首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
  • Domestication might affect plant size. We investigated whether herbaceous crops are larger than their wild progenitors, and the traits that influence size variation.
  • We grew six crop plants and their wild progenitors under common garden conditions. We measured the aboveground biomass gain by individual plants during the vegetative stage. We then tested whether photosynthesis rate, biomass allocation to leaves, leaf size and specific leaf area (SLA) accounted for variations in whole‐plant photosynthesis, and ultimately in aboveground biomass.
  • Despite variations among crops, domestication generally increased the aboveground biomass (average effect +1.38, Cohen's d effect size). Domesticated plants invested less in leaves and more in stems than their wild progenitors. Photosynthesis rates remained similar after domestication. Variations in whole‐plant C gains could not be explained by changes in leaf photosynthesis. Leaves were larger after domestication, which provided the main contribution to increases in leaf area per plant and plant‐level C gain, and ultimately to larger aboveground biomass.
  • In general, cultivated plants have become larger since domestication. In our six crops, this occurred despite lower investment in leaves, comparable leaf‐level photosynthesis and similar biomass costs of leaf area (i.e. SLA) than their wild progenitors. Increased leaf size was the main driver of increases in aboveground size. Thus, we suggest that large seeds, which are also typical of crops, might produce individuals with larger organs (i.e. leaves) via cascading effects throughout ontogeny. Larger leaves would then scale into larger whole plants, which might partly explain the increases in size that accompanied domestication.
  相似文献   

2.
The strength and extent of gene flow from crops into wild populations depends, in part, on the fitness of the crop alleles, as well as that of alleles at linked loci. Interest in crop–wild gene flow has increased with the advent of transgenic plants, but nontransgenic crop–wild hybrids can provide case studies to understand the factors influencing introgression, provided that the genetic architecture and the fitness effects of loci are known. This study used recombinant inbred lines (RILs) generated from a cross between crop and wild sunflowers to assess selection on domestication traits and quantitative trait loci (QTL) in two contrasting environments, in Indiana and Nebraska, USA. Only a small fraction of plants (9%) produced seed in Nebraska, due to adverse weather conditions, while the majority of plants (79%) in Indiana reproduced. Phenotypic selection analysis found that a mixture of crop and wild traits were favoured in Indiana (i.e. had significant selection gradients), including larger leaves, increased floral longevity, larger disk diameter, reduced ray flower size and smaller achene (seed) mass. Selection favouring early flowering was detected in Nebraska. QTLs for fitness were found at the end of linkage groups six (LG6) and nine (LG9) in both field sites, each explaining 11–12% of the total variation. Crop alleles were favoured on LG9, but wild alleles were favoured on LG6. QTLs for numerous domestication traits overlapped with the fitness QTLs, including flowering date, achene mass, head number, and disk diameter. It remains to be seen if these QTL clusters are the product of multiple linked genes, or individual genes with pleiotropic effects. These results indicate that crop trait values and alleles may sometimes be favoured in a noncrop environment and across broad geographical regions.  相似文献   

3.
The strength and extent of gene flow from crops into wild populations depends, in part, on the fitness of the crop alleles, as well as that of alleles at linked loci. Interest in crop-wild gene flow has increased with the advent of transgenic plants, but nontransgenic crop-wild hybrids can provide case studies to understand the factors influencing introgression, provided that the genetic architecture and the fitness effects of loci are known. This study used recombinant inbred lines (RILs) generated from a cross between crop and wild sunflowers to assess selection on domestication traits and quantitative trait loci (QTL) in two contrasting environments, in Indiana and Nebraska, USA. Only a small fraction of plants (9%) produced seed in Nebraska, due to adverse weather conditions, while the majority of plants (79%) in Indiana reproduced. Phenotypic selection analysis found that a mixture of crop and wild traits were favoured in Indiana (i.e. had significant selection gradients), including larger leaves, increased floral longevity, larger disk diameter, reduced ray flower size and smaller achene (seed) mass. Selection favouring early flowering was detected in Nebraska. QTLs for fitness were found at the end of linkage groups six (LG6) and nine (LG9) in both field sites, each explaining 11-12% of the total variation. Crop alleles were favoured on LG9, but wild alleles were favoured on LG6. QTLs for numerous domestication traits overlapped with the fitness QTLs, including flowering date, achene mass, head number, and disk diameter. It remains to be seen if these QTL clusters are the product of multiple linked genes, or individual genes with pleiotropic effects. These results indicate that crop trait values and alleles may sometimes be favoured in a noncrop environment and across broad geographical regions.  相似文献   

4.
Plant diversity fosters productivity in natural ecosystems. Biodiversity effects might increase agricultural yields at no cost in additional inputs. However, the effects of diversity on crop assemblages are inconsistent, probably because crops and wild plants differ in a range of traits relevant to plant–plant interactions. We tested whether domestication has changed the potential of crop mixtures to over‐yield by comparing the performance and traits of major crop species and those of their wild progenitors under varying levels of diversity. We found stronger biodiversity effects in mixtures of wild progenitors, due to larger selection effects. Variation in selection effects was partly explained by within‐mixture differences in leaf size. Our results indicate that domestication might disrupt the ability of crops to benefit from diverse neighbourhoods via reduced trait variance. These results highlight potential limitations of current crop mixtures to over‐yield and the potential of breeding to re‐establish variance and increase mixture performance.  相似文献   

5.
谭禄宾  孙传清 《植物学报》2021,56(2):134-137
通过人工选择优良遗传变异,将野生植物驯化为栽培作物,以满足人类对食物的需求,是人类发展历史中的重要事件,推动了人类文明的持续发展。随着世界人口持续增加,耕地面积不断减少,灾害性天气频发,全球粮食安全问题日趋严峻。基于作物驯化的分子机理及重要农艺性状的遗传基础,结合高通量基因组测序和高效基因组编辑技术,从头驯化野生植物,...  相似文献   

6.
CONTENTS: Summary 29 I. Introduction 30 II. Key concepts and definitions 30 III. Methods of review and analysis 35 IV. Trends identified from the review of 203 crops 37 V. Life cycle 38 VI. Ploidy level 40 VII. Reproductive strategies 42 VIII. The domestication syndrome 42 IX. Spatial and temporal trends 42 X. Utilization of plant parts 44 XI. Conclusions 44 Acknowledgements 45 References 45 SUMMARY: Domesticated food crops are derived from a phylogenetically diverse assemblage of wild ancestors through artificial selection for different traits. Our understanding of domestication, however, is based upon a subset of well-studied 'model' crops, many of them from the Poaceae family. Here, we investigate domestication traits and theories using a broader range of crops. We reviewed domestication information (e.g. center of domestication, plant traits, wild ancestors, domestication dates, domestication traits, early and current uses) for 203 major and minor food crops. Compiled data were used to test classic and contemporary theories in crop domestication. Many typical features of domestication associated with model crops, including changes in ploidy level, loss of shattering, multiple origins, and domestication outside the native range, are less common within this broader dataset. In addition, there are strong spatial and temporal trends in our dataset. The overall time required to domesticate a species has decreased since the earliest domestication events. The frequencies of some domestication syndrome traits (e.g. nonshattering) have decreased over time, while others (e.g. changes to secondary metabolites) have increased. We discuss the influences of the ecological, evolutionary, cultural and technological factors that make domestication a dynamic and ongoing process.  相似文献   

7.
Because domestication rarely leads to speciation, domesticated populations often hybridize with wild relatives when they occur in close proximity. Little work has focused on this question in clonally propagated crops. If selection on the capacity for sexual reproduction has been relaxed, these crops would not be expected to hybridize with their wild relatives as frequently as seed-propagated crops. Cassava is one of the most important clonally propagated plants in tropical agriculture. Gene flow between cassava and wild relatives has often been postulated, but never demonstrated in nature. We studied a population of a wild Manihot sp. in French Guiana, which was recently in contact with domesticated cassava, and characterized phenotypes (10 morphological traits) and genotypes (six microsatellite loci) of individuals in a transect parallel to the direction of hypothesized gene flow. Wild and domesticated populations were strongly differentiated at microsatellite loci. We identified many hybrids forming a continuum between these two populations, and phenotypic variation was strongly correlated with the degree of hybridization as determined by molecular markers. Analysis of linkage disequilibrium and of the diversity of hybrid pedigrees showed that hybridization has gone on for at least three generations and that no strong barrier prevents admixture of the populations. Hybrids were more heterozygous than either wild or domesticated individuals, and phenotypic comparisons suggested heterosis in vegetative traits. Our results also suggest that this situation is not uncommon, at least in French Guiana, and demonstrate the need for integrated management of wild and domesticated populations even in clonally propagated crops.  相似文献   

8.
The most vulnerable stage in the life of plants is the seedling. The transition from wild to agricultural land that plants experienced during and after domestication implied a noticeable change in the seedlings′ environment. Building on current knowledge of seedling ecology, and on previous studies of cassava, we hypothesise that cultivation should have promoted epigeal germination of seedlings, and more exposed and photosynthetic cotyledons. To test this hypothesis, we phenotyped seedling morpho‐functional traits in a set of domesticated and wild progenitor accessions of 20 Eudicot herbaceous crop species. Qualitative traits like epi‐ versus hypogeal germination, leafy versus storage type of cotyledons, or crypto‐ versus phanerocotyledonar germination, remained conserved during the domestication of all 20 species. Lengths of hypocotyls and epicotyls, of cotyledon petioles, and indices of cotyledon exposure to the aboveground environment changed during evolution under cultivation. However, those changes occurred in diverse directions, depending on the crop species. No common seedling phenotypic convergence in response to domestication was thus detected among the group of species studied here. Also, none of the 20 crops evolved in accordance with our initial hypothesis. Our results reject the idea that strong selective filters exerted unconsciously by artificial selection should have resulted in generalised channelling of seedling morphology towards more productive and more herbivore risky phenotypes. This result opens up unexplored opportunities for directional breeding of seedling traits.  相似文献   

9.
Hybridisation and subsequent introgression have recently received much attention in the context of genetically modified crops. But crop–wild hybrid detection in the field can be difficult, as most domestication traits seem to be recessive, and the hybrid phenotype may also depend on the direction of the cross or environmental factors. Our aim was to develop a reliable set of morphological markers that differ between two wild and 13 cultivated carrots (Daucus carota L.) and to evaluate their inheritance in hybrid lines. We then examined these morphological markers in four F1 hybrids obtained by fertilising plants from the two wild accessions with pollen from two common carrot cultivars. Of the 16 traits that differed between the two carrot subspecies, three took intermediate values in the hybrids, eight resembled the cultivar parent (dominant domestication traits), two resembled the wild parent (domestication traits recessive), and three were not significant or growth condition‐dependent. Root:shoot ratio was seven times higher for cultivars than for wild plants, while still attaining equivalent total dry weight, which shows that dry matter production by the shoot is much higher in cultivars than in wild plants. High root:shoot ratios were also present in the hybrids. While we found no maternal effects, the type of cultivar used for pollination had an impact on hybrid characteristics. The morphological markers developed here provide insights into the mode of inheritance of ecologically relevant traits and can be useful for pre‐screening wild populations for hybrid detection prior to genetic analysis.  相似文献   

10.
The domestication of diverse grain crops from wild grasses was a result of artificial selection for a suite of overlapping traits producing changes referred to in aggregate as ‘domestication syndrome’. Parallel phenotypic change can be accomplished by either selection on orthologous genes or selection on non‐orthologous genes with parallel phenotypic effects. To determine how often artificial selection for domestication traits in the grasses targeted orthologous genes, we employed resequencing data from wild and domesticated accessions of Zea (maize) and Sorghum (sorghum). Many ‘classic’ domestication genes identified through quantitative trait locus mapping in populations resulting from wild/domesticated crosses indeed show signatures of parallel selection in both maize and sorghum. However, the overall number of genes showing signatures of parallel selection in both species is not significantly different from that expected by chance. This suggests that while a small number of genes will extremely large phenotypic effects have been targeted repeatedly by artificial selection during domestication, the optimization part of domestication targeted small and largely non‐overlapping subsets of all possible genes which could produce equivalent phenotypic alterations.  相似文献   

11.
Man's first cereal crops were sown from seed gathered from wild stands, and it was in the course of cultivation that domestication occurred. This paper prcsents thr preliminary rrsults of an experimcntal approach to the measurement of domestication rate in crops of wild-type einkorn wheat exposed to primitive systems of husbandry. The results indicate that in wild-type crops of einkorn, emmer and barley (a) domestication will have occurred only if they were harvested in a partially ripe (or near-ripe) state using specific harvesting methods; (b) exposure to shifting cultivation may also have been required in somr cases; and (c) given these requirements, the crops could have become completely domcsticated within two centuries, and maybe in as little as 20–30 years without any form of conscious selection. This paper (1) considers the possible length of delays in the start of domestication due to early crops of wild-type cereals lacking domestic-type mutants; (2) examines the combination of primitive husbandry practices that would have been necessary for any selective advantage to have been unconsciously conferred on these mutants; (3) considers the state of ripeness (at harvest) necessary for crops to be able to respond to these selective prcssures; (4) outlines field measurements of the selective intensities (selection coefficients) which arise when analogous husbandry practices are applied experimentally to living wild-type crops; (5) summarizes the essential features of a mathematical model which incorporatcs these measurements of selection coefficients and other key variables, and which describes the rate of increasc in domestic-type mutants that would have occurred in early populations of wild-type cereals under specific combinations of primitive husbandry practices; (6) considers why very early cultivators should have used that combination of husbandry methods which, we suggest, unconsciously brought about the domestication of wild wheats and barley; and (7) concludes by considering whether these events arc likely to have left recognizable traces in archaeological remains.  相似文献   

12.
Wheat and barley are two of the founder crops of the agricultural revolution that took place 10,000 years ago in the Fertile Crescent and both crops remain among the world's most important crops. Domestication of these crops from their wild ancestors required the evolution of traits useful to humans, rather than survival in their natural environment. Of these traits, grain retention and threshability, yield improvement, changes to photoperiod sensitivity and nutritional value are most pronounced between wild and domesticated forms. Knowledge about the geographical origins of these crops and the genes responsible for domestication traits largely pre-dates the era of nextgeneration sequencing, although sequencing will lead to new insights. Molecular markers were initially used to calculate distance(relatedness), genetic diversity and to generate genetic maps which were useful in cloning major domestication genes. Both crops are characterized by large,complex genomes which were long thought to be beyond the scope of whole-genome sequencing. However, advances in sequencing technologies have improved the state of genomic resources for both wheat and barley. The availability of reference genomes for wheat and some of its progenitors,as well as for barley, sets the stage for answering unresolved questions in domestication genomics of wheat and barley.  相似文献   

13.
植物与共存微生物的相互作用对植物的生长、发育、健康等具有重大影响。人类驯化导致现代作物品种与其野生祖先在生理遗传特性、生长环境等方面存在明显差异, 这必然会影响作物与其微生物组的相互作用。理解驯化对作物微生物组的影响及其作用机理, 是充分应用微生物组进行作物改良或人工育种的重要理论基础。结合课题组前期研究基础, 该文综述了驯化对作物地下和地上部分细菌和真菌(尤其是益生菌和病原菌)群落组成和多样性影响的研究现状; 并结合驯化对作物植株形态、根系构型、根系分泌物等生理特征以及生长环境的影响, 分析了驯化塑造作物微生物组的作用途径, 提出了该领域值得重点关注的研究和发展方向。  相似文献   

14.
BACKGROUND: Plant domestication occurred independently in four different regions of the Americas. In general, different species were domesticated in each area, though a few species were domesticated independently in more than one area. The changes resulting from human selection conform to the familiar domestication syndrome, though different traits making up this syndrome, for example loss of dispersal, are achieved by different routes in crops belonging to different families. GENETIC AND MOLECULAR ANALYSES OF DOMESTICATION: Understanding of the genetic control of elements of the domestication syndrome is improving as a result of the development of saturated linkage maps for major crops, identification and mapping of quantitative trait loci, cloning and sequencing of genes or parts of genes, and discoveries of widespread orthologies in genes and linkage groups within and between families. As the modes of action of the genes involved in domestication and the metabolic pathways leading to particular phenotypes become better understood, it should be possible to determine whether similar phenotypes have similar underlying genetic controls, or whether human selection in genetically related but independently domesticated taxa has fixed different mutants with similar phenotypic effects. CONCLUSIONS: Such studies will permit more critical analysis of possible examples of multiple domestications and of the origin(s) and spread of distinctive variants within crops. They also offer the possibility of improving existing crops, not only major food staples but also minor crops that are potential export crops for developing countries or alternative crops for marginal areas.  相似文献   

15.
Understanding evolutionary dynamics of pathogens during domestication of their hosts and rise of agro-ecosystems is essential for durable disease management. Here, we investigated changes in life-history traits of the fungal pathogen Venturia inaequalis during domestication of the apple. Life traits linked to fungal dispersal were compared between 60 strains that were sampled in domestic and wild habitats in Kazakhstan, the center of origin of both host and pathogen. Our two main findings are that transition from wild to agro-ecosystems was associated with an increase of both spore size and sporulation capacity; and that distribution of quantitative traits of the domestic population mostly overlapped with those of the wild population. Our results suggest that apple domestication had a considerable impact on fungal characters linked to its dispersal through selection from standing phenotypic diversity. We showed that pestification of V. inaequalis in orchards led to an enhanced allocation in colonization ability from standing variation in the wild area. This study emphasizes the potential threat that pathogenic fungal populations living in wild environments represent for durability of resistance in agro-ecosystems.  相似文献   

16.
17.
Evidence is brought to indicate that the domestication of lentil and pea is not very different from that of wheat and barley. All these Near East crops are characterized by basically the same domestication traits the key elements of which are breakdown of the wild mode of seed dispersal and loss of germination regulation. It is argued that both in the pulses and in the cereals these traits evolved in the same way. The changes are best explained by assuming that mutations causing the loss of the wild-type adaptations were automatically selected for soon after people transferred the wild progenitors into a system of planting and reaping.  相似文献   

18.
Although cassava (Manihot esculenta ssp. esculenta) is asexually propagated, farmers incorporate plants from seedlings into planting stocks. These products of sex are exposed to selection, which in agricultural environments should favour rapid growth. To examine whether seedling morphology has evolved under domestication, we compared domesticated cassava, its wild progenitor (M. esculenta ssp. flabellifolia) and their sister species (M. pruinosa) under controlled conditions. Field observations complemented laboratory study. In both wild taxa, the hypocotyl did not elongate (hypogeal germination) and cotyledons remained enclosed in the testa. In domesticated cassava, the hypocotyl elongated (epigeal germination), and cotyledons emerged and became foliaceous. The difference in hypocotyl elongation was fixed, whereas cotyledon morphology varied with environmental conditions in M. pruinosa. Comparative analysis suggests that epigeal germination is primitive in Manihot, that the lineage including wild ancestors of cassava evolved hypogeal germination--which confers greater tolerance to risks in their savanna environment--and that with domestication, there was a reversion to epigeal germination and photosynthetic cotyledons, traits conferring high initial growth rates in agricultural habitats.  相似文献   

19.
20.
Despite having only begun ~10,000 years ago, the process of domestication has resulted in a degree of phenotypic variation within individual species normally associated with much deeper evolutionary time scales. Though many variable traits found in domestic animals are the result of relatively recent human-mediated selection, uncertainty remains as to whether the modern ubiquity of long-standing variable traits such as coat color results from selection or drift, and whether the underlying alleles were present in the wild ancestor or appeared after domestication began. Here, through an investigation of sequence diversity at the porcine melanocortin receptor 1 (MC1R) locus, we provide evidence that wild and domestic pig (Sus scrofa) haplotypes from China and Europe are the result of strikingly different selection pressures, and that coat color variation is the result of intentional selection for alleles that appeared after the advent of domestication. Asian and European wild boar (evolutionarily distinct subspecies) differed only by synonymous substitutions, demonstrating that camouflage coat color is maintained by purifying selection. In domestic pigs, however, each of nine unique mutations altered the amino acid sequence thus generating coat color diversity. Most domestic MC1R alleles differed by more than one mutation from the wild-type, implying a long history of strong positive selection for coat color variants, during which time humans have cherry-picked rare mutations that would be quickly eliminated in wild contexts. This pattern demonstrates that coat color phenotypes result from direct human selection and not via a simple relaxation of natural selective pressures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号