首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Studies in recent years have identified a pivotal role of the cytokine IL-23 in the pathogenesis of inflammatory bowel diseases (IBD: Crohn´s disease, ulcerative colitis) and colitis-associated colon cancer. Genetic studies revealed that subgroups of IBD patients have single nucleotide polymorphisms in the IL-23R gene suggesting that IL-23R signaling affects disease susceptibility. Furthermore, increased production of IL-23 by macrophages, dendritic cells or granulocytes has been observed in various mouse models of colitis, colitis-associated cancer and IBD patients. Moreover, in several murine models of colitis, suppression of IL-12/IL-23 p40, IL-23 p19 or IL-23R function led to marked suppression of gut inflammation. This finding was associated with reduced activation of IL-23 target cells such as T helper 17 cells, innate lymphoid cells type 3, granulocytes and natural killer cells as well as with impaired production of proinflammatory cytokines. Based on these findings, targeting of IL-23 emerges as important concept for suppression of gut inflammation and inflammation-associated cancer growth. Consistently, neutralizing antibodies against IL-12/IL-23 p40 and IL-23 p19 have been successfully used in clinical trials for therapy of Crohn´s disease and pilot studies in ulcerative colitis are ongoing. These findings underline the crucial regulatory role of IL-23 in chronic intestinal inflammation and colitis-associated cancer and indicate that therapeutic strategies aiming at IL-23 blockade may be of key relevance for future therapy of IBD patients.  相似文献   

2.
 Genetic linkage analysis in families with multiple cases of inflammatory bowel disease (IBD) has mapped a gene which confers susceptibility to IBD to the pericentromeric region of chromosome 16 (IBD1). The linked region includes the interleukin(IL)-4 receptor gene (IL4R). Since IL-4 regulation and expression are abnormal in IBD, the IL4R gene is thus both a positional and functional candidate for IBD1. We screened the gene for single-nucleotide polymorphisms (SNPs) by fluorescent chemical cleavage analysis, and tested a subset of known and novel SNPs for allelic association with IBD in 355 families, which included 435 cases of Crohn's disease and 329 cases of ulcerative colitis. No association was observed between a haplotype of four SNPs (val50ile, gln576arg, A3044G, G3289A) and either the Crohn's disease or ulcerative colitis phenotypes using the transmission disequilibrium test. There was also no evidence for association when the four markers were analyzed individually. The results indicate that these variants are not significant genetic determinants of IBD, and that the IL4R gene is unlikely to be IBD1. Linkage disequilibrium analyses showed that the val50ile and gln576arg variants are in complete equilibrium with each other, although they are separated by only about 21 kilobases of genomic DNA. This suggests that a very dense SNP map may be required to exclude or detect disease associations with some candidate genes. Received: 23 June 1999 / Revised: 18 August 1999  相似文献   

3.
Inflammatory bowel diseases (IBD) and colorectal cancer (CRC) are disorders that originate from immune disturbances. In our study, we evaluated the association between the -251 T/A interleukin (IL)-8 and the -1112 C/T IL-13 polymorphisms, the risk of IBD, and CRC development. Genotypes were determined by PCR-restriction fragment length polymorphism in 191 patients with CRC, 150 subjects with IBD, and 205 healthy controls. We found an association between CRC and the presence of the -251 TA genotype and A allele of the IL-8 gene (odds ratios [ORs] 2.28 and 1.65). A similar relationship was observed between these polymorphic variants and ulcerative colitis (OR 2.05 for the -251 TA genotype and OR 1.47 for the -251 A allele) as well as Crohn's disease (ORs 3.11 and 1.56, respectively). Our research also revealed that the CT and TT genotypes of the IL-13 -1112 C/T polymorphism may be connected with a higher risk of CRC (ORs 2.28 and 1.65). The same genotypes affected the susceptibility of IBD (ORs 2.26 and 3.72). Our data showed that the IL-8 -251 T/A and IL-13 -1112 C/T polymorphisms might be associated with the IBD and CRC occurrence and might be used as predictive factors of these diseases in a Polish population.  相似文献   

4.
Crohn disease and ulcerative colitis are the two main forms of chronic inflammatory bowel disease (IBD). The systematic discovery of susceptibility genes for this complex disease has led to fundamental changes in our understanding of pathophysiological concepts. The construction of a genetic risk map will guide future therapeutic development.  相似文献   

5.
6.
Crohn disease (CD) and ulcerative colitis (UC) are chronic inflammatory bowel diseases (IBDs) of unknown etiology. First-degree relatives of IBD patients have a 10-fold increase in risk of developing the same disease, and distinct associations between specific HLA types and both CD and UC have been reported. We have evaluated the contribution of genes at the HLA locus to susceptibility in IBD by linkage analysis of highly informative microsatellite polymorphisms in 43 families with multiple affected cases. No evidence for linkage of HLA to IBD was obtained under any of the four models tested. Analysis of HLA haplotype sharing in affected relatives indicated that the relative risk to a sibling conferred by the HLA locus was 1.11 in UC and 0.75 in CD, with upper (95%) confidence limits of 2.41 and 1.37, respectively. This suggests that other genetic or environmental factors are responsible for most of the familial aggregation in IBD.  相似文献   

7.
Inflammatory bowel disease (IBD) are characterized recurrent inflammation of gastrointestinal tract. The etiology and pathogenesis this disease is currently unclear, but it has become evident that immune and genetic factors are involved in this process. The aim of this study was to determine whether gene polymorphisms: MIF-173 G/C; CXCL12-801 G/A and CXCR4 C/T exon 2 position of rs2228014 is associated with susceptibility to IBD. A total of 286 patients were examined with IBD, including 152 patients with ulcerative colitis and 134 with Crohn’s disease (CD) and 220 healthy subjects were recruited from the Polish population. Genotyping for polymorphisms in CXCL12/CXCR4 and MIF was performed by RFLP-PCR. Statistical significance was found for polymorphisms CXCR4, a receptor gene for CXCL12 genotypes and alleles in CD and for genotype C/T and T allele in ulcerative colitis with respect to control. This confirms the effect of CXCL12 gene. The interplay between CXCL12 and its receptor CXCR4 affects homeostasis and inflammation in the intestinal mucosa. Three-gene analysis in CD confirmed the association of genotype GGGGCT. Statistical analysis of clinical data of patients with ulcerative colitis showed significant differences in the distribution of genotype C/T and T allele for CXCR4 in the left-side colitis. Having CXCR4/CXCL12 chemokine axis polymorphisms may predispose to the development of IBD. Activation can also be their defensive reaction to the long-lasting inflammation.  相似文献   

8.
Inflammatory bowel disease (IBD), a relatively common chronic debilitating intestinal illness, is composed of two broadly defined groups, Crohn's disease (CD) and ulcerative colitis (UC). Although several susceptibility genes for CD have been recently described, susceptibility genes exclusive for UC have not been forthcoming. Here, we show that receptor protein-tyrosine phosphatase sigma (PTPRS-encoding PTPsigma) knockout mice spontaneously develop mild colitis that becomes severe when challenged with two known inducers of colitis. We also demonstrate that E-cadherin and beta-catenin, two important adherens junction proteins involved in maintenance of barrier defense in the colon, act as colonic substrates for PTPsigma. Furthermore, we show that three SNPs (rs886936, rs17130, and rs8100586) that flank exon 8 in the human PTPRS gene are associated with UC. The presence of these SNPs is associated with novel splicing that removes the third immunoglobulin-like domain (exon 9) from the extracellular portion of PTPsigma, possibly altering dimerization or ligand recognition. We propose that polymorphisms in the human PTPRS gene lead to ulcerative colitis.  相似文献   

9.
10.
LP Hale  PK Greer 《PloS one》2012,7(7):e41797
Mutations that increase susceptibility to inflammatory bowel disease (IBD) have been identified in a number of genes in both humans and mice, but the factors that govern how these mutations contribute to IBD pathogenesis and result in phenotypic presentation as ulcerative colitis (UC) or Crohn disease (CD) are not well understood. In this study, mice deficient in both TNF and IL-10 (T/I mice) were found to spontaneously develop severe colitis soon after weaning, without the need for exogenous triggers. Colitis in T/I mice had clinical and histologic features similar to human UC, including a markedly increased risk of developing inflammation-associated colon cancer. Importantly, development of spontaneous colitis in these mice was prevented by antibiotic treatment. Consistent with the known role of Th17-driven inflammation in response to bacteria, T/I mice had elevated serumTh17-type cytokines when they developed spontaneous colitis and after systemic bacterial challenge via NSAID-induced degradation of the mucosal barrier. Although TNF production has been widely considered to be be pathogenic in IBD, these data indicate that the ability to produce normal levels of TNF actually protects against the spontaneous development of colitis in response to intestinal colonization by bacteria. The T/I mouse model will be useful for developing new rationally-based therapies to prevent and/or treat IBD and inflammation-associated colon cancer and may further provide important insights into the pathogenesis of UC in humans.  相似文献   

11.
12.
Linkage of inflammatory bowel disease to human chromosome 6p   总被引:12,自引:0,他引:12       下载免费PDF全文
Inflammatory bowel disease (IBD) is characterized by a chronic relapsing intestinal inflammation. IBD is subdivided into Crohn disease and ulcerative colitis phenotypes. Given the immunologic dysregulation in IBD, the human-leukocyte-antigen region on chromosome 6p is of significant interest. Previous association and linkage analysis has provided conflicting evidence as to the existence of an IBD-susceptibility locus in this region. Here we report on a two-stage linkage and association analysis of both a basic population of 353 affected sibling pairs (ASPs) and an extension of this population to 428 white ASPs of northern European extraction. Twenty-eight microsatellite markers on chromosome 6 were genotyped. A peak multipoint LOD score of 4.2 was observed, at D6S461, for the IBD phenotype. A transmission/disequilibrium test (TDT) result of P=.006 was detected for D6S426 in the basic population and was confirmed in the extended cohort (P=.004; 97 vs. 56 transmissions). The subphenotypes of Crohn disease, ulcerative colitis, and mixed IBD contributed equally to this linkage, suggesting a general role for the chromosome 6 locus in IBD. Analysis of five single-nucleotide polymorphisms in the TNFA and LTA genes did not reveal evidence for association of these important candidate genes with IBD. In summary, we provide firm linkage evidence for an IBD-susceptibility locus on chromosome 6p and demonstrate that TNFA and LTA are unlikely to be susceptibility loci for IBD.  相似文献   

13.
14.
Ulcerative colitis and Crohn's disease are the two major forms of inflammatory bowel disease (IBD). A series of reports have hypothesized interplay of genetic and environmental factors in the pathogenesis of IBD. Polymorphism in the mannan-binding lectin-2 (MBL-2) gene is known to affect the structural assembly and function thereby predisposing subjects to various diseases. The present study was designed to evaluate effect of MBL-2 gene polymorphism on MBL levels and function in IBD patients. Genomic DNA was isolated from blood samples collected from 157 ulcerative colitis, 42 Crohn's disease and 204 control subjects. Genotyping for different polymorphic sites at exon1 of MBL-2 gene was performed by refractory mutation system-PCR and amplification followed by restriction digestion (PCR-RFLP). Serum MBL concentration and C4 deposition levels were estimated using ELISA. Mannan-binding lectin-2 genotypic variants were calculated in IBD and healthy controls. The frequency of single nucleotide polymorphisms at codon 54 was significantly higher in ulcerative colitis patients than controls (P?相似文献   

15.
目的:通过检测白细胞介素23受体(IL-23R)及白细胞介素17A(IL-17A)在炎症性肠病(IBD)患者肠黏膜及血清中的表达水平,探讨其在IBD发病过程中的作用及意义。方法:收集32例克罗恩病(CD)患者、29例溃疡性结肠炎(UC)患者及27例对照者的内镜肠黏膜活检标本,采用荧光定量PCR技术检测肠黏膜内IL-23R、IL-17AmRNA的表达情况,免疫组化技术分析IL-23R、IL-17A在肠黏膜中的原位表达。结果:与健康对照组相比,CD及UC患者肠黏膜组织内IL-23R mRNA表达显著增高(P<0.05),CD及UC组间的表达量差异无统计学意义(P>0.05)。CD及UC患者肠黏膜组织内IL-17A mRNA表达显著增高(P<0.05),CD组肠黏膜组织内IL-17AmRNA表达显著高于UC组(P<0.05)。免疫组化分析显示IL-23R阳性细胞在CD与UC肠黏膜固有层内有较多表达,较正常黏膜内的肠上皮细胞相比,CD及UC患者肠黏膜IL-23R蛋白表达量最著增高(P<0.05),UC及CD组间的表达量差异无统计学意义(P>0.05)。IL-17A阳性细胞在CD与UC肠黏膜固有层内有较多表达,较正常黏膜内的肠上皮细胞相比,CD及UC患者肠黏膜IL-17A蛋白表达量最著增高(P<0.05)。结论:IL-23R及IL-17A在IBD患者肠黏膜中表达显著增高,提示IL-23R及IL-17A表达异常与IBD的发生发展密切相关,有可能成为IBD治疗的新靶点。  相似文献   

16.
Adipose derived mesenchymal stem cells (ASCs) transplantation is a novel immunomodulatory therapeutic tool to ameliorate the symptom of inflammatory bowel disease (IBD). The objective of this study was to investigate the therapeutic effects of combined sufasalazine and ASCs therapy in a rat model of IBD. After induction of colitis in rats, ASCs were cultured and intraperitoneally injected (3 × 106cells/kg) into the rats on Days 1 and 5 after inducing colitis, in conjunction with daily oral administration of low dose of sulfasalazine (30 mg/kg). The regenerative effects of combination of ASCs and sulfasalazine on ulcerative colitis were assessed by measuring body weight, colonic weight/length ratio, disease activity index, macroscopic scores, histopathological examinations, cytokine, and inflammation markers profiles. In addition, western blot analysis was used to assess the levels of nuclear factor-kappa B (NF-κB) and apoptosis related proteins in colitis tissues. Simultaneous treatment with ASCs and sulfasalazine was associated with significant amelioration of disease activity index, macroscopic and microscopic colitis scores, as well as inhibition of the proinflammatory cytokines in trinitrobenzene sulfonic acid (TNBS)-induced colitis. Moreover, combined ASCs and sulfasalazine therapy effectively inhibited the NF-κB signaling pathway, reduced the expression of Bax and prevented the loss of Bcl-2 proteins in colon tissue of the rats with TNBS-induced colitis. Furthermore, combined treatment with ASCs and sulfasalazine shifted inflammatory M1 to anti-inflammatory M2 macrophages by decreasing the levels of MCP1, CXCL9 and increasing IL-10, Arg-1 levels. In conclusion, combination of ASCs with conventional IBD therapy is potentially a much more powerful strategy to slow the progression of colitis via reducing inflammatory and apoptotic markers than either therapy alone.  相似文献   

17.

Background

The constellation of human inflammatory bowel disease (IBD) includes ulcerative colitis and Crohn''s disease, which both display a wide spectrum in the severity of pathology. One theory is that multiple genetic hits to the host immune system may contribute to the susceptibility and severity of IBD. However, experimental proof of this concept is still lacking. Several genetic mouse models that each recapitulate some aspects of human IBD have utilized a single gene defect to induce colitis. However, none have produced pathology clearly distinguishable as either ulcerative colitis or Crohn''s disease, in part because none of them reproduce the most severe forms of disease that are observed in human patients. This lack of severe IBD models has posed a challenge for research into pathogenic mechanisms and development of new treatments. We hypothesized that multiple genetic hits to the regulatory machinery that normally inhibits immune activation in the intestine would generate more severe, reproducible pathology that would mimic either ulcerative colitis or Crohn''s disease.

Methods and Findings

We generated a novel mouse line (dnKO) that possessed defects in both TGFβRII and IL-10R2 signaling. These mice rapidly and reproducibly developed a disease resembling fulminant human ulcerative colitis that was quite distinct from the much longer and more variable course of pathology observed previously in mice possessing only single defects. Pathogenesis was driven by uncontrolled production of proinflammatory cytokines resulting in large part from T cell activation. The disease process could be significantly ameliorated by administration of antibodies against IFNγ and TNFα and was completely inhibited by a combination of broad-spectrum antibiotics.

Conclusions

Here, we develop to our knowledge the first mouse model of fulminant ulcerative colitis by combining multiple genetic hits in immune regulation and demonstrate that the resulting disease is sensitive to both anticytokine therapy and broad-spectrum antibiotics. These findings indicated the IL-10 and TGFβ pathways synergize to inhibit microbially induced production of proinflammatory cytokines, including IFNγ and TNFα, which are known to play a role in the pathogenesis of human ulcerative colitis. Our findings also provide evidence that broad-spectrum antibiotics may have an application in the treatment of patients with ulcerative colitis. This model system will be useful in the future to explore the microbial factors that induce immune activation and characterize how these interactions produce disease.  相似文献   

18.

Aims

Adipose tissue secretes various proteins referred to as adipokines, being involved in inflammation. It was recognized that mesenteric adipose tissue (MAT) is altered by inflammation, and pathologies such as inflammatory bowel disease (IBD). The aim of this study was to investigate the alterations of the mesenteric adipose tissue in two experimental colitis models in mice adapted to obtain moderate colonic inflammation.

Main methods

Colonic inflammation was obtained using two models, either DSS dissolved in drinking water or intra-colonic instillation of DNBS. The expression of adipokines (leptin and adiponectin) and inflammatory markers (IL-6, MCP-1, F4/80) was studied by qRT-PCR in the MAT of treated and control mice.

Key findings

Observations of the colon and IL-6 plasma level determination demonstrated that DNBS treatment led to stronger inflammation. Colitis induced a decrease of mRNA encoding to leptin and adiponectin in MAT. In contrast, colonic inflammation led to an increase of mRNA encoding to IL-6, MCP-1 and F4/80, a specific marker of macrophages.

Significance

The mesenteric adipose tissue, in two models of moderate colitis, shows a loss of adipose profile and a strong increase of inflammatory pattern, close to the observations made in MAT of IBD patients. These data suggest that these pro-inflammatory modifications of MAT have to be taken into account in the pathophysiology of IBD.  相似文献   

19.
The inflammatory bowel diseases (IBD; Crohn's disease, ulcerative colitis) are a collection of chronic idiopathic inflammatory disorders of the intestine and/or colon. Although the pathophysiology of IBD is not known with certainty, a growing body of experimental and clinical data suggests that chronic gut inflammation may result from a dysregulated immune response to normal bacterial antigens. This uncontrolled immune system activation results in the sustained overproduction of reactive metabolites of oxygen and nitrogen. It is thought that some of the intestinal and/or colonic injury and dysfunction observed in IBD is due to elaboration of these reactive species. This review summarizes the current state-of-knowledge of the role of reactive oxygen species and nitric oxide in the pathophysiology of IBD.  相似文献   

20.
Crohn disease (CD), a sub-entity of inflammatory bowel disease (IBD), is a complex polygenic disorder. Although recent studies have successfully identified CD-associated genetic variants, these susceptibility loci explain only a fraction of the heritability of the disease. Here, we report on a multi-stage genome-wide scan of 393 German CD cases and 399 controls. Among the 116,161 single-nucleotide polymorphisms tested, an association with the known CD susceptibility gene NOD2, the 5q31 haplotype, and the recently reported CD locus at 5p13.1 was confirmed. In addition, SNP rs1793004 in the gene encoding nel-like 1 precursor (NELL1, chromosome 11p15.1) showed a consistent disease-association in independent German population- and family-based samples (942 cases, 1082 controls, 375 trios). Subsequent fine mapping and replication in an independent sample of 454 French/Canadian CD trios supported the authenticity of the NELL1 association. Further confirmation in a large German ulcerative colitis (UC) sample indicated that NELL1 is a ubiquitous IBD susceptibility locus (combined p<10(-6); OR = 1.66, 95% CI: 1.30-2.11). The novel 5p13.1 locus was also replicated in the French/Canadian sample and in an independent UK CD patient panel (453 cases, 521 controls, combined p<10(-6) for SNP rs1992660). Several associations were replicated in at least one independent sample, point to an involvement of ITGB6 (upstream), GRM8 (downstream), OR5V1 (downstream), PPP3R2 (downstream), NM_152575 (upstream) and HNF4G (intron).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号