首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inositol 1,4,5-trisphosphate (InsP(3)) mobilizes intracellular Ca(2+) by binding to its receptor (InsP(3)R), an endoplasmic reticulum-localized Ca(2+) release channel. Patch clamp electrophysiology of Xenopus oocyte nuclei was used to study the effects of cytoplasmic ATP concentration on the cytoplasmic Ca(2+) ([Ca(2+)](i)) dependence of single type 1 InsP(3)R channels in native endoplasmic reticulum membrane. Cytoplasmic ATP free-acid ([ATP](i)), but not the MgATP complex, activated gating of the InsP(3)-liganded InsP(3)R, by stabilizing open channel state(s) and destabilizing the closed state(s). Activation was associated with a reduction of the half-maximal activating [Ca(2+)](i) from 500 +/- 50 nM in 0 [ATP](i) to 29 +/- 4 nM in 9.5 mM [ATP](i), with apparent ATP affinity = 0.27 +/- 0.04 mM, similar to in vivo concentrations. In contrast, ATP was without effect on maximum open probability or the Hill coefficient for Ca(2+) activation. Thus, ATP enhances gating of the InsP(3)R by allosteric regulation of the Ca(2+) sensitivity of the Ca(2+) activation sites of the channel. By regulating the Ca(2+)-induced Ca(2+) release properties of the InsP(3)R, ATP may play an important role in shaping cytoplasmic Ca(2+) signals, possibly linking cell metabolic state to important Ca(2+)-dependent processes.  相似文献   

2.
Human bone marrow-derived mesenchymal stem cells (hMSCs) have the potential to differentiate into several types of cells. We have demonstrated spontaneous [Ca(2+)](i) oscillations in hMSCs without agonist stimulation, which result primarily from release of Ca(2+) from intracellular stores via InsP(3) receptors. In this study, we further investigated functions and contributions of Ca(2+) transporters on plasma membrane to generate [Ca(2+)](i) oscillations. In confocal Ca(2+) imaging experiments, spontaneous [Ca(2+)](i) oscillations were observed in 193 of 280 hMSCs. The oscillations did not sustain in the Ca(2+) free solution and were completely blocked by the application of 0.1mM La(3+). When plasma membrane Ca(2+) pumps (PMCAs) were blocked with blockers, carboxyeosin or caloxin, [Ca(2+)](i) oscillations were inhibited. Application of Ni(2+) or KBR7943 to block Na(+)-Ca(2+) exchanger (NCX) also inhibited [Ca(2+)](i) oscillations. Using RT-PCR, mRNAs were detected for PMCA type IV and NCX, but not PMCA type II. In the patch clamp experiments, Ca(2+) activated outward K(+) currents (I(KCa)) with a conductance of 170+/-21.6pS could be recorded. The amplitudes of I(KCa) and membrane potential (V(m)) periodically fluctuated liked to [Ca(2+)](i) oscillations. These results suggest that in undifferentiated hMSCs both Ca(2+) entry through plasma membrane and Ca(2+) extrusion via PMCAs and NCXs play important roles for [Ca(2+)](i) oscillations, which modulate the activities of I(KCa) to produce the fluctuation of V(m).  相似文献   

3.
Disruption of neuronal Ca(2+) homeostasis plays a well-established role in cell death in a number of neurodegenerative disorders. Recent evidence suggests that proteolysis of the type 1 inositol 1,4,5-trisphosphate receptor (InsP(3) R1), a Ca(2+) release channel on the endoplasmic reticulum, generates a dysregulated channel, which may contribute to aberrant Ca(2+) signaling and neurodegeneration in disease states. However, the specific effects of InsP(3) R1 proteolysis on neuronal Ca(2+) homeostasis are unknown, as are the functional contributions of this pathway to neuronal death. This study evaluates the consequences of calpain-mediated InsP(3) R1 proteolysis on neuronal Ca(2+) signaling and survival using adeno-associated viruses to express a recombinant cleaved form of the channel (capn-InsP(3) R1) in rat primary cortical neurons. Here, we demonstrate that expression of capn-InsP(3) R1 in cortical cultures reduced cellular viability. This effect was associated with increased resting cytoplasmic Ca(2+) concentration ([Ca(2+) ](i) ), increased [Ca(2+) ](i) response to glutamate, and enhanced sensitivity to excitotoxic stimuli. Together, our results demonstrate that InsP(3) R1 proteolysis disrupts neuronal Ca(2+) homeostasis, and potentially acts as a feed-forward pathway to initiate or execute neuronal death.  相似文献   

4.
Many cellular functions are driven by changes in the intracellular Ca(2+) concentration ([Ca(2+)](i)) that are highly organized in time and space. Ca(2+) oscillations are particularly important in this respect and are based on positive and negative [Ca(2+)](i) feedback on inositol 1,4,5-trisphosphate receptors (InsP(3)Rs). Connexin hemichannels are Ca(2+)-permeable plasma membrane channels that are also controlled by [Ca(2+)](i). We aimed to investigate how hemichannels may contribute to Ca(2+) oscillations. Madin-Darby canine kidney cells expressing connexin-32 (Cx32) and Cx43 were exposed to bradykinin (BK) or ATP to induce Ca(2+) oscillations. BK-induced oscillations were rapidly (minutes) and reversibly inhibited by the connexin-mimetic peptides (32)Gap27/(43)Gap26, whereas ATP-induced oscillations were unaffected. Furthermore, these peptides inhibited the BK-triggered release of calcein, a hemichannel-permeable dye. BK-induced oscillations, but not those induced by ATP, were dependent on extracellular Ca(2+). Alleviating the negative feedback of [Ca(2+)](i) on InsP(3)Rs using cytochrome c inhibited BK- and ATP-induced oscillations. Cx32 and Cx43 hemichannels are activated by <500 nm [Ca(2+)](i) but inhibited by higher concentrations and CT9 peptide (last 9 amino acids of the Cx43 C terminus) removes this high [Ca(2+)](i) inhibition. Unlike interfering with the bell-shaped dependence of InsP(3)Rs to [Ca(2+)](i), CT9 peptide prevented BK-induced oscillations but not those triggered by ATP. Collectively, these data indicate that connexin hemichannels contribute to BK-induced oscillations by allowing Ca(2+) entry during the rising phase of the Ca(2+) spikes and by providing an OFF mechanism during the falling phase of the spikes. Hemichannels were not sufficient to ignite oscillations by themselves; however, their contribution was crucial as hemichannel inhibition stopped the oscillations.  相似文献   

5.
Human mesenchymal stem cells (HMSC) have the potential to differentiate into many cell types. The physiological properties of HMSCs including their Ca(2+) signaling pathways, however, are not well understood. We investigated Ca(2+) influx and release functions in HMSCs. In Ca(2+) imaging experiments, spontaneous Ca(2+) oscillations were observed in 36 of 50 HMSCs. The Ca(2+) oscillations were completely blocked by the application of 10 micro M cyclopiazonic acid (CPA) or 1 micro M thapsigargin (TG). A brief application of 1 micro M acetylcholine (ACh) induced a transient increase of [Ca(2+)](i) but the application of caffeine (10 mM) did not induce any Ca(2+) transient. When the stores were depleted with Ca(2+)-ATPase blockers (CPA or TG) or muscarinic agonists (ACh), store-operated Ca(2+) (SOC) entry was observed. Using the patch-clamp technique, store-operated Ca(2+) currents (I(SOC)) could be recorded in cells treated with ACh or CPA, but voltage-operated Ca(2+) currents (VOCCs) were not elicited in most of the cells (17/20), but in 15% of cells examined, small dihydropyridine (DHP)-sensitive Ca(2+) currents were recorded. Using RT-PCR, mRNAs were detected for inositol 1,4,5-trisphosphate receptor (InsP(3)R) type I, II, and III and DHP receptors alpha1A and alpha1H were detected, but mRNA was not detected for ryanodine receptor (RyR) or N-type Ca(2+) channels. These results suggest that in undifferentiated HMSCs, Ca(2+) release is mediated by InsP(3)Rs and Ca(2+) entry through plasma membrane is mainly mediated by the SOCs channels with a little contribution of VOCCs.  相似文献   

6.
Vascular resistance and arterial pressure are reduced during normal pregnancy, but dangerously elevated during pregnancy-induced hypertension (PIH), and changes in nitric oxide (NO) synthesis have been hypothesized as one potential cause. In support of this hypothesis, chronic inhibition of NO synthesis in pregnant rats has been shown to cause significant increases in renal vascular resistance and hypertension; however, the cellular mechanisms involved are unclear. We tested the hypothesis that the pregnancy-associated changes in renal vascular resistance reflect changes in contractility and intracellular Ca(2+) concentration ([Ca(2+)](i)) of renal arterial smooth muscle. Smooth muscle cells were isolated from renal interlobular arteries of virgin and pregnant Sprague-Dawley rats untreated or treated with the NO synthase inhibitor nitro-L-arginine methyl ester (L-NAME; 4 mg. kg(-1). day(-1) for 5 days), then loaded with fura 2. In cells of virgin rats incubated in Hanks' solution (1 mM Ca(2+)), the basal [Ca(2+)](i) was 86 +/- 6 nM. Phenylephrine (Phe, 10(-5) M) caused a transient increase in [Ca(2+)](i) to 417 +/- 11 nM and maintained an increase to 183 +/- 8 nM and 32 +/- 3% cell contraction. Membrane depolarization by 51 mM KCl, which stimulates Ca(2+) entry from the extracellular space, caused maintained increase in [Ca(2+)](i) to 292 +/- 12 nM and 31 +/- 2% contraction. The maintained Phe- and KCl-induced [Ca(2+)](i) and contractions were reduced in pregnant rats but significantly enhanced in pregnant rats treated with L-NAME. Phe- and KCl-induced contraction and [Ca(2+)](i) were not significantly different between untreated and L-NAME-treated virgin rats or between untreated and L-NAME + L-arginine treated pregnant rats. In Ca(2+)-free Hanks', application of Phe or caffeine (10 mM), to stimulate Ca(2+) release from the intracellular stores, caused a transient increase in [Ca(2+)](i) and a small cell contraction that were not significantly different among the different groups. Thus renal interlobular smooth muscle of normal pregnant rats exhibits reduction in [Ca(2+)](i) signaling that involves Ca(2+) entry from the extracellular space but not Ca(2+) release from the intracellular stores. The reduced renal smooth muscle cell contraction and [Ca(2+)](i) in pregnant rats may explain the decreased renal vascular resistance associated with normal pregnancy, whereas the enhanced cell contraction and [Ca(2+)](i) during inhibition of NO synthesis in pregnant rats may, in part, explain the increased renal vascular resistance associated with PIH.  相似文献   

7.
InsP(3) is an important link in the intracellular information network. Previous observations show that activation of InsP(3)-receptor channels on the granular membrane can turn secretory granules into Ca(2+) oscillators that deliver periodic trains of Ca(2+) release to the cytosol (T. Nguyen, W. C. Chin, and P. Verdugo, 1998, Nature, 395:908-912; I. Quesada, W. C. Chin, J. Steed, P. Campos-Bedolla, and P. Verdugo, 2001, BIOPHYS: J. 80:2133-2139). Here we show that InsP(3) can also turn mast cell granules into proton oscillators. InsP(3)-induced intralumenal [H(+)] oscillations are ATP-independent, result from H(+)/K(+) exchange in the heparin matrix, and produce perigranular pH oscillations with the same frequency. These perigranular pH oscillations are in-phase with intralumenal [H(+)] but out-of-phase with the corresponding perigranular [Ca(2+)] oscillations. The low pH of the secretory compartment has critical implications in a broad range of intracellular processes. However, the association of proton release with InsP(3)-induced Ca(2+) signals, their similar periodic nature, and the sensitivity of important exocytic proteins to the joint action of Ca(2+) and pH strongly suggests that granules might encode a combined Ca(2+)/H(+) intracellular signal. A H(+)/Ca(2+) signal could significantly increase the specificity of the information sent by the granule by transmitting two frequency encoded messages targeted exclusively to proteins like calmodulin, annexins, or syncollin that are crucial for exocytosis and require specific combinations of [Ca(2+)] "and" pH for their action.  相似文献   

8.
The type 1 inositol 1,4,5-trisphosphate receptor (InsP(3)R1) is a ubiquitous intracellular Ca(2+) release channel that is vital to intracellular Ca(2+) signaling. InsP(3)R1 is a proteolytic target of calpain, which cleaves the channel to form a 95-kDa carboxyl-terminal fragment that includes the transmembrane domains, which contain the ion pore. However, the functional consequences of calpain proteolysis on channel behavior and Ca(2+) homeostasis are unknown. In the present study we have identified a unique calpain cleavage site in InsP(3)R1 and utilized a recombinant truncated form of the channel (capn-InsP(3)R1) corresponding to the stable, carboxyl-terminal fragment to examine the functional consequences of channel proteolysis. Single-channel recordings of capn-InsP(3)R1 revealed InsP(3)-independent gating and high open probability (P(o)) under optimal cytoplasmic Ca(2+) concentration ([Ca(2+)](i)) conditions. However, some [Ca(2+)](i) regulation of the cleaved channel remained, with a lower P(o) in suboptimal and inhibitory [Ca(2+)](i). Expression of capn-InsP(3)R1 in N2a cells reduced the Ca(2+) content of ionomycin-releasable intracellular stores and decreased endoplasmic reticulum Ca(2+) loading compared with control cells expressing full-length InsP(3)R1. Using a cleavage-specific antibody, we identified calpain-cleaved InsP(3)R1 in selectively vulnerable cerebellar Purkinje neurons after in vivo cardiac arrest. These findings indicate that calpain proteolysis of InsP(3)R1 generates a dysregulated channel that disrupts cellular Ca(2+) homeostasis. Furthermore, our results demonstrate that calpain cleaves InsP(3)R1 in a clinically relevant injury model, suggesting that Ca(2+) leak through the proteolyzed channel may act as a feed-forward mechanism to enhance cell death.  相似文献   

9.
Pancreatic beta-cells are biological oscillators requiring a coupling force for the synchronization of the cytoplasmic Ca(2+) oscillations responsible for pulsatile insulin release. Testing the idea that transients, superimposed on the oscillations, are important for this synchronization, the concentration of cytoplasmic Ca(2+) ([Ca(2+)](i)) was measured with ratiometric fura-2 technique in single beta-cells and small aggregates prepared from islets isolated from ob/ob-mice. Image analyses revealed asynchronous [Ca(2+)](i) oscillations in adjacent beta-cells lacking physical contact. The addition of glucagon stimulated the firing of [Ca(2+)](i) transients, which appeared in synchrony in adjacent beta-cells. Moreover, the presence of glucagon promoted synchronization of the [Ca(2+)](i) oscillations in beta-cells separated by a distance <100 microm but not in those >200 microm apart. The results support the proposal that the repolarizing effect of [Ca(2+)](i) transients provides a coupling force for co-ordinating the pulses of insulin release generated by pancreatic beta-cells.  相似文献   

10.
Sell M  Boldt W  Markwardt F 《Cell calcium》2002,32(3):105-120
The kinetics of the intracellular Ca2+ concentration ([Ca2+]i) of vascular smooth muscle cells (VSMCs) in rat small mesenteric arteries was investigated by confocal laser scanning microscopy using the fluorescent Ca2+ indicator fluo-3 AM. One micromole noradrenaline (NA) induced randomly distributed transient elevations of [Ca2+]i in several single VSMCs which were weakly temporally coupled. Higher NA concentrations of 3 or 10 microM, however, induced strongly synchronised [Ca2+]i oscillations in VSMCs. In preparations with intact endothelium, the synchronisation of [Ca2+]i signals was attenuated by acetylcholine (ACh) but augmented by the NO synthase antagonist L-NAME, pointing to a desynchronising effect of the endothelium even under basal conditions. In preparations with or without intact endothelium sodium nitroprusside (SNP) as well as the gap-junction uncoupler heptanol reversibly desynchronised the [Ca2+]i transients. The effect of ACh but not that of SNP was influenced by L-NAME. Propagated intracellular [Ca2+]i waves had a velocity of 25 microm/s. The phase shift of [Ca2+]i oscillations between single VSMCs were maximally 2s and independent of the distance of up to 90 microm between individual cells. Therefore, we consider intercellular [Ca2+]i waves to be too slow to account for the synchronisation of [Ca2+]i oscillations.We conclude that the coupling of [Ca2+]i signals in vascular smooth muscle cells is not constant but highly regulated by NA and by endothelium derived NO. Oscillations of vessel contraction at high sympathetic tone may be induced by synchronisation of [Ca2+]i transients of distinct VSMCs whereas endothelium derived NO inhibits vasomotion by desynchronising [Ca2+]i transients of single VSMCs.  相似文献   

11.
Acetylcholine-evoked secretion from the parotid gland is substantially potentiated by cAMP-raising agonists. A potential locus for the action of cAMP is the intracellular signaling pathway resulting in elevated cytosolic calcium levels ([Ca(2+)](i)). This hypothesis was tested in mouse parotid acinar cells. Forskolin dramatically potentiated the carbachol-evoked increase in [Ca(2+)](i), converted oscillatory [Ca(2+)](i) changes into a sustained [Ca(2+)](i) increase, and caused subthreshold concentrations of carbachol to increase [Ca(2+)](i) measurably. This potentiation was found to be independent of Ca(2+) entry and inositol 1,4,5-trisphosphate (InsP(3)) production, suggesting that cAMP-mediated effects on Ca(2+) release was the major underlying mechanism. Consistent with this hypothesis, dibutyryl cAMP dramatically potentiated InsP(3)-evoked Ca(2+) release from streptolysin-O-permeabilized cells. Furthermore, type II InsP(3) receptors (InsP(3)R) were shown to be directly phosphorylated by a protein kinase A (PKA)-mediated mechanism after treatment with forskolin. In contrast, no evidence was obtained to support direct PKA-mediated activation of ryanodine receptors (RyRs). However, inhibition of RyRs in intact cells, demonstrated a role for RyRs in propagating Ca(2+) oscillations and amplifying potentiated Ca(2+) release from InsP(3)Rs. These data indicate that potentiation of Ca(2+) release is primarily the result of PKA-mediated phosphorylation of InsP(3)Rs, and may largely explain the synergistic relationship between cAMP-raising agonists and acetylcholine-evoked secretion in the parotid. In addition, this report supports the emerging consensus that phosphorylation at the level of the Ca(2+) release machinery is a broadly important mechanism by which cells can regulate Ca(2+)-mediated processes.  相似文献   

12.
In pancreatic acinar cells, inositol 1,4,5-trisphosphate (InsP(3))-dependent cytosolic calcium ([Ca(2+)](i)) increases resulting from agonist stimulation are initiated in an apical "trigger zone," where the vast majority of InsP(3) receptors (InsP(3)R) are localized. At threshold stimulation, [Ca(2+)](i) signals are confined to this region, whereas at concentrations of agonists that optimally evoke secretion, a global Ca(2+) wave results. Simple diffusion of Ca(2+) from the trigger zone is unlikely to account for a global [Ca(2+)](i) elevation. Furthermore, mitochondrial import has been reported to limit Ca(2+) diffusion from the trigger zone. As such, there is no consensus as to how local [Ca(2+)](i) signals become global responses. This study therefore investigated the mechanism responsible for these events. Agonist-evoked [Ca(2+)](i) oscillations were converted to sustained [Ca(2+)](i) increases after inhibition of mitochondrial Ca(2+) import. These [Ca(2+)](i) increases were dependent on Ca(2+) release from the endoplasmic reticulum and were blocked by 100 microM ryanodine. Similarly, "uncaging" of physiological [Ca(2+)](i) levels in whole-cell patch-clamped cells resulted in rapid activation of a Ca(2+)-activated current, the recovery of which was prolonged by inhibition of mitochondrial import. This effect was also abolished by ryanodine receptor (RyR) blockade. Photolysis of d-myo InsP(3) P(4(5))-1-(2-nitrophenyl)-ethyl ester (caged InsP(3)) produced either apically localized or global [Ca(2+)](i) increases in a dose-dependent manner, as visualized by digital imaging. Mitochondrial inhibition permitted apically localized increases to propagate throughout the cell as a wave, but this propagation was inhibited by ryanodine and was not seen for minimal control responses resembling [Ca(2+)](i) puffs. Global [Ca(2+)](i) rises initiated by InsP(3) were also reduced by ryanodine, limiting the increase to a region slightly larger than the trigger zone. These data suggest that, while Ca(2+) release is initially triggered through InsP(3)R, release by RyRs is the dominant mechanism for propagating global waves. In addition, mitochondrial Ca(2+) import controls the spread of Ca(2+) throughout acinar cells by modulating RyR activation.  相似文献   

13.
Numerous studies show that intracellular calcium controls the migration rate of different mobile cell types. We studied migrating astrocytoma cells from two human cell lines, U-87MG and A172, in order to clarify the mechanisms by which calcium potentially influences cell migration. Using the wound-healing model to assay migration, we showed that four distinct components of migration could be distinguished: (i) a Ca(2+)/serum-dependent process; (ii) a Ca(2+)-dependent/serum-independent process; (iii) a Ca(2+)/serum-independent process; (iv) a Ca(2+)-independent/serum-dependent process. In U-87MG cells which lack a Ca(2+)-dependent/serum-independent component, we found that intracellular Ca(2+) oscillations are involved in Ca(2+)-dependent migration. Removing extracellular Ca(2+) greatly decreased the frequency of migration-associated Ca(2+) oscillations. Furthermore, non-selective inhibition of Ca(2+) channels by heavy metals such as Cd(2+) or La(3+) almost completely abolished changes in intracellular Ca(2+) observed during migration, indicating an essential role for Ca(2+) channels in the generation of these Ca(2+) oscillations. However, specific blockers of voltage-gated Ca(2+) channels, including nitrendipine, omega-conotoxin GVIA, omega-conotoxin MVIIC or low concentrations of Ni(2+) were without effect on Ca(2+) oscillations. We examined the role of internal Ca(2+) stores, showing that thapsigargin-sensitive Ca(2+) stores and InsP(3) receptors are involved in Ca(2+) oscillations, unlike ryanodine-sensitive Ca(2+) stores. Detailed analysis of the spatio-temporal aspect of the Ca(2+) oscillations revealed the existence of Ca(2+) waves initiated at the leading cell edge which propagate throughout the cell. Previously, we have shown that the frequency of Ca(2+) oscillations was reduced in the presence of inhibitory antibodies directed against beta3 integrin subunits. A simple model of a Ca(2+) oscillator is proposed, which may explain how the generation of Ca(2+) oscillations is linked to cell migration.  相似文献   

14.
Repetitive Ca(2+) release from the endoplasmic reticulum (ER) is necessary for activation of mammalian eggs. Influx and release of Mn(2+) and Ca(2+) during Ca(2+) oscillations induced by injection of sperm extract (SE) into mouse eggs were investigated by Mn(2+)-quenching of intracellular Fura-2 after adding Mn(2+) to external medium. Mn(2+)/Ca(2+) influx was detected at the resting state. A marked Mn(2+)/Ca(2+) influx occurred during the first Ca(2+) release upon SE injection, and persistently facilitated Mn(2+)/Ca(2+) influx was observed during steady Ca(2+) oscillations. As intracellular Mn(2+) concentration ([Mn(2+)](i)) increased progressively, periodic [Mn(2+)](i) rises appeared, corresponding to each Ca(2+)transient but taking a slower time course. A numerical simulation based on continuous Mn(2+)/Ca(2+) influx-extrusion across the plasma membrane and release-uptake across the ER membrane in a competitive manner mimicked well the Mn(2+) oscillations calculated from experimental data, strongly suggesting that repetitive Mn(2+) release develops after Mn(2+) entry and uptake into the ER. In other experiments, a marked Mn(2+) influx occurred upon Mn(2+) addition to Ca(2+)-free medium after depletion of the ER using an ER Ca(2+) pump inhibitor plus repeated injection of inositol 1,4,5-trisphosphate (InsP(3)). No significant increase in Mn(2+) influx was induced by injection of SE, InsP(3), or Ca(2+), when Ca(2+) release was prevented by pre-injection of an antibody against the InsP(3) receptor. We concluded that Ca(2+) influx is activated during the initial large Ca(2+)release possibly by a capacitative mechanism and kept facilitated during steady Ca(2+) oscillations. The finding that repetitive Mn(2+) release is caused by continuous Mn(2+) entry suggests that continuous Ca(2+) influx may play a critical role in refilling the ER and, thereby, maintaining Ca(2+)oscillations in mammalian fertilization.  相似文献   

15.
Active neurons communicate to intracerebral arterioles in part through an elevation of cytosolic Ca(2+) concentration ([Ca(2+)](i)) in astrocytes, leading to the generation of vasoactive signals involved in neurovascular coupling. In particular, [Ca(2+)](i) increases in astrocytic processes ("endfeet"), which encase cerebral arterioles, have been shown to result in vasodilation of arterioles in vivo. However, the spatial and temporal properties of endfoot [Ca(2+)](i) signals have not been characterized, and information regarding the mechanism by which these signals arise is lacking. [Ca(2+)](i) signaling in astrocytic endfeet was measured with high spatiotemporal resolution in cortical brain slices, using a fluorescent Ca(2+) indicator and confocal microscopy. Increases in endfoot [Ca(2+)](i) preceded vasodilation of arterioles within cortical slices, as detected by simultaneous measurement of endfoot [Ca(2+)](i) and vascular diameter. Neuronal activity-evoked elevation of endfoot [Ca(2+)](i) was reduced by inhibition of inositol 1,4,5-trisphosphate (InsP(3)) receptor Ca(2+) release channels and almost completely abolished by inhibition of endoplasmic reticulum Ca(2+) uptake. To probe the Ca(2+) release mechanisms present within endfeet, spatially restricted flash photolysis of caged InsP(3) was utilized to liberate InsP(3) directly within endfeet. This maneuver generated large amplitude [Ca(2+)](i) increases within endfeet that were spatially restricted to this region of the astrocyte. These InsP(3)-induced [Ca(2+)](i) increases were sensitive to depletion of the intracellular Ca(2+) store, but not to ryanodine, suggesting that Ca(2+)-induced Ca(2+) release from ryanodine receptors does not contribute to the generation of endfoot [Ca(2+)](i) signals. Neuronally evoked increases in astrocytic [Ca(2+)](i) propagated through perivascular astrocytic processes and endfeet as multiple, distinct [Ca(2+)](i) waves and exhibited a high degree of spatial heterogeneity. Regenerative Ca(2+) release processes within the endfeet were evident, as were localized regions of Ca(2+) release, and treatment of slices with the vasoactive neuropeptides somatostatin and vasoactive intestinal peptide was capable of inducing endfoot [Ca(2+)](i) increases, suggesting the potential for signaling between local interneurons and astrocytic endfeet in the cortex. Furthermore, photorelease of InsP(3) within individual endfeet resulted in a local vasodilation of adjacent arterioles, supporting the concept that astrocytic endfeet function as local "vasoregulatory units" by translating information from active neurons into complex InsP(3)-mediated Ca(2+) release signals that modulate arteriolar diameter.  相似文献   

16.
17.
The phenomenology of nuclear Ca(2+) dynamics has experienced important progress revealing the broad range of cellular processes that it regulates. Although several agonists can mobilize Ca(2+) from storage in the nuclear envelope (NE) to the intranuclear compartment (INC), the mechanisms of Ca(2+) signaling in the nucleus still remain uncertain. Here we report that the NE/INC complex can function as an inositol-1,4,5-trisphosphate (InsP(3))-controlled Ca(2+) oscillator. Thin optical sectioning combined with fluorescent labeling of Ca(2+) probes show in cultured airway epithelial ciliated cells that ATP can trigger periodic oscillations of Ca(2+) in the NE ([Ca(2+)](NE)) and corresponding pulses of Ca(2+) release to the INC. Identical results were obtained in InsP(3)-stimulated isolated nuclei of these cells. Our data show that [Ca(2+)](NE) oscillations and Ca(2+) release to the INC result from the interplay between the Ca(2+)/K(+) ion-exchange properties of the intralumenal polyanionic matrix of the NE and two Ca(2+)-sensitive ion channels-an InsP(3)-receptor-Ca(2+) channel and an apamin-sensitive K(+) channel. A similar Ca(2+) signaling system operating under the same functional protocol and molecular hardware controls Ca(2+) oscillations and release in/to the endoplasmic reticulum/cytosol and in/to the granule/cytosol complexes in airway and mast cells. These observations suggest that these intracellular organelles share a remarkably conserved mechanism of InsP(3)-controlled frequency-encoded Ca(2+) signaling.  相似文献   

18.
Chen S  Xu Y  Xu B  Guo M  Zhang Z  Liu L  Ma H  Chen Z  Luo Y  Huang S  Chen L 《Journal of neurochemistry》2011,119(5):1108-1118
Cadmium (Cd), a toxic environmental contaminant, induces neurodegenerative diseases. Recently, we have shown that Cd elevates intracellular free calcium ion ([Ca(2+) ](i) ) level, leading to neuronal apoptosis partly by activating mitogen-activated protein kinases (MAPK) and mammalian target of rapamycin (mTOR) pathways. However, the underlying mechanism remains to be elucidated. In this study, we show that the effects of Cd-elevated [Ca(2+) ](i) on MAPK and mTOR network as well as neuronal cell death are through stimulating phosphorylation of calcium/calmodulin-dependent protein kinase II (CaMKII). This is supported by the findings that chelating intracellular Ca(2+) with 1,2-bis(o-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid tetra(acetoxymethyl) ester or preventing Cd-induced [Ca(2+) ](i) elevation using 2-aminoethoxydiphenyl borate blocked Cd activation of CaMKII. Inhibiting CaMKII with KN93 or silencing CaMKII attenuated Cd activation of MAPK/mTOR pathways and cell death. Furthermore, inhibitors of mTOR (rapamycin), c-Jun N-terminal kinase (SP600125) and extracellular signal-regulated kinase 1/2 (U0126), but not of p38 (PD169316), prevented Cd-induced neuronal cell death in part through inhibition of [Ca(2+) ](i) elevation and CaMKII phosphorylation. The results indicate that Cd activates MAPK/mTOR network triggering neuronal cell death, by stimulating CaMKII. Our findings underscore a central role of CaMKII in the neurotoxicology of Cd, and suggest that manipulation of intracellular Ca(2+) level or CaMKII activity may be exploited for prevention of Cd-induced neurodegenerative disorders.  相似文献   

19.
Inositol 1,4,5-trisphosphate (InsP(3)) and cAMP are the two second messengers that play an important role in neuronal signaling. Here, we investigated the interactions of InsP(3)- and cAMP-mediated signaling pathways activated by dopamine in striatal medium spiny neurons (MSN). We found that in approximately 40% of the MSN, application of dopamine elicited robust repetitive Ca(2+) transients (oscillations). In pharmacological experiments with specific agonists and antagonists, we found that the observed Ca(2+) oscillations were triggered by activation of D1 class dopamine receptors (DARs). We further demonstrated that activation of phospholipase C was required for induction of dopamine-induced Ca(2+) oscillations and that maintenance of dopamine-evoked Ca(2+) oscillations required both Ca(2+) influx and Ca(2+) mobilization from internal Ca(2+) stores. In "priming" experiments with a type 2 5-hydroxytryptamine receptor agonist, we have shown a likely role for calcyon in coupling D1 class DARs with Ca(2+) oscillations in MSN. In experiments with the DAR-specific agonist SKF83959, we discovered that phospholipase C activation alone could not account for dopamine-induced Ca(2+) oscillations. We further demonstrated that direct activation of protein kinase A by 8-bromo-cAMP or inhibition of protein phosphatase-1 (PP1) or calcineurin (PP2B) resulted in elevation of basal Ca(2+) levels in MSN, but not in Ca(2+) oscillations. In experiments with competitive peptides, we have shown an importance of type 1 InsP(3) receptor association with PP1alpha and with AKAP9.protein kinase A for dopamine-induced Ca(2+) oscillations. In experiments with MSN from DARPP-32 knock-out mice, we demonstrated a regulatory role of DARPP-32 in dopamine-induced Ca(2+) oscillations. Our results indicate that, following D1 class DAR activation, InsP(3) and cAMP signaling pathways converge on the type 1 InsP(3) receptor, resulting in Ca(2+) oscillations in MSN.  相似文献   

20.
We consider a simple, minimal model for signal-induced Ca2+ oscillations based on Ca(2+)-induced Ca2+ release. The model takes into account the existence of two pools of intracellular Ca2+, namely, one sensitive to inositol 1,4,5 trisphosphate (InsP3) whose synthesis is elicited by the stimulus, and one insensitive to InsP3. The discharge of the latter pool into the cytosol is activated by cytosolic Ca2+. Oscillations in cytosolic Ca2+ arise in this model either spontaneously or in an appropriate range of external stimulation; these oscillations do not require the concomitant, periodic variation of InsP3. The following properties of the model are reviewed and compared with experimental observations: (a) Control of the frequency of Ca2+ oscillations by the external stimulus or extracellular Ca2+; (b) correlation of latency with period of Ca2+ oscillations obtained at different levels of stimulation; (c) effect of a transient increase in InsP3; (d) phase shift and transient suppression of Ca2+ oscillations by Ca2+ pulses, and (e) propagation of Ca2+ waves. It is shown that on all these counts the model provides a simple, unified explanation for a number of experimental observations in a variety of cell types. The model based on Ca(2+)-induced Ca2+ release can be extended to incorporate variations in the level of InsP3 as well as desensitization of the InsP3 receptor; besides accounting for the phenomena described by the minimal model, the extended model might also account for the occurrence of complex Ca2+ oscillations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号