding activity, while beads coated with other VE proteins bound few sperm. Treatment of unfertilized eggs with crude collagenase resulted in proteolytic modification of only the gp69/64 components of the VE, and this modification abolished sperm-egg binding. Small glycopeptides generated by Pronase digestion of gp69/64 also inhibited sperm-egg binding and this inhibition was abolished by treatment of the glycopeptides with periodate. Based on these observations, we conclude that the gp69/64 glycoproteins in the egg vitelline envelope mediate sperm-egg binding, an initial step in Xenopus fertilization, and that the oligosaccharide chains of these glycoproteins may play a critical role in this process.  相似文献   

10.
Budding yeast (Saccharomyces cerevisiae) origin recognition complex (ORC) requires ATP to bind specific DNA sequences, whereas fission yeast (Schizosaccharomyces pombe) ORC binds to specific, asymmetric A:T-rich sites within replication origins, independently of ATP, and frog (Xenopus laevis) ORC seems to bind DNA non-specifically. Here we show that despite these differences, ORCs are functionally conserved. Firstly, SpOrc1, SpOrc4 and SpOrc5, like those from other eukaryotes, bound ATP and exhibited ATPase activity, suggesting that ATP is required for pre-replication complex (pre-RC) assembly rather than origin specificity. Secondly, SpOrc4, which is solely responsible for binding SpORC to DNA, inhibited up to 70% of XlORC-dependent DNA replication in Xenopus egg extract by preventing XlORC from binding to chromatin and assembling pre-RCs. Chromatin-bound SpOrc4 was located at AT-rich sequences. XlORC in egg extract bound preferentially to asymmetric A:T-sequences in either bare DNA or in sperm chromatin, and it recruited XlCdc6 and XlMcm proteins to these sequences. These results reveal that XlORC initiates DNA replication preferentially at the same or similar sites to those targeted in S.pombe.  相似文献   

11.
In the initial stage of ascidian fertilization sequential sperm–egg coat interactions assure successful species-specific fertilization. Sperm recognize, bind to, and then penetrate the egg investment that consists of follicle cells (FC) and an acellular vitelline coat (VC). To identify plasma proteins that recognize the egg coat, a membrane fraction was prepared from Phallusia mammillata sperm using nitrogen cavitation followed by three centrifugation steps. The purity of the membrane fractions was assessed by transmission electron microscopy and marker enzymes. Comparison of the electrophoretic pattern of sperm extracellular membrane domains labeled by radio-iodination or biotinylation and recorded by autoradiography or enhanced chemiluminescence, respectively, showed the non-radioactive procedure to be a convenient and efficient method. Isolated sperm membrane components were found to inhibit fertilization in a concentration-dependent manner and to bind mainly to the FC. Eggs were used as an affinity matrix to determine which of the solubilized sperm membrane proteins possess egg-binding activity. Three biotinylated proteins (66kDa, 120kDa and 140kDa) were found to bind to the VC. Assays probing heterospecific binding to Ascidia mentula eggs revealed that the 120kDa protein possesses species-specific binding activity. Thus, the current data suggest the 120 kDa sperm membrane protein as a candidate adhesion molecule with a possible role in gamete binding and species-specific recognition in P. mammillata .  相似文献   

12.
Glycobiology of sperm-egg interactions in deuterostomes   总被引:4,自引:0,他引:4  
The process of fertilization begins when sperm contact the outermost egg investment and ends with fusion of the two haploid pronuclei in the egg cytoplasm. Many steps in fertilization involve carbohydrate-based molecular recognition between sperm and egg. Although there is conservation of gamete recognition molecules within vertebrates, their homologues have not yet been discovered in echinoderms and ascidians (the invertebrate deuterostomes). In echinoderms, long sulfated polysaccharides act as ligands for sperm receptors. Ascidians employ egg coat glycosides that are recognized by sperm surface glycosidases. Vertebrate egg coats contain zona pellucida (ZP) family glycoproteins, whose carbohydrates bind to sperm receptors. Several candidate sperm receptors for vertebrate ZP proteins have been identified and are discussed here. This brief review focuses on new information concerning fertilization in deuterostomes (the phylogenetic group including echinoderms, ascidians, and vertebrates) and highlights protein-carbohydrate interactions involved in this process.  相似文献   

13.
A wealth of evidence shows that protein-carbohydrate recognition mediates the steps of gamete interaction during fertilization. Carbohydrate-recognition domains (CRDs) comprise a large family of ancient protein modules of approximately 120 amino acids, having the same protein fold, that bind terminal sugar residues on glycoproteins and polysaccharides. Sea urchin sperm express three suREJ (sea urchin receptor for egg jelly) proteins on their plasma membranes. suREJ1 has two CRDs, whereas suREJ2 and suREJ3 both have one CRD. suREJ1 binds the fucose sulfate polymer (FSP) of egg jelly to induce the sperm acrosome reaction. The structure of FSP is species specific. Therefore, the suREJ1 CRDs could encode molecular recognition between sperm and egg underlying the species-specific induction of the acrosome reaction. The functions of suREJ2 and suREJ3 have not been explored, but suREJ3 is exclusively localized on the plasma membrane over the sperm acrosomal vesicle and is physically associated with sea urchin polycystin-2, a known cation channel. An evolutionary analysis of these four CRDs was performed for six sea urchin species. Phylogenetic analysis shows that these CRDs were already differentiated in the common ancestor of these six sea urchins. The CRD phylogeny agrees with previous work on these species based on one nuclear gene and several mitochondrial genes. Maximum likelihood shows that positive selection acts on these four CRDs. Threading the suREJ CRDs onto the prototypic CRD crystal structure shows that many of the sites under positive selection are on extended loops, which are involved in saccharide binding. This is the first demonstration of positive selection in CRDs and is another example of positive selection acting on the evolution of gamete-recognition proteins.  相似文献   

14.
The effect of phosphatidyinositol-specific phospholipase C (PI-PLC) on mouse sperm-egg interaction was investigated in this study to determine if glycosyl-phosphatidylinositol (GPI)-anchored proteins are involved in mammalian fertilization. When both sperm and zona-intact oocytes were pretreated with a highly purified preparation of PI-PLC and coincubated, there was no significant effect on sperm-zona pellucida binding; however, fertilization was reduced from 59.6% (control group) to 2.8% (treatment group). A similar reduction in fertilization rates was found when zona-intact oocytes were treated with PI-PLC and washed prior to incubation with untreated sperm. The effect of PI-PLC on sperm binding and fusion with zona-free oocytes was then investigated. Treatment of sperm with PI-PLC had no significant effect on sperm-egg binding or fusion. However, treatment of eggs with PI-PLC significantly reduced sperm-egg binding and fusion from 6.2 bound and 2.1 fused sperm per egg in the control group to 2.1 bound and 0.02 fused sperm per egg in the treatment group. This decrease in sperm-egg binding and fusion depended on the dose of PI-PLC employed, with a maximal inhibitory effect on binding and fusion at 5 and 1 U/ml, respectively. PI-PLC-treated oocytes could be artificially activated by calcium ionophore, demonstrating that the oocytes were functionally viable following treatment. Furthermore, treatment of oocytes with PI-PLC did not reduce the immunoreactivity of the non-GPI-anchored egg surface integrin, alpha6beta1. Taken together, these observations support the hypothesis that PI-PLC affects fertilization by specifically releasing GPI-anchored proteins from the oolemma. In order to identify the oolemmal GPI-anchored proteins involved in fertilization, egg surface proteins were labeled with sulfo-NHS biotin, treated with PI-PLC, and analyzed by two-dimensional gel electrophoresis followed by avidin blotting. A prominent high-molecular-weight protein cluster (approximately 70 kDa, pI 5) and a lower molecular weight (approximately 35-45 kDa, pI 5.5) protein cluster were released from the oolemmal surface as a result of PI-PLC treatment. It is likely that these GPI-anchored egg surface proteins are required for sperm-egg binding and fusion.  相似文献   

15.
Drosophila melanogatser seminal fluid components, accessory gland proteins (Acps) and sperm, induce females to deposit high numbers of fertilized eggs for about 11 days. This high and sustained level of egg deposition requires that oogenesis be stimulated to provide the necessary mature oocytes. To investigate the relative timing and contributions of Acps and sperm in the egg-production process, we examined the rates of oogenic progression and egg deposition in females mated to genetically altered males that have seminal fluid deficient in Acps and/or sperm, and subjected these data to path analysis. We found that Acps and sperm are complementary stimuli necessary for inducing high rates of oogenic progression and rapid egg deposition. While egg deposition and oogenic progression can be induced by Acps alone, both Acps and sperm are required for maximum stimulation of oogenic progression and egg deposition immediately after mating.  相似文献   

16.
Spawning marine invertebrates are excellent models for studying fertilization and reproductive isolating mechanisms. To identify variation in the major steps in sea urchin gamete recognition, we studied sperm activation in three closely related sympatric Strongylocentrotus species. Sperm undergo acrosomal exocytosis upon contact with sulfated polysaccharides in the egg-jelly coat. This acrosome reaction exposes the protein bindin and is therefore a precondition for sperm binding to the egg. We found that sulfated carbohydrates from egg jelly induce the acrosome reaction species specifically in S. droebachiensis and S. pallidus. There appear to be no other significant barriers to interspecific fertilization between these two species. Other species pairs in the same genus acrosome react nonspecifically to egg jelly but exhibit species-specific sperm binding. We thus show that different cell-cell communication systems mediate mate recognition among very closely related species. By comparing sperm reactions to egg-jelly compounds from different species and genera, we identify the major structural feature of the polysaccharides required for the specific recognition by sperm: the position of the glycosidic bond of the sulfated alpha-L-fucans. We present here one of the few examples of highly specific pure-carbohydrate signal transduction. In this system, a structural change in a polysaccharide has far-reaching ecological and evolutionary consequences.  相似文献   

17.
The evolution of species-specific fertilization in free-spawning marine invertebrates is important for reproductive isolation and may contribute to speciation. The biochemistry and evolution of proteins mediating species-specific fertilization have been extensively studied in the abalone (genus Haliotis). The nonenzymatic sperm protein lysin creates a hole in the egg vitelline envelope by species-specifically binding to its egg receptor, VERL. The divergence of lysin is promoted by positive Darwinian selection. In contrast, the evolution of VERL does not depart from neutrality. Here, we cloned a novel nonrepetitive region of VERL and performed an intraspecific polymorphism survey for red (Haliotis rufescens) and pink (Haliotis corrugata) abalones to explore the evolutionary forces affecting VERL. Six statistical tests showed that the evolution of VERL did not depart from neutrality. Interestingly, there was a subdivision in the VERL sequences in the pink abalone and a lack of heterozygous individuals between groups, suggesting that the evolution of assortative mating may be in progress. These results are consistent with a model which posits that egg VERL is neutrally evolving, perhaps due to its repetitive structure, while sperm lysin is subjected to positive Darwinian selection to maintain efficient interaction of the two proteins during sperm competition.  相似文献   

18.
Wolfner MF 《Heredity》2002,88(2):85-93
During mating, males transfer seminal proteins and peptides, along with sperm, to their mates. In Drosophila melanogaster, seminal proteins made in the male's accessory gland stimulate females' egg production and ovulation, reduce their receptivity to mating, mediate sperm storage, cause part of the survival cost of mating to females, and may protect reproductive tracts or gametes from microbial attack. The physiological functions of these proteins indicate that males provide their mates with molecules that initiate important reproductive responses in females. A new comprehensive EST screen, in conjunction with earlier screens, has identified approximately 90% of the predicted secreted accessory gland proteins (Acps). Most Acps are novel proteins and many appear to be secreted peptides or prohormones. Acps also include modification enzymes such as proteases and their inhibitors, and lipases. An apparent prohormonal Acp, ovulin (Acp26Aa) stimulates ovulation in mated Drosophila females. Another male-derived protein, the large glycoprotein Acp36DE, is needed for sperm storage in the mated female and through this action can also affect sperm precedence, indirectly. A third seminal protein, the protease inhibitor Acp62F, is a candidate for contributing to the survival cost of mating, given its toxicity in ectopic expression assays. That male-derived molecules manipulate females in these ways can result in a molecular conflict between the sexes that can drive the rapid evolution of Acps. Supporting this hypothesis, an unusually high fraction of Acps show signs consistent with their being targets of positive Darwinian selection.  相似文献   

19.
An in vitro binding assay involving egg plasma membrane vesicles (PMVs) of Fucus serratus L. and proteins contained in a KCl extract of sperm has been used to identify a sperm protein involved in egg binding. High-performance gel filtration (HPGF) separated the sperm KCl extract into several major fractions, and a protein (apparent M, 60 kDa) was identified as being involved in binding to the egg PMVs. This protein ran on denaturing sodium dodecyl sulfate (SDS)gels with an apparent molecular weight of 27 kDa. This suggests that either the native form of the protein is a dimer or the molecular weight on HPGF is an artifact caused by high ionic strength buffer promoting hydrophobic interactions. When KCl-sol-uble proteins were separated by SDS-polyacrylamide gel electrophoresis (PAGE), blotted onto nitrocellulose, and incubated with biotinylated egg PMVs, these bound to a band at 27 kDa, confirming the role of this protein. Addition of the Fucus sperm extract or HPGF fractions containing the binding protein to eggs in the absence of sperm induced the release of polysaccharides onto the egg cell surface. This labeling was patchy, in contrast to the uniform release of polysaccharides observed when sperm were added to eggs. The monoclonal antibody (MAb) FS17 was raised against the 27-kDa sperm protein. It labeled the sperm body and both flagella by immunofluorescence, though the sperm had to he permeabilized to observe labeling, suggesting that the epitope recognized is not exposed at the cell surface. Addition of FS17 to the KCl extract in the binding assay reduced subsequent binding of egg PMVs. Removal of the 27-kDa protein recognized by FS17 from the sperm extract prevented the binding of egg PMVs in the binding assay and the triggering of the patchy release of polysaccharides when added to eggs. Overall the results suggest that the 27-kDa sperm protein is involved in binding to the egg plasma membrane and can trigger partial activation of the egg .  相似文献   

20.
Abstract This review article deals with the male function in agamospermous plants, which is still not fully recognized. Of particular interest are mating and paternity problems. Pollen of agamospermous donors may influence female fitness in early mating phases by contributing the recognition substances or inducing spontaneous seed development. Various interactions between the sperm cell(s) and the female gametophyte at later phases may include (1) occasional double fertilization, (2) occasional syngamy, (3) pseudogamy, and (4) hemigamy. In the first two processes the offspring are sired normally. In pseudogamy, the offspring is maternal, the male contribution being restricted to endosperm paternity. In hemigamy, male function may include induction of the egg cell development only (maternal offspring), or the induction of the egg cell development as well as independent participation of the sperm cell in the offspring development leading to the formation of chimeras. It is concluded that the sperm may be a limiting resource in at least some agamospermous plants. Possible directions of future research are briefly outlined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号