首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Inhibitory molecules derived from CNS myelin and glial scar tissue are major causes for insufficient functional regeneration in the mammalian CNS. A multitude of these molecules signal through the Rho/Rho kinase (ROCK) pathway. We evaluated three inhibitors of ROCK, Y- 27632, Fasudil (HA-1077), and Dimethylfasudil (H-1152), in models of neurite outgrowth in vitro. We show, that all three ROCK inhibitors partially restore neurite outgrowth of Ntera-2 neurons on the inhibitory chondroitin sulphate proteoglycan substrate. In the rat optic nerve crush model Y-27632 dose-dependently increased regeneration of retinal ganglion cell axons in vivo. Application of Dimethylfasudil showed a trend towards increased axonal regeneration in an intermediate concentration. We demonstrate that inhibition of ROCK can be an effective therapeutic approach to increase regeneration of CNS neurons. The selection of a suitable inhibitor with a broad therapeutic window, however, is crucial in order to minimize unwanted side effects and to avoid deleterious effects on nerve fiber growth.  相似文献   

2.
A role for protein phosphorylation in the process of neurite outgrowth has been inferred from many studies of the effects of protein kinase inhibitors and activators on cultured neurotumor cells and primary neuronal cells from developing brain or ganglia. Here we re-examine this issue, using a culture system derived from a fully differentiated neuronal system undergoing axonal regeneration—the explanted goldfish retina following optic nerve crush. Of the relatively non-selective protein kinase inhibitors employed, H7, staurosporine and K252a were found to block neurite outgrowth, whereas HA1004 had no effect, a result which appears to rule out a critical role for protein kinase A. The more selective protein kinase C inhibitors, sphingosine, calphostin C and Ro-31-8220 were all inhibitory, as was prolonged treatment with phorbol ester and the protein phosphatase inhibitor okadaic acid. These results are in support of a role for protein kinase C in axonal regrowth.  相似文献   

3.
We studied the steps in the formation of the bipolar outgrowth pattern of cultured adult Anterior Pagoda (AP) neurons of the leech growing on a central nervous system (CNS) homogenate as substrate. This pattern, which consists of two primary neurites directed in opposite directions plus some bifurcations, resembles their embryonic pattern but is different from the patterns they develop in culture on leech laminin or Concanavalin A as substrates. In eight neurons that were studied, one primary neurite formed and branched several hours before the second one. Time‐lapse video analysis showed that between 12 and 36 h of growth, the more proximal branch of the early neurite migrated retrogradely, rotated, and formed the second primary branch. Both neurites elongated until the total neurite length reached 130–160 μm, when the elongation of primary neurites became synchronous with the retraction of secondary processes, suggesting competition. The substrate dependence of these events was tested by plating AP neurons on leech laminin. On this substrate AP neurons produced multiple independent primary neurites with branches. Retraction of some large branches was followed by their regrowth, and did not correlate with the changes in other neurites. We propose that the dynamics in the formation of the bipolar outgrowth pattern of AP neurons arise from inhibitory extracellular matrix molecules, which reduce the synthesis of precursors for neurite formation. © 2002 Wiley Periodicals, Inc. J Neurobiol 50: 106–117, 2002; DOI 10.1002/neu.10017  相似文献   

4.
5.
Gicerin is a novel cell adhesion molecule that belongs to the immunoglobulin superfamily. Gicerin protein adheres to neurite outgrowth factor (NOF), an extracellular matrix protein in the laminin family, and also exhibits homophilic adhesion. Heterophilic adhesion of gicerin to NOF is thought to play an active role in neurite outgrowth of developing retinal cells in vitro. In this study, we examined the adhesion activity of gicerin during the retinal development of Japanese quail using an antibody directed against gicerin, to elucidate the biological importance of gicerin in retinal histogenesis. Immunohistochemical and Western blot analysis showed that gicerin was highly expressed in the developing retina but suppressed in the mature retina. The aggregation of neural retinal cells from 5-day embryonic quail retina was significantly inhibited when incubated with a polyclonal antibody to gicerin, suggesting that gicerin protein participates in the adhesion of neural retinal cells of the developing retina. Furthermore, histogenesis of retina both in the organ cultures and in ovo embryos was severely disrupted by incubation with a gicerin antibody. These findings provide evidence that gicerin plays an important role in retinal histogenesis. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 769–780, 1997  相似文献   

6.
Summary Light-microscopic autoradiographs of the adrenal medulla at various intervals after the intravenous injection of [3H] 5-HTP, [3H] 5-HT, [3H] noradrenaline and [3H] adrenaline have been studied. The distribution of silver grains following [3H] 5-HTP uptake was found to be uniform over each of the two main cell populations, adrenaline-storing (A) cells and noradrenaline-storing (NA) cells in the adrenal medulla, but A cells were twice as active as NA cells in incorporating the isotope, a situation very similar to that found after [3H] dopa uptake. 5-HT administration resulted in a pattern resembling the distribution of [3H] noradrenaline uptake, with A cells being 4 or 5 times more active than NA cells and a gradient of activity from the periphery of the medulla inwards. However, the time-course for the loss of radioactivity was not the same for both amines: levels of 5-HT activity were not significantly reduced after one week whereas the degree of [3H] noradrenaline labelling after one week was less than 10% of that at one hour. Thus 5-HT may be bound to sites in the adrenal medulla normally occupied by noradrenaline but it would appear that the release mechanism is different. There was no evidence of 5-HT uptake by adrenal nerve endings.  相似文献   

7.
8.
It is known that following peripheral nerve transections, sheath cells proliferate and migrate to form a bridge between nerve stumps, which may facilitate axonal regeneration. In the present investigations, cellular migration and axonal outgrowth from nerves of adult mice were studied in vitro using collagen gels. During the first 3 days in culture, profuse migration of fibroblasts and macrophages occurred from the ends of sciatic nerve segments, which had been lesioned in situ a few days prior to explanation, but not from segments of normal nerves. The mechanism of cellular activation in the lesioned nerves was not determined, but migration was blocked by suramin, which inhibits the actions of several growth factors. The migrating cells, which form the bridge tissue, may promote axonal regeneration in two ways. Firstly, axonal outgrowth from isolated intercostal nerves was significantly increased in co-cultures with bridges from lesioned sciatic nerves. This stimulatory effect was inhibited by antibodies to 2.5S nerve growth factor. Secondly, the segments of bridge tissue contracted when removed from animals. It is possible that fibroblasts within the bridge exert traction that would tend to pull the lesioned stumps of peripheral nerve together, as in the healing of skin wounds. The traction may also influence deposition of extracellular matrix materials, such as collagen fibrils, which could orient the growth of the regenerating axons toward the distal nerve stump. © 1996 John Wiley & Sons, Inc.  相似文献   

9.
Tyropeptin A, a potent proteasome inhibitor not reported before, was produced by Kitasatospora sp. MK993-dF2. In this study, we investigated the effects of tyropeptin A on proteasome activity in PC12 cells. Tyropeptin A inhibited the intracellular proteasome activity in a dose-dependent way and seemed to cause neurite outgrowth. As expected, ubiquitinated proteins that should be substrates for the proteasome accumulated in cells treated with tyropeptin A. Hence, it appears that tyropeptin A can permeate into cells and there inhibit the intracellular proteasome activity.  相似文献   

10.
Nerve growth factor (NGF) plays a key role in the differentiation of neurons. In this study, we established three NGF-induced neurite-positive (NIN+) subclones that showed high responsiveness to NGF-induced neurite outgrowth and three NGF-induced neurite-negative (NIN-) subclones that abolished NGF-induced neurite outgrowth from parental SH-SY5Y cells, and analyzed differences in the NGF signaling cascade. The NIN+ subclones showed enhanced responsiveness to FK506-mediated neurite outgrowth as well. To clarify the mechanism behind the high frequency of NGF-induced neurite outgrowth, we investigated differences in NGF signaling cascade among subclones. Expression levels of the NGF receptor TrkA, and NGF-induced increases in mRNAs for the immediate-early genes (IEGs) c-fos and NGF inducible (NGFI) genes NGFI-A, NGFI-B and NGFI-C, were identical among subclones. Microarray analysis revealed that the NIN+ cell line showed a very different gene expression profile to the NIN- cell line, particularly in terms of axonal vesicle-related genes and growth cone guidance-related genes. Thus, the difference in NGF signaling cascade between the NIN+ and NIN- cell lines was demonstrated by the difference in gene expression profile. These differentially expressed genes might play a key role in neurite outgrowth of SH-SY5Y cells in a region downstream from the site of induction of IEGs, or in a novel NGF signaling cascade.  相似文献   

11.
Zygaena filipendulae accumulates the cyanogenic glucosides linamarin and lotaustralin by larval sequestration from the food plant or de novo biosynthesis. We have previously demonstrated that the Z. filipendulae male transfers linamarin and lotaustralin to the female in the course of mating. In this study we report the additional transfer of 5-hydroxytryptophan glucoside (5-(β-d-glucopyranosyloxy)-l-Tryptophan) from the Z. filipendulae male internal genitalia to the female spermatophore around 5 h into the mating process. 5-Hydroxytryptophan glucoside is present in the virgin male internal genitalia, and production continues during the early phase of mating. Following initiation of 5-hydroxytryptophan glucoside transfer to the female, the amount in male internal genitalia is drastically reduced until after mating where it is slowly replenished. For unambiguous structural identification, 5-hydroxytryptophan glucoside was chemically synthesized and used as an authentic standard. The biological function of 5-hydroxytryptophan glucoside remains to be established, although we have indications that it may be involved in inducing the female to stay in copula and delay egg-laying to prevent re-mating of the female. To our knowledge 5-hydroxytryptophan glucoside has not previously been reported present in animal tissues.  相似文献   

12.
Current knowledge indicates that the adult mammalian retina lacks regenerative capacity. Here, we show that the adult stem cell marker, leucine‐rich repeat‐containing G‐protein‐coupled receptor 5 (Lgr5), is expressed in the retina of adult mice. Lgr5+ cells are generated at late stages of retinal development and exhibit properties of differentiated amacrine interneurons (amacrine cells). Nevertheless, Lgr5+ amacrine cells contribute to regeneration of new retinal cells in the adult stage. The generation of new retinal cells, including retinal neurons and Müller glia from Lgr5+ amacrine cells, begins in early adulthood and continues as the animal ages. Together, these findings suggest that the mammalian retina is not devoid of regeneration as previously thought. It is rather dynamic, and Lgr5+ amacrine cells function as an endogenous regenerative source. The identification of such cells in the mammalian retina may provide new insights into neuronal regeneration and point to therapeutic opportunities for age‐related retinal degenerative diseases.  相似文献   

13.
5-Hydroxytryptophan (5-HTP) was introduced iontophoretically into the vulva region of Caenorhabditis elegans to examine behavioral responses to this putative neurotransmitter. Responses in esophageal basal bulb pulsation and/or vulval contractions occurred. Little relation was observed between dosage and behavioral response. Similar behavioral responses followed topical applications of 5-HTP. An inverse relationship between the rates of esophageal pumping and vulval contraction was recorded following both iontophoretic injection and topical application. Following iontophoretic application, young nematodes resumed body movement sooner than old nematodes did. Growth significantly increased when 5-HTP or dopamine was added to the culture medium, but neither chemical influenced fecundity or life span.  相似文献   

14.
We examined the effects of changes caused by the blocking of protein and RNA synthesis on neurite outgrowth from neurons of the central nervous system (CNS) in primary culture. Exposure to cycloheximide and actinomycin-D led to dramatic increases in the length of neurites in cultures of neurons from various rat or chick CNS regions. Inhibitor-induced neurite outgrowth was observed (1) from dopaminergic neurons in mixed cultures of the rat substantia nigra or (2) in pure cultures of rat and chick neurons grown on a polyornithine/laminin substratum. These results suggest that neurite outgrowth from CNS neurons is kept restricted, at least in culture, by the continuous production of a labile neurite-inhibiting protein intrinsic to the neurons, which rapidly decays following inhibition of protein or RNA synthesis. 1994 John Wiley & Sons, Inc.  相似文献   

15.
16.
17.
Following spinal cord injury, glial cells are recognized as major environmental factors hampering axon's regenerative responses. However, recent studies suggested that, in certain circumstances, reactive astrocytes may have a permissive role for axonal regeneration and functional recovery. Here, we report that Cdc2 activation in astrocytes is positively linked to axon growth. Cdc2 was strongly, but transiently, induced from reactive astrocytes within and around the injury cavity. Cdc2 levels in primary, non‐neuronal cells prepared from injured spinal cord were up‐regulated by extending the pre‐injury period. Cdc2‐mediated vimentin phosphorylation was strongly induced in astrocytes after long‐term culture (7 days, LTC) as compared with short‐term culture (3 days, STC). Induction levels of phospho‐vimentin in LTC astrocytes were positively associated with increased neurite outgrowth in co‐cultured dorsal root ganglion neurons. β3 integrin mRNA was induced in LTC astrocytes and activation of β3 integrin was regulated by Cdc2 activity. Furthermore, genetic depletion and pharmacological blockade experiments demonstrate that activation of Cdc2 and β3 integrin in LTC astrocytes is required for neurite outgrowth. Our data suggest that the Cdc2 pathway may play an important role in determining phenotypic expression of astrocytes such that astrocytes provide permissive environments for axonal regeneration following spinal cord injury.  相似文献   

18.
Summary Chronic treatment with L-tryptophan (4 g/day) reduced mean blood pressure in 8 of 9 patients with mild to moderate essential hypertension. No significant side effects of treatment were observed. An additional group of 8 patients was treated chronically with L-5-hydroxytryptophan (800 mg/day), the immediate precursor of serotonin. Five of the 8 patients had a significant reduction in mean arterial pressure. No significant side effects of treatment were observed. The reduction of blood pressure accompanying treatment with L-5-hydroxytryptophan suggests that at least a portion of the antihypertensive effect of L-tryptophan is mediated via serotonin.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号