首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
We have studied the effects of dibromothymoquinone (DBMIB) in various redox activities of the succinate-cytochrome c span of the mitochondrial respiratory chain. At concentrations higher than 50 mol/mol of cytochrome c1 the inhibitor produces a bypass of electron transfer on the substrate side of the bc1 complex, because of its autooxidation capability. This induces an artifactual overestimation of the real inhibition titer of the redox activity of this enzyme, which has been found to be 3-6 mol/mol of cytochrome c1 by following the ubiquinol-cytochrome c reductase activity. This action is reversed by addition of excess of sulphydryl compounds like cysteine.  相似文献   

2.
We have found that dicyclohexylcarbodiimide (DCCD) inhibits both the succinate-cytochrome c and the ubiquinol-cytochrome c reductases in cytochrome c-depleted mitochondria. On the other hand the succinate-ubiquinone reductase is not decreased at the same levels of the inhibitor. The inhibition curve of DCCD results sigmoidal for succinate-cytochrome c reductase, whereas it is hyperbolic for the ubiquinol-1-cytochrome c reductase, with also a lower apparent KI. The inhibition appears dependent both on the time of preincubation and on the mitochondrial concentration. The apparent Km for ubiquinol-1 is increased and the maximal velocity of ubiquinol-cytochrome c reductase is decreased by DCCD. The effects do not appear to be caused by unspecific modification of the physicochemical state of the bc1 region of the respiratory chain. The results therefore suggest the presence of a DCCD-sensitive electron transfer step in the redox pathways from ubiquinol to cytochrome c.  相似文献   

3.
Structural analysis of the dimeric mitochondrial cytochrome bc1 complex suggests that electron transfer between inter-monomer hemes bL-bL may occur during bc1 catalysis. Such electron transfer may be facilitated by the aromatic pairs present between the two bL hemes in the two symmetry-related monomers. To test this hypothesis, R. sphaeroides mutants expressing His6-tagged bc1 complexes with mutations at three aromatic residues (Phe-195, Tyr-199, and Phe-203), located between two bL hemes, were generated and characterized. All three mutants grew photosynthetically at a rate comparable to that of wild-type cells. The bc1 complexes prepared from mutants F195A, Y199A, and F203A have, respectively, 78%, 100%, and 100% of ubiquinol-cytochrome c reductase activity found in the wild-type complex. Replacing the Phe-195 of cytochrome b with Tyr, His, or Trp results in mutant complexes (F195Y, F195H, or F195W) having the same ubiquinol-cytochrome c reductase activity as the wild-type. These results indicate that the aromatic group at position195 of cytochrome b is involved in electron transfer reactions of the bc1 complex. The rate of superoxide anion (O2*) generation, measured by the chemiluminescence of 2-methyl-6-(p-methoxyphenyl)-3,7-dihydroimidazo[1,2-alpha]pyrazin-3-one hydrochloride-O2* adduct during oxidation of ubiquinol, is 3 times higher in the F195A complex than in the wild-type or mutant complexes Y199A or F203A. This supports the idea that the interruption of electron transfer between the two bL hemes enhances electron leakage to oxygen and thus decreases the ubiquinol-cytochrome c reductase activity.  相似文献   

4.
A procedure is described for isolation of active ubiquinol-cytochrome c oxidoreductase (bc1 complex) from potato tuber mitochondria using dodecyl maltoside extraction and ion exchange chromatography. The same procedure works well with mitochondria from red beet and sweet potato. The potato complex has at least 10 subunits resolvable by gel electrophoresis in the presence of dodecyl sulfate. The fifth subunit carries covalently bound heme. The two largest ("core") subunits either show heterogeneity or include a third subunit. The purified complex contains about 4 mumol of cytochrome c1, 8 mumol of cytochrome b, and 20 mumol of iron/g of protein. The complex is highly delipidated, with 1-6 mol of phospholipid and about 0.2 mol of ubiquinone/mol of cytochrome c1. Nonetheless it catalyzes electron transfer from a short chain ubiquinol analog to equine cytochrome c with a turnover number of 50-170 mol of cytochrome c reduced per mol of cytochrome c1 per s, as compared with approximately 220 in whole mitochondria. The enzymatic activity is stable for weeks at 4 degrees C in phosphate buffer and for months at -20 degrees C in 50% glycerol. The activity is inhibited by antimycin, myxothiazol, and funiculosin. The complex is more resistant to funiculosin and diuron than the beef heart enzyme. The optical difference spectra of the cytochromes were resolved by analysis of full-spectrum redox titrations. The alpha-band absorption maxima are 552 nm (cytochrome c1), 560 nm (cytochrome b-560), and 557.5 + 565.5 nm (cytochrome b-566, which has a split alpha-band). Extinction coefficients appropriate for the potato cytochromes are estimated. Despite the low lipid and ubiquinone content of the purified complex, the midpoint potentials of the cytochromes (257, 51, and -77 mV for cytochromes c1, b-560, and b-566, respectively) are not very different from values reported for whole mitochondria. EPR spectroscopy shows the presence of a Rieske-type iron sulfur center, and the absence of centers associated with succinate and NADH dehydrogenases. The complex shows characteristics associated with a Q-cycle mechanism of redox-driven proton translocation, including two pathways for reduction of b cytochromes by quinols and oxidant-induced reduction of b cytochromes in the presence of antimycin.  相似文献   

5.
The mitochondrial respiratory chain is composed of four different protein complexes that cooperate in electron transfer and proton pumping across the inner mitochondrial membrane. The cytochrome bc1 complex, or complex III, is a component of the mitochondrial respiratory chain. This review will focus on the biogenesis of the bc1 complex in the mitochondria of the yeast Saccharomyces cerevisiae. In wild type yeast mitochondrial membranes the major part of the cytochrome bc1 complex was found in association with one or two copies of the cytochrome c oxidase complex. The analysis of several yeast mutant strains in which single genes or pairs of genes encoding bc1 subunits had been deleted revealed the presence of a common set of bc1 sub-complexes. These sub-complexes are represented by the central core of the bc1 complex, consisting of cytochrome b bound to subunit 7 and subunit 8, by the two core proteins associated with each other, by the Rieske protein associated with subunit 9, and by those deriving from the unexpected interaction of each of the two core proteins with cytochrome c1. Furthermore, a higher molecular mass sub-complex is that composed of cytochrome b, cytochrome c1, core protein 1 and 2, subunit 6, subunit 7 and subunit 8. The identification and characterization of all these sub-complexes may help in defining the steps and the molecular events leading to bc1 assembly in yeast mitochondria.  相似文献   

6.
L Yu  C A Yu 《Biochemistry》1991,30(20):4934-4939
The cytochrome b-c1 complex from Rhodobacter sphaeroides was resolved into four protein subunits by a phenyl-Sepharose CL-4B column eluted with different detergents. Individual subunits were purified to homogeneity. Antibodies against subunit IV (Mr = 15,000) were raised and purified. These antibodies had a high titer with isolated subunit IV and with the b-c1 complex from R. sphaeroides. They inhibited 95% of the ubiquinol-cytochrome c reductase activity of the cytochrome b-c1 complex, indicating that subunit IV is essential for the catalytic function of this complex. When detergent-solubilized chromatopores were passed through an anti-subunit IV coupled Affi-Gel 10 column, no no ubiquinol-cytochrome c reductase activity was detected in the effluent, and four proteins, corresponding to the four subunits in the isolated complex, were adsorbed to the column. This indicated that subunit IV in an integral part of the cytochrome b-c1 complex. No change in the apparent Kms for Q2H2 and for cytochrome c was observed with anti-subunit IV treated complex. Antibodies against subunit IV had little effect on the stability of the ubisemiquinone radical in this complex, suggesting that they do not bind to the subunit near its ubiquinone-binding site.  相似文献   

7.
N,N'-Dicyclohexylcarbodiimide (DCCD) induces a complex set of effects on the succinate-cytochrome c span of the mitochondrial respiratory chain. At concentrations below 1000 mol per mol of cytochrome c1, DCCD is able to block the proton-translocating activity associated to succinate or ubiquinol oxidation without inhibiting the steady-state redox activity of the b-c1 complex either in intact mitochondrial particles or in the isolated ubiquinol-cytochrome c reductase reconstituted in phospholipid vesicles. In parallel to this, DCCD modifies the redox responses of the endogenous cytochrome b, which becomes more rapidly reduced by succinate, and more slowly oxidized when previously reduced by substrates. At similar concentrations the inhibitor apparently stimulates the redox activity of the succinate-ubiquinone reductase. Moreover, DCCD, at concentrations about one order of magnitude higher than those blocking proton translocation, produces inactivation of the redox function of the b-c1 complex. The binding of [14C]DCCD to the isolated b-c1 complex has shown that under conditions leading to the inhibition of the proton-translocating activity of the enzyme, a subunit of about 9500 Da, namely Band VIII, is the most heavily labelled polypeptide of the complex. The possible correlations between the various effects of DCCD and its modification of the b-c1 complex are discussed.  相似文献   

8.
An improved method was developed to sequentially fractionate succinate-cytochrome c reductase into three reconstitutive active enzyme systems with good yield: pure succinate dehydrogenase, ubiquinone-binding protein fraction and a highly purified ubiquinol-cytochrome c reductase (cytochrome b-c1 III complex). An extensively dialyzed succinate-cytochrome c reductase was first separated into a succinae dehydrogenase fraction and the cytochrome b-c1 complex by alkali treatment. The resulting succinate dehydrogenase fraction was further purified to homogeneity by the treatment of butanol, calcium phosphate gel adsorption and ammonium sulfate fractionation under anaerobic condition in the presence of succinate and dithiothreitol. The cytochrome b-c1 complex was separated into chtochrome b-c1 III complex and ubiquinone-binding protein fractions by careful ammonium acetate fractionation in the presence of deoxycholate. The purified succinate dehydrogenase contained only two polypeptides with molecular weights of 70 000 anbd 27 000 as revealed by the sodium dodecyl sulfate polyacrylamide gel electrophoretic pattern. The enzyme has the reconstitutive activity and a low Km ferricyanide reductase activity of 85 mumol succinate oxidized per min per mg protein at 38 degrees C. Chemical composition analysis of cytochrome b-c1 III complex showed that the preparation was completely free of contamination of succinate dehydrogenase and ubiquinone-binding protein and was 30% more pure than the available preparation. When these three components were mixed in a proper ratio, a thenoyltrifluoroacetone- and antimycin A-sensitive succinate-cytochrome c reductase was reconstituted.  相似文献   

9.
The functional role and topographical orientation in the inner membrane of subunit VII, the ubiquinone-binding protein, of the cytochrome b-c1 complex of yeast mitochondria has been investigated. The apparent molecular weight of this subunit on sodium dodecyl sulfate-urea gels was calculated to be 15,500, while its amino acid composition was similar to that of the Q-binding proteins present in the cytochrome b-c1 complexes isolated from both beef heart and yeast mitochondria. The specific antibody obtained against subunit VII inhibited 30-47% of the ubiquinol-cytochrome c reductase activity in the isolated cytochrome b-c1 complex and in submitochondrial particles but had no effect on cytochrome c reductase activity in mitoplasts, mitochondria from which the outer membrane has been removed. Furthermore, the antibody against subunit VII strongly inhibited (74%) the reduction of cytochrome b by succinate in the presence of antimycin, an inhibitor of center i, but had no effect on cytochrome b reduction in the presence of myxothiazol, an inhibitor of center o. These results suggest that subunit VII, the Q-binding protein, is involved in electron transport at center o of the cytochrome b-c1 complex of the respiratory chain and that subunit VII is localized facing the matrix side of the inner mitochondrial membrane.  相似文献   

10.
Antimycin, a specific and highly potent inhibitor of electron transfer in the cytochrome b-c1 segment of the mitochondrial respiratory chain, does not inhibit reduction of cytochrome c1 by succinate in isolated succinate-cytochrome c reductase complex under conditions where the respiratory chain complex undergoes one oxidation-reduction turnover. If a slight molar excess of cytochrome c is added to the isolated reductase complex in the presence of antimycin, there is rapid reduction of one equivalent of c type cytochrome by succinate, after which reduction of the remaining c type cytochrome is inhibited. Antimycin fully inhibits succinate-cytochrome c reductase activity of isolated succinate-cytochrome c reductase complex in which the b-c1 complex undergoes multiple turnovers in a catalytic fashion. In addition, when antimycin is added to isolated reductase complex in the presence of cytochrome c plus cytochrome c oxidase, the inhibitor causes a "crossover" in the steady state level of reduction of the cytochromes b and c1 comparable to this classical effect in mitochondria. On the basis of these results, it is suggested that linear schemes of electron transfer are not adequate to account for the site of antimycin inhibition and the mechanism of electron transfer in the cytochrome b-c1 segment of the respiratory chain. The effects of antimycin are consistent with cyclic electron transfer mechanisms such as the protonmotive Q cycle.  相似文献   

11.
We have investigated in detail the effects of dibromothymoquinone (2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone, DBMIB) on the ubiquinol-cytochrome c reductase (cytochrome bc1 complex) from bovine heart mitochondria. The inhibitory action of DBMIB on the steady-state activity of the bc1 complex is related to the specific binding of the quinone to the purified enzymatic complex. At concentrations higher than 10 mol per mol of the enzyme, DBMIB is able to stimulate an antimycin-insensitive reduction of cytochrome c catalyzed by the bc1 complex. In accordance with kinetic data showing a competition by endogenous ubiquinone in the inhibitory action, DBMIB can be considered as a product-like inhibitor of the ubiquinol-cytochrome c reductase activity. The site of specific binding of dibromothymoquinone in the bc1 complex enables it to interact with the iron-sulphur center of the enzyme, as indicated by changes induced in the EPR spectrum of the center. However, the inhibitor also directly interacts with cytochrome b, promoting a fast chemical oxidation of the reduced heme center. In spite of these effects, DBMIB has been found not to exert significant effects on the first turnover of the fully oxidized bc1 complex, as monitored by the rapid reduction of both cytochromes b and c1 by ubiquinol-1. In the presence of antimycin, only a stimulation of cytochrome c1 reduction, in parallel to an enhanced cytochrome b reoxidation, is observed. Moreover, DBMIB does not affect the oxidant-induced extra cytochrome b reduction in the presence of antimycin. On the basis of the evidences suggesting a competition with the endogenous ubiquinone in the redox cycle of the bc1 complex, a model is proposed for the mechanism of DBMIB inhibition. Such model can also explain at the molecular level the redox bypass induced by dibromothymoquinone in the whole respiratory chain (Degli Esposti, M., Rugolo, M. and Lenaz, G. (1983) FEBS Lett. 156, 15-19).  相似文献   

12.
The ubiquinol-cytochrome c oxidoreductase (bc1 complex, EC 1.10.2.2) has been isolated from the heart mitochondria of beef, chicken, turkey, duck and tuna with an identical procedure. The polypeptide composition of the different complexes, compared using SDS-polyacrylamide gel electrophoresis, shows that the three subunits carrying the prosthetic groups of the enzyme are highly conserved in all species. Also the large subunits I and II (core proteins) and band VI appear to be conserved in structure, while subunits VII and VIIa show a most remarkable structural variation in the various complexes. The steady-state ubiquinol-cytochrome c reductase analysis of the active enzymes indicates that all the bc1 complexes follow essentially a ping-pong mechanism, with the cytochrome c substrate displaying a partial competitive inhibition vs the ubiquinol substrate. The cytochrome c specificity of the reductase activity clearly is different in the various bc1 complexes, whereas the quinol specificity appears to be identical in all the enzymes.  相似文献   

13.
E Davidson  T Ohnishi  M Tokito  F Daldal 《Biochemistry》1992,31(13):3351-3358
The ubiquinol-cytochrome c oxidoreductase (or bc1 complex) of Rhodobacter capsulatus consists of three subunits: cytochrome b, cytochrome c1, and the Rieske iron-sulfur protein, encoded by the fbcF, fbcB, and fbcC genes, respectively. In the preceding paper [Davidson, E., Ohnishi, T., Atta-Asafo-Adjei, E., & Daldal, F. (1992) Biochemistry (preceding paper in this issue)], we have observed that the apoproteins for cytochromes b and c1 are fully present in the intracytoplasmic membrane of R. capsulatus mutants containing low amounts of, or no, Rieske apoprotein. Here we present evidence that the redox midpoint potentials of cytochromes b and c1, as well as their ability to bind antimycin and stabilize a semiquinone at the Qi site, are unaffected by the absence of the Rieske subunit. This is the first report describing a mutant containing a stable bc1 subcomplex with an intact Qi site in the chromatophore membranes, and provides further evidence that a functional quinone reduction site can be formed in the absence of a quinol oxidation (Qo) site. Additional mutants carrying fbc deletions expressing the remaining subunits of the cytochrome bc1 complex were constructed to investigate the relationship among these subunits for their stability in vivo. Western blot analysis of these mutants indicated that cytochromes b and c1 protect each other against degradation, suggesting that they form a two-protein subcomplex in the absence of the Rieske protein subunit.  相似文献   

14.
The precursor proteins to the subunits of ubiquinol:cytochrome c reductase (cytochrome bc1 complex) of Neurospora crassa were synthesized in a reticulocyte lysate. These precursors were immunoprecipitated with antibodies prepared against the individual subunits and compared to the mature subunits immunoprecipitated or isolated from mitochondria. Most subunits were synthesized as precursors with larger apparent molecular weights (subunits I, 51,500 versus 50,000; subunit II, 47,500 versus 45,000; subunit IV (cytochrome c1), 38,000 versus 31,000; subunit V (Fe-S protein), 28,000 versus 25,000; subunit VII, 12,000 versus 11,500; subunit VIII, 11,600 versus 11,200). Subunit VI (14,000) was synthesized with the same apparent molecular weight. The post-translational transfer of subunits I, IV, V, and VII was studied in an in vitro system employing reticulocyte lysate and isolated mitochondria. The transfer and proteolytic processing of these precursors was found to be dependent on the mitochondrial membrane potential. In the transfer of cytochrome c1, the proteolytic processing appears to take place in two separate steps via an intermediate both in vivo and in vitro. In vivo, the intermediate form accumulated when cells were kept at 8 degrees C and was chased into mature cytochrome c1 at 25 degrees C. Both processing steps were energy-dependent.  相似文献   

15.
A ubiquinol-cytochrome c oxidoreductase (cytochrome bc1) complex has been purified from the plasma membrane of aerobically grown Paracoccus denitrificans by extraction with dodecyl maltoside and ion exchange chromatography of the extract. The purified complex contains two spectrally and thermodynamically distinct b cytochromes, cytochrome c1, and a Rieske-type iron-sulfur protein. Optical spectra indicate absorption peaks at 553 nm for cytochrome c1 and at 560 and 566 nm for the high and low potential hemes of cytochrome b. The spectrum of cytochrome b560 is shifted to longer wavelength by antimycin. The Paracoccus bc1 complex consists of only three polypeptide subunits. On the basis of their relative electrophoretic mobilities, these have apparent molecular masses of 62, 39, and 20 kDa. The 62- and 39-kDa subunits have been identified as cytochromes c1 and b, respectively. The 20-kDa subunit is assumed to be the Rieske-type iron-sulfur protein on the basis of its molecular weight and the presence of an EPR-detectable signal typical of this iron-sulfur protein in the three-subunit complex. The Paracoccus bc1 complex catalyzes reduction of cytochrome c by ubiquinol with a turnover of 470 s-1. This activity is inhibited by antimycin, myxothiazol, stigmatellin, and hydroxyquinone analogues of ubiquinone, all of which inhibit electron transfer in the cytochrome bc1 complex of the mitochondrial respiratory chain. The electron transfer functions of the Paracoccus complex thus appear to be similar, and possibly identical, to those of the bc1 complex of eukaryotic mitochondria. The Paracoccus bc1 complex has the simplest subunit composition and one of the highest turnover numbers of any bc1 complex isolated from any species to date. These properties suggest that the structural requirements for electron transfer from ubiquinol to cytochrome c are met by a small number of peptides and that the "extra" peptides occurring in the mitochondrial bc1 complexes serve some other function(s), possibly in biogenesis or insertion of the complex into that organelle.  相似文献   

16.
Disruption of the gene for subunit 6 of the yeast cytochrome bc1 complex (QCR6) causes a temperature-sensitive petite phenotype in contrast to deletion of the coding region of QCR6, which shows no growth defect. Mitochondria from the petite strain carrying the disruption allele were devoid of ubiquinol-cytochrome c oxidoreductase activity but retained cytochrome c oxidase and oligomycin-sensitive ATPase activities. Optical spectra of cytochromes in mitochondrial membranes from the petite strain lacked a cytochrome b absorption band and had a reduced amount of cytochrome c1. Analysis of mitochondrial translation products showed normal synthesis of cytochrome b. Western analysis of mitochondrial membranes from this disruption strain indicates core protein 1 of the cytochrome bc1 complex is present in normal amounts, while cytochrome c1, the Rieske iron-sulfur protein, subunit 6, and subunit 7 were absent or present in very low amounts. Taken together, these findings indicate a loss of assembly of the cytochrome bc1 complex. High copy suppressors of the disruption strain were selected. Two separate families of suppressors were found. The first contained QCR6. The second family consisted of overlapping clones of a second gene distinct from QCR6. These plasmids contained QCR9, the gene which codes for subunit 9 of the yeast cytochrome bc1 complex. Suppression of the QCR6 disruption strain by overexpression of QCR9 indicates a critical interaction between these two proteins in the assembly of the cytochrome bc1 complex.  相似文献   

17.
18.
Ilicicolin H is an antibiotic isolated from the "imperfect" fungus Cylindrocladium iliciola strain MFC-870. Ilicicolin inhibits mitochondrial respiration by inhibiting the cytochrome bc(1) complex. In order to identify the site of ilicicolin action within the bc(1) complex we have characterized the effects of ilicicolin on the cytochrome bc(1) complex of Saccharomyces cerevisiae. Ilicicolin inhibits ubiquinol-cytochrome c reductase activity of the yeast bc(1) complex with an IC(50) of 3-5 nM, while 200-250 nM ilicicolin was required to obtain comparable inhibition of the bovine bc(1) complex. Ilicicolin blocks oxidation-reduction of cytochrome b through center N of the bc(1) complex and promotes oxidant-induced reduction of cytochrome b but has no effect on oxidation of ubiquinol through center P. These results indicate that ilicicolin binds to the Qn site of the bc(1) complex. Ilicicolin induces a blue shift in the absorption spectrum of ferro-cytochrome b, and titration of the spectral shift indicates binding of one inhibitor molecule per Qn site. The effects of ilicicolin on electron transfer reactions in the bc(1) complex are similar to those of antimycin, another inhibitor that binds to the Qn site of the bc(1) complex. However, because the two inhibitors have different effects on the absorption spectrum of cytochrome b, they differ in their mode of binding to the Qn site.  相似文献   

19.
The cytochrome bc1 complex of the yeast Saccharomyces cerevisiae is composed of 10 different subunits that are assembled as a symmetrical dimer in the inner mitochondrial membrane. Three of the subunits contain redox centers and participate in catalysis, whereas little is known about the function of the seven supernumerary subunits. To gain further insight into the function of the supernumerary subunits in the assembly process, we have examined the subunit composition of mitochondrial membranes isolated from yeast mutants in which the genes for supernumerary subunits and cytochrome b were deleted and from yeast mutants containing double deletions of supernumerary subunits. Deletion of any one of the genes encoding cytochrome b, subunit 7 or subunit 8 caused the loss of the other two subunits. This is consistent with the crystal structure of the cytochrome bc1 complex that shows that these three subunits comprise its core, around which the remaining subunits are assembled. Absence of the cytochrome b/subunit 7/subunit 8 core led to the loss of subunit 6, whereas cytochrome c1, iron-sulfur protein, core protein 1, core protein 2 and subunit 9 were still assembled in the membrane, although in reduced amounts. Parallel changes in the amounts of core protein 1 and core protein 2 in the mitochondrial membranes of all of the deletion mutants suggest that these can be assembled as a subcomplex in the mitochondrial membrane, independent of the presence of any other subunits. Likewise, evidence of interactions between subunit 6, subunit 9 and cytochrome c1 suggests that a subcomplex between these two supernumerary subunits and the cytochrome might exist.  相似文献   

20.
Puried complex III ) ubiquinol-cytochrome c reductase) from beef heart mitochondria was alkylated with iodol [1-14C]acetamide. After 6-8 h of incubation with iodo[1-14C]acetamide, duroquinol and ubiquinol-2-cytochrome c reductase activites were inhibited approximately 50%. During this time 4.5 +/- 1.6 nmol of iodo[1-14C]acetamide reacted per mg of complex III protein. Experiments carried out over 24 h indicated that enzyme activity could be inhibited to 70% and the alkylation of complex III was proportional to inhibition. The rates of cytochrome b and c1 reduction by duroquinol are also decreased upon treatment of complex III with iodoacetamide. Separation of the peptides of complex III by electrophoresis in sodium dodecylsulfate shows that all of the radioactivity is located in a single peptide of 50 000 molecular weight, which has been identified as one of the two core proteins. The possible functions of core protein are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号