首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tetrodotoxin-resistant (TTX-R) Na(+) channels are 1,000-fold less sensitive to TTX than TTX-sensitive (TTX-S) Na(+) channels. On the other hand, TTX-R channels are much more susceptible to external Cd(2+) block than TTX-S channels. A cysteine (or serine) residue situated just next to the aspartate residue of the presumable selectivity filter "DEKA" ring of the TTX-R channel has been identified as the key ligand determining the binding affinity of both TTX and Cd(2+). In this study we demonstrate that the binding affinity of Cd(2+) to the TTX-R channels in neurons from dorsal root ganglia has little intrinsic voltage dependence, but is significantly influenced by the direction of Na(+) current flow. In the presence of inward Na(+) current, the apparent dissociation constant of Cd(2+) ( approximately 200 microM) is approximately 9 times smaller than that in the presence of outward Na(+) current. The Na(+) flow-dependent binding affinity change of Cd(2+) block is true no matter whether the direction of Na(+) current is secured by asymmetrical chemical gradient (e.g., 150 mM Na(+) vs. 150 mM Cs(+) on different sides of the membrane, 0 mV) or by asymmetrical electrical gradient (e.g., 150 mM Na(+) on both sides of the membrane, -20 mV vs. 20 mV). These findings suggest that Cd(2+) is a pore blocker of TTX-R channels with its binding site located in a multiion, single-file region near the external pore mouth. Quantitative analysis of the flow dependence with the flux-coupling equation reveals that at least two Na(+) ions coexist with the blocking Cd(2+) ion in this pore region in the presence of 150 mM ambient Na(+). Thus, the selectivity filter of the TTX-R Na(+) channels in dorsal root ganglion neurons might be located in or close to a multiion single-file pore segment connected externally to a wide vestibule, a molecular feature probably shared by other voltage-gated cationic channels, such as some Ca(2+) and K(+) channels.  相似文献   

2.
We examined inhibitory effects of external multivalent cations Ni(2+), Co(2+), Cd(2+), La(3+), Mg(2+), and Mn(2+) on reverse-mode exchange of the K(+)-dependent Na(+)/Ca(2+) exchanger NCKX2 and the K(+)-independent exchanger NCX1 expressed in CCL-39 cells by measuring the rate of Ca(2+) uptake with radioisotope tracer and electrophysiological techniques. The apparent affinities for block of Ca(2+) uptake by multivalent cations was higher in NCKX2 than NCX1, and the rank order of inhibitory potencies among these cations was different. Additional experiments also showed that external Li(+) stimulated reverse-mode exchange by NCX1, but not NCKX2 in the presence of 5 mM K(+). Thus, both exchangers exhibited differential sensitivities to not only K(+) but also many other external cations. We attempted to locate the putative binding sites within the alpha motifs for multivalent cations by site-directed mutagenesis experiments. The cation affinities of NCKX2 were altered by mutations of amino acid residues in the alpha-1 motif, but not by mutations in the alpha-2 motif. These results contrast with those for NCX1 where mutations in both alpha-1 and alpha-2 motifs have been shown previously to affect cation affinities. Susceptibility tests with sulfhydryl alkylating agents suggested that the alpha-1 and alpha-2 motifs are situated extracellularly and intracellularly, respectively, in both exchangers. A topological model is proposed in which the extracellular-facing alpha-1 motif forms an external cation binding site that includes key residues N203, G207C, and I209 in NCKX2, while both alpha-1 and alpha-2 motifs together form the binding sites in NCX1.  相似文献   

3.
Two types of voltage-dependent Ca(2+) channels have been identified in heart: high (I(CaL)) and low (I(CaT)) voltage-activated Ca(2+) channels. In guinea pig ventricular myocytes, low voltage-activated inward current consists of I(CaT) and a tetrodotoxin (TTX)-sensitive I(Ca) component (I(Ca(TTX))). In this study, we reexamined the nature of low-threshold I(Ca) in dog atrium, as well as whether it is affected by Na(+) channel toxins. Ca(2+) currents were recorded using the whole-cell patch clamp technique. In the absence of external Na(+), a transient inward current activated near -50 mV, peaked at -30 mV, and reversed around +40 mV (HP = -90 mV). It was unaffected by 30 microM TTX or micromolar concentrations of external Na(+), but was inhibited by 50 microM Ni(2+) (by approximately 90%) or 5 microM mibefradil (by approximately 50%), consistent with the reported properties of I(CaT). Addition of 30 microM TTX in the presence of Ni(2+) increased the current approximately fourfold (41% of control), and shifted the dose-response curve of Ni(2+) block to the right (IC(50) from 7.6 to 30 microM). Saxitoxin (STX) at 1 microM abolished the current left in 50 microM Ni(2+). In the absence of Ni(2+), STX potently blocked I(CaT) (EC(50) = 185 nM) and modestly reduced I(CaL) (EC(50) = 1.6 microM). While TTX produced no direct effect on I(CaT) elicited by expression of hCa(V)3.1 and hCa(V)3.2 in HEK-293 cells, it significantly attenuated the block of this current by Ni(2+) (IC(50) increased to 550 microM Ni(2+) for Ca(V)3.1 and 15 microM Ni(2+) for Ca(V)3.2); in contrast, 30 microM TTX directly inhibited hCa(V)3.3-induced I(CaT) and the addition of 750 microM Ni(2+) to the TTX-containing medium led to greater block of the current that was not significantly different than that produced by Ni(2+) alone. 1 microM STX directly inhibited Ca(V)3.1-, Ca(V)3.2-, and Ca(V)3.3-mediated I(CaT) but did not enhance the ability of Ni(2+) to block these currents. These findings provide important new implications for our understanding of structure-function relationships of I(CaT) in heart, and further extend the hypothesis of a parallel evolution of Na(+) and Ca(2+) channels from an ancestor with common structural motifs.  相似文献   

4.
We investigated the features of the inward-rectifier K channel Kir1.1 (ROMK) that underlie the saturation of currents through these channels as a function of permeant ion concentration. We compared values of maximal currents and apparent K(m) for three permeant ions: K(+), Rb(+), and NH(4)(+). Compared with K(+) (i(max) = 4.6 pA and K(m) = 10 mM at -100 mV), Rb(+) had a lower permeability, a lower i(max) (1.8 pA), and a higher K(m) (26 mM). For NH(4)(+), the permeability was reduced more with smaller changes in i(max) (3.7 pA) and K(m) (16 mM). We assessed the role of a site near the outer mouth of channel in the saturation process. This site could be occupied by either permeant ions or low-affinity blocking ions such as Na(+), Li(+), Mg(2+), and Ca(2+) with similar voltage dependence (apparent valence, 0.15-0.20). It prefers Mg(2+) over Ca(2+) and has a monovalent cation selectivity, based on the ability to displace Mg(2+), of K(+) > Li(+) ~ Na(+) > Rb(+) ~ NH(4)(+). Conversely, in the presence of Mg(2+), the K(m) for K(+) conductance was substantially increased. The ability of Mg(2+) to block the channels was reduced when four negatively charged amino acids in the extracellular domain of the channel were mutated to neutral residues. The apparent K(m) for K(+) conduction was unchanged by these mutations under control conditions but became sensitive to the presence of external negative charges when residual divalent cations were chelated with EDTA. The results suggest that a binding site in the outer mouth of the pore controls current saturation. Permeability is more affected by interactions with other sites within the selectivity filter. Most features of permeation (and block) could be simulated by a five-state kinetic model of ion movement through the channel.  相似文献   

5.
The Na(+) current component I(Ca(TTX)) is functionally distinct from the main body of Na(+) current, I(Na). It was proposed that I(Ca(TTX)) channels are I(Na) channels that were altered by bathing media containing Ca(2+), but no, or very little, Na(+). It is known that Na(+)-free conditions are not required to demonstrate I(Ca(TTX).) We show here that Ca(2+) is also not required. Whole-cell, tetrodotoxin-blockable currents from fresh adult rat ventricular cells in 65 mm Cs(+) and no Ca(2+) were compared to those in 3 mM Ca(2+) and no Cs(+) (i.e., I(Ca(TTX))). I(Ca(TTX)) parameters were shifted to more positive voltages than those for Cs(+). The Cs(+) conductance-voltage curve slope factor (mean, -4.68 mV; range, -3.63 to -5.72 mV, eight cells) is indistinguishable from that reported for I(Ca(TTX)) (mean, -4.49 mV; range, -3.95 to -5.49 mV). Cs(+) current and I(Ca(TTX)) time courses were superimposable after accounting for the voltage shift. Inactivation time constants as functions of potential for the Cs(+) current and I(Ca(TTX)) also superimposed after voltage shifting, as did the inactivation curves. Neither of the proposed conditions for conversion of I(Na) into I(Ca(TTX)) channels is required to demonstrate I(Ca(TTX)). Moreover, we find that cardiac Na(+) (H1) channels expressed heterologously in HEK 293 cells are not converted to I(Ca(TTX)) channels by Na(+)-free, Ca(2+)-containing bathing media. The gating properties of the Na(+) current through H1 and those of Ca(2+) current through H1 are identical. All observations are consistent with two non-interconvertable Na(+) channel populations: a larger that expresses little Ca(2+) permeability and a smaller that is appreciably Ca(2+)-permeable.  相似文献   

6.
We examined the concentration dependence of currents through Ca(V)3.1 T-type calcium channels, varying Ca(2+) and Ba(2+) over a wide concentration range (100 nM to 110 mM) while recording whole-cell currents over a wide voltage range from channels stably expressed in HEK 293 cells. To isolate effects on permeation, instantaneous current-voltage relationships (IIV) were obtained following strong, brief depolarizations to activate channels with minimal inactivation. Reversal potentials were described by P(Ca)/P(Na) = 87 and P(Ca)/P(Ba) = 2, based on Goldman-Hodgkin-Katz theory. However, analysis of chord conductances found that apparent K(d) values were similar for Ca(2+) and Ba(2+), both for block of currents carried by Na(+) (3 muM for Ca(2+) vs. 4 muM for Ba(2+), at -30 mV; weaker at more positive or negative voltages) and for permeation (3.3 mM for Ca(2+) vs. 2.5 mM for Ba(2+); nearly voltage independent). Block by 3-10 muM Ca(2+) was time dependent, described by bimolecular kinetics with binding at approximately 3 x 10(8) M(-1)s(-1) and voltage-dependent exit. Ca(2+)(o), Ba(2+)(o), and Mg(2+)(o) also affected channel gating, primarily by shifting channel activation, consistent with screening a surface charge of 1 e(-) per 98 A(2) from Gouy-Chapman theory. Additionally, inward currents inactivated approximately 35% faster in Ba(2+)(o) (vs. Ca(2+)(o) or Na(+)(o)). The accelerated inactivation in Ba(2+)(o) correlated with the transition from Na(+) to Ba(2+) permeation, suggesting that Ba(2+)(o) speeds inactivation by occupying the pore. We conclude that the selectivity of the "surface charge" among divalent cations differs between calcium channel families, implying that the surface charge is channel specific. Voltage strongly affects the concentration dependence of block, but not of permeation, for Ca(2+) or Ba(2+).  相似文献   

7.
Epithelial Na(+) channels (ENaCs) selectively conduct Na(+) and Li(+) but exclude K(+). A three-residue tract ((G/S)XS) present within all three subunits has been identified as a key structure forming a putative selectivity filter. We investigated the side chain orientation of residues within this tract by analyzing accessibility of the introduced sulfhydryl groups to thiophilic Cd(2+). Xenopus oocytes were used to express wild-type or mutant mouse alphabetagammaENaCs. The blocking effect of external Cd(2+) was examined by comparing amiloride-sensitive Na(+) currents measured by two-electrode voltage clamp in the absence and presence of Cd(2+) in the bath solution. The currents in mutant channels containing a single Cys substitution at the first or third position within the (G/S)XS tract (alphaG587C, alphaS589C, betaG529C, betaS531C, gammaS546C, and gammaS548C) were blocked by Cd(2+) with varying inhibitory constants (0.06-13 mm), whereas the currents in control channels were largely insensitive to Cd(2+) at concentrations up to 10 mm. The Cd(2+) blocking effects were fast, with time constants in the range of seconds, and were only partially reversible. The blocked currents were restored by 10 mm dithiothreitol. Mutant channels containing alanine or serine substitutions at these sites within the alpha subunit were only poorly and reversibly blocked by 10 mm Cd(2+). These results indicate that the introduced sulfhydryl groups face the conduction pore and suggest that serine hydroxyl groups within the selectivity filter in wild-type ENaCs face the conduction pore and may contribute to cation selectivity by participating in coordination of permeating cations.  相似文献   

8.
The TTX-sensitive Ca(2+) current [I(Ca(TTX))] observed in cardiac myocytes under Na(+)-free conditions was investigated using patch-clamp and Ca(2+)-imaging methods. Cs(+) and Ca(2+) were found to contribute to I(Ca(TTX)), but TEA(+) and N-methyl-D-glucamine (NMDG(+)) did not. HEK-293 cells transfected with cardiac Na(+) channels exhibited a current that resembled I(Ca(TTX)) in cardiac myocytes with regard to voltage dependence, inactivation kinetics, and ion selectivity, suggesting that the cardiac Na(+) channel itself gives rise to I(Ca(TTX)). Furthermore, repeated activation of I(Ca(TTX)) led to a 60% increase in intracellular Ca(2+) concentration, confirming Ca(2+) entry through this current. Ba(2+) permeation of I(Ca(TTX)), reported by others, did not occur in rat myocytes or in HEK-293 cells expressing cardiac Na(+) channels under our experimental conditions. The report of block of I(Ca(TTX)) in guinea pig heart by mibefradil (10 microM) was supported in transfected HEK-293 cells, but Na(+) current was also blocked (half-block at 0.45 microM). We conclude that I(Ca(TTX)) reflects current through cardiac Na(+) channels in Na(+)-free (or "null") conditions. We suggest that the current be renamed I(Na(null)) to more accurately reflect the molecular identity of the channel and the conditions needed for its activation. The relationship between I(Na(null)) and Ca(2+) flux through slip-mode conductance of cardiac Na(+) channels is discussed in the context of ion channel biophysics and "permeation plasticity."  相似文献   

9.
Sustained depolarization of the Xenopus oocyte membrane elicits a slowly activating Na+ current, thought to be due to the opening of sodium selective channels. These channels are induced to become voltage gated by the depolarization. They show unconventional gating properties and are insensitive to tetrodotoxin (TTX). The present study was undertaken to evaluate the effect of extracellular multivalent cations (Ca2+, Co2+, Cd2+, La3+, Mg2+, Mn2+, Ni2+, Sr2+ and Zn2+) on these TTX-resistant channels, either on membrane potential responses or on current responses. Our data show that all the polyvalent cations used blocked Na+ channels in a concentration-dependent manner. The order of potency of the most efficient cations was Co2+ < Ni2+ < Cd2+ < Zn2+, the respective concentration required to cause a 50% decrease of Na+ current was 0.9+/-0.29; 0.47+/-0.15; 0.36+/-0.09 and 0.06+/-0.02 mmol/l. The comparison of the activation curves from controls and after treatment with the cations indicated a shift towards more positive voltages. These results can be interpreted as due to the screening effect of divalent cations together with an alteration of the Na+ channel gating properties. We also show that divalent cations blocked Na+ channels in an open state without interfering with the induction mechanism of the channels. The possibility that cation block was due to a possible interaction between cations and SH-groups was investigated, but a sulphydryl alkylating reagent failed to abolish Zn2+ block.  相似文献   

10.
The effect of extracellular and intracellular Na(+) on the single-channel kinetics of Mg(2+) block was studied in recombinant NR1-NR2B NMDA receptor channels. Na(+) prevents Mg(2+) access to its blocking site by occupying two sites in the external portion of the permeation pathway. The occupancy of these sites by intracellular, but not extracellular, Na(+) is voltage-dependent. In the absence of competing ions, Mg(2+) binds rapidly (>10(8) M(-1)s(-1), with no membrane potential) to a site that is located 0.60 through the electric field from the extracellular surface. Occupancy of one of the external sites by Na(+) may be sufficient to prevent Mg(2+) dissociation from the channel back to the extracellular compartment. With no membrane potential; and in the absence of competing ions, the Mg(2+) dissociation rate constant is >10 times greater than the Mg(2+) permeation rate constant, and the Mg(2+) equilibrium dissociation constant is approximately 12 microM. Physiological concentrations of extracellular Na(+) reduce the Mg(2+) association rate constant approximately 40-fold but, because of the "lock-in" effect, reduce the Mg(2+) equilibrium dissociation constant only approximately 18-fold.  相似文献   

11.
G K Wang  W M Mok    S Y Wang 《Biophysical journal》1994,67(5):1851-1860
Two distinct types of local anesthetics (LAs) have previously been found to block batrachotoxin (BTX)-modified Na+ channels: type 1 LAs such as cocaine and bupivacaine interact preferentially with open channels, whereas type 2 LAs, such as benzocaine and tricaine, with inactivated channels. Herein, we describe our studies of a third type of LA, represented by tetracaine as a dual blocker that binds strongly with closed channels but also binds to a lesser extent with open channels when the membrane is depolarized. Enhanced inactivation of BTX-modified Na+ channels by tetracaine was determined by steady-state inactivation measurement and by the dose-response curve. The 50% inhibitory concentration (IC50) was estimated to be 5.2 microM at -70 mV, where steady-state inactivation was maximal, with a Hill coefficient of 0.98 suggesting that one tetracaine molecule binds with one inactivated channel. Tetracaine also interacted efficiently with Na+ channels when the membrane was depolarized; the IC50 was estimated to be 39.5 microM at +50 mV with a Hill coefficient of 0.94. Unexpectedly, charged tetracaine was found to be the primary active form in the blocking of inactivated channels. In addition, external Na+ ions appeared to antagonize the tetracaine block of inactivated channels. Consistent with these results, N-butyl tetracaine quaternary ammonium, a permanently charged tetracaine derivative, remained a strong inactivation enhancer. Another derivative of tetracaine, 2-(di-methylamino) ethyl benzoate, which lacked a 4-butylamino functional group on the phenyl ring, elicited block that was approximately 100-fold weaker than that of tetracaine. We surmise that 1) the binding site for inactivation enhancers is within the Na+ permeation pathway, 2) external Na+ ions antagonize the block of inactivation enhancers by electrostatic repulsion, 3) the 4-butylamino functional group on the phenyl ring is critical for block and for the enhancement of inactivation, and 4) there are probably overlapping binding sites for both inactivation enhancers and open-channel blockers within the Na+ pore.  相似文献   

12.
Zhou W  Chung I  Liu Z  Goldin AL  Dong K 《Neuron》2004,42(1):101-112
BSC1, which was originally identified by its sequence similarity to voltage-gated Na(+) channels, encodes a functional voltage-gated cation channel whose properties differ significantly from Na(+) channels. BSC1 has slower kinetics of activation and inactivation than Na(+) channels, it is more selective for Ba(2+) than for Na(+), it is blocked by Cd(2+), and Na(+) currents through BSC1 are blocked by low concentrations of Ca(2+). All of these properties are more similar to voltage-gated Ca(2+) channels than to voltage-gated Na(+) channels. The selectivity for Ba(2+) is partially due to the presence of a glutamate in the pore-forming region of domain III, since replacing that residue with lysine (normally present in voltage-gated Na(+) channels) makes the channel more selective for Na(+). BSC1 appears to be the prototype of a novel family of invertebrate voltage-dependent cation channels with a close structural and evolutionary relationship to voltage-gated Na(+) and Ca(2+) channels.  相似文献   

13.
Hyperpolarization-activated cation (HCN) channels regulate pacemaking activity in cardiac cells and neurons. Our previous work using the specific HCN channel blocker ZD7288 provided evidence for an intracellular activation gate for these channels because it appears that ZD7288, applied from the intracellular side, can enter and leave HCN channels only at voltages where the activation gate is opened (Shin, K.S., B.S. Rothberg, and G. Yellen. 2001. J. Gen. Physiol. 117:91-101). However, the ZD7288 molecule is larger than the Na(+) or K(+) ions that flow through the open channel. In the present study, we sought to resolve whether the voltage gate at the intracellular entrance to the pore for ZD7288 also can be a gate for permeant ions in HCN channels. Single residues in the putative pore-lining S6 region of an HCN channel (cloned from sea urchin; spHCN) were substituted with cysteines, and the mutants were probed with Cd(2+) applied to the intracellular side of the channel. One mutant, T464C, displayed rapid irreversible block when Cd(2+) was applied to opened channels, with an apparent blocking rate of approximately 3 x 10(5) M(-1)s(-1). The blocking rate was decreased for channels held at more depolarized voltages that close the channels, which is consistent with the Cd(2+) access to this residue being gated from the intracellular side of the channel. 464C channels could be recovered from Cd(2+) inhibition in the presence of a dithiol applied to the intracellular side. The rate of this recovery also was reduced when channels were held at depolarized voltages. Finally, Cd(2+) could be trapped inside channels that were composed of WT/464C tandem-linked subunits, which could otherwise recover spontaneously from Cd(2+) inhibition. Thus, Cd(2+) escape is also gated at the intracellular side of the channel. Together, these results are consistent with a voltage-controlled structure at the intracellular side of the spHCN channel that can gate the flow of cations through the pore.  相似文献   

14.
Heteromeric KCNQ2/3 potassium channels are thought to underlie the M-current, a subthreshold potassium current involved in the regulation of neuronal excitability. KCNQ channel subunits are structurally unique, but it is unknown whether these structural differences result in unique conduction properties. Heterologously expressed KCNQ2/3 channels showed a permeation sequence of while showing a conduction sequence of A differential contribution of component subunits to the properties of heteromeric KCNQ2/3 channels was demonstrated by studying homomeric KCNQ2 and KCNQ3 channels, which displayed contrasting ionic selectivities. KCNQ2/3 channels did not exhibit an anomalous mole-fraction effect in mixtures of K(+) and Rb(+). However, extreme voltage-dependence of block by external Cs(+) was indicative of multi-ion pore behavior. Block of KCNQ2/3 channels by external Ba(2+) ions was voltage-independent, demonstrating unusual ionic occupation of the outer pore. Selectivity properties and block of KCNQ2 were altered by mutation of outer pore residues in a manner consistent with the presence of multiple ion-binding sites. KCNQ2/3 channel deactivation kinetics were slowed exclusively by Rb(+), whereas activation of KCNQ2/3 channels was altered by a variety of external permeant ions. These data indicate that KCNQ2/3 channels are multi-ion pores which exhibit distinctive mechanisms of ion conduction and gating.  相似文献   

15.
The blockage of skeletal muscle sodium channels by tetrodotoxin (TTX) and saxitoxin (STX) have been studied in CHO cells permanently expressing rat Nav1.4 channels. Tonic and use-dependent blockage were analyzed in the framework of the ion-trapped model. The tonic affinity (26.6 nM) and the maximum affinity (7.7 nM) of TTX, as well as the "on" and "off" rate constants measured in this preparation, are in remarkably good agreement with those measured for Nav1.2 expressed in frog oocytes, indicating that the structure of the toxin receptor of Nav1.4 and Nav1.2 channels are very similar and that the expression method does not have any influence on the pore properties of the sodium channel. The higher affinity of STX for the sodium channels (tonic and maximum affinity of 1.8 nM and 0.74 nM respectively) is explained as an increase on the "on" rate constant (approximately 0.03 s(-1) nM(-1)), compared to that of TTX (approximately 0.003 s(-1) nM(-1)), while the "off" rate constant is the same for both toxins (approximately 0.02 s(-1)). Estimations of the free-energy differences of the toxin-channel interaction indicate that STX is bound in a more external position than TTX. Similarly, the comparison of the toxins free energy of binding to a ion-free, Na(+)- and Ca(2+)-occupied channel, is consistent with a binding site in the selectivity filter for Ca(2+) more external than for Na(+). This data may be useful in further attempts at sodium-channel pore modeling.  相似文献   

16.
The pore properties and the reciprocal interactions between permeant ions and the gating of KCNQ channels are poorly understood. Here we used external barium to investigate the permeation characteristics of homomeric KCNQ1 channels. We assessed the Ba(2+) binding kinetics and the concentration and voltage dependence of Ba(2+) steady-state block. Our results indicate that extracellular Ba(2+) exerts a series of complex effects, including a voltage-dependent pore blockade as well as unique gating alterations. External barium interacts with the permeation pathway of KCNQ1 at two discrete and nonsequential sites. (a) A slow deep Ba(2+) site that occludes the channel pore and could be simulated by a model of voltage-dependent block. (b) A fast superficial Ba(2+) site that barely contributes to channel block and mostly affects channel gating by shifting rightward the voltage dependence of activation, slowing activation, speeding up deactivation kinetics, and inhibiting channel inactivation. A model of voltage-dependent block cannot predict the complex impact of Ba(2+) on channel gating in low external K(+) solutions. Ba(2+) binding to this superficial site likely modifies the gating transitions states of KCNQ1. Both sites appear to reside in the permeation pathway as high external K(+) attenuates Ba(2+) inhibition of channel conductance and abolishes its impact on channel gating. Our data suggest that despite the high degree of homology of the pore region among the various K(+) channels, KCNQ1 channels display significant structural and functional uniqueness.  相似文献   

17.
The fast transient inward current elicited by depolarizations above about -60 mV in calf Purkinje fibres was found to be depressed by Cd in concentrations less than 1 mM. The Cd-sensitive current, which strongly depended on external Na, was recorded in the presence of 2 mM MnCl2 and was blocked by TTX, indicating that a contamination from slow Ca-dependent currents could be discounted. The current reduction caused by Cd was also observed in nominally Ca-free solutions. The Cd-induced depression of the fast Na current was not accompanied by changes in the current kinetic parameters, as revealed by comparing inactivation curves and peak current voltage relations at different Cd concentrations, and could be attributed to a voltage-independent channel blocking action. Half-blockade occurred at 0.182 +/- 0.06 mM (n = 4). Plots of peak current amplitude as a function of the Cd concentration showed that the cooperation of two Cd ions was required to block a single channel.  相似文献   

18.
Inhibition of epithelial Na(+) channel (ENaC) activity by high concentrations of extracellular Na(+) is referred to as Na(+) self-inhibition. We investigated the effects of external Zn(2+) on whole cell Na(+) currents and on the Na(+) self-inhibition response in Xenopus oocytes expressing mouse alphabetagamma ENaC. Na(+) self-inhibition was examined by analyzing inward current decay from a peak current to a steady-state current following a fast switching of a low Na(+) (1 mm) bath solution to a high Na(+) (110 mm) solution. Our results indicate that external Zn(2+) rapidly and reversibly activates ENaC in a dose-dependent manner with an estimated EC(50) of 2 microm. External Zn(2+) in the high Na(+) bath also prevents or reverses Na(+) self-inhibition with similar affinity. Zn(2+) activation is dependent on extracellular Na(+) concentration and is absent in ENaCs containing gammaH239 mutations that eliminate Na(+) self-inhibition and in alphaS580Cbetagamma following covalent modification by a sulfhydryl-reactive reagent that locks the channels in a fully open state. In contrast, external Ni(2+) inhibition of ENaC currents appears to be additive to Na(+) self-inhibition when Ni(2+) is present in the high Na(+) bath. Pretreatment of oocytes with Ni(2+) in a low Na(+) bath also prevents the current decay following a switch to a high Na(+) bath but rendered the currents below the control steady-state level measured in the absence of Ni(2+) pretreatment. Our results suggest that external Zn(2+) activates ENaC by relieving the channel from Na(+) self-inhibition, and that external Ni(2+) mimics or masks Na(+) self-inhibition.  相似文献   

19.
Ni(2+) inhibits current through calcium channels, in part by blocking the pore, but Ni(2+) may also allosterically affect channel activity via sites outside the permeation pathway. As a test for pore blockade, we examined whether the effect of Ni(2+) on Ca(V)3.1 is affected by permeant ions. We find two components to block by Ni(2+), a rapid block with little voltage dependence, and a slow block most visible as accelerated tail currents. Rapid block is weaker for outward vs. inward currents (apparent K(d) = 3 vs. 1 mM Ni(2+), with 2 mM Ca(2+) or Ba(2+)) and is reduced at high permeant ion concentration (110 vs. 2 mM Ca(2+) or Ba(2+)). Slow block depends both on the concentration and on the identity of the permeant ion (Ca(2+) vs. Ba(2+) vs. Na(+)). Slow block is 2-3x faster in Ba(2+) than in Ca(2+) (2 or 110 mM), and is approximately 10x faster with 2 vs. 110 mM Ca(2+) or Ba(2+). Slow block is orders of magnitude slower than the diffusion limit, except in the nominal absence of divalent cations ( approximately 3 muM Ca(2+)). We conclude that both fast and slow block of Ca(V)3.1 by Ni(2+) are most consistent with occlusion of the pore. The exit rate of Ni(2+) for slow block is reduced at high Ni(2+) concentrations, suggesting that the site responsible for fast block can "lock in" slow block by Ni(2+), at a site located deeper within the pore. In contrast to the complex pore block observed for Ca(V)3.1, inhibition of Ca(V)3.2 by Ni(2+) was essentially independent of voltage, and was similar in 2 mM Ca(2+) vs. Ba(2+), consistent with inhibition by a different mechanism, at a site outside the pore.  相似文献   

20.
Cadmium ions applied to either (outer or inner) surface of the isolated toad skin dose-dependently increased the short-circuit current (SCC), the potential difference (V) and the active sodium conductance (G(Na)) in the concentration range 0.07-0.50mM. Maximal stimulatory effect was over 30% with an EC(50) of about 0.1mM. The effect of the highest concentration used (0.75mM) decreased considerably, and when it was applied to the inner surface (10 experiments), induced between 30% and 40% inhibition of the electric parameters in four experiments. Pretreatment with amiloride inverted the stimulatory effect of externally applied Cd(2+), suggesting competitive action on the apical Na(+) channel. The effect of noradrenaline (NA) was increased after outer application of Cd(2+) and decreased after inner application of the metal: the latter effect might be due to cadmium inhibition of the activity of Na(+),K(+)-ATPase. On the other hand, pretreatment with amiloride was followed by partial although transient reversal of its effects by serosal Cd(2+), which might be explained by action of cadmium on cytoplasmic lysine residues concerned with Na(+) channel gating. The amiloride test showed that the increment of the electric parameters was due principally to stimulation of the driving potential for Na(+) (V-E(Na(+))) and that inhibition was accompanied by a reduction in the V-E(Na(+)) and by a significant decrease in skin resistance indicating possible disruption of membrane or cell integrity. These data are in favor of the possibility that externally applied Cd(2+) activates toad skin ion transport, partly by increasing apical sodium conductance and also by stimulating the V-E(Na(+)), and that internally applied Cd(2+), with easier access to membrane and cellular constituents, may inhibit the sodium pump.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号