首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Abstract: The phosphorylation of surface proteins by ectoprotein kinase has been proposed to play a role in mechanisms underlying neuronal differentiation and their responsiveness to nerve growth factor (NGF). PC 12 clones represent an optimal model for investigating the mode of action of NGF in a homogeneous cell population. In the present study we obtained evidence that PC12 cells possess ectoprotein kinase and characterized the endogenous phosphorylation of its surface protein substrates. PC12 cells maintained in a chemically defined medium exhibited phosphorylation of proteins by [γ-32P]ATP added to the medium at time points preceding the intracellular phosphorylation of proteins in cells labeled with 32Pi. This activity was abolished by adding apyrase or trypsin to the medium but was not sensitive to addition of an excess of unlabeled Pi. As also expected from ecto-protein kinase activity, PC12 cells catalyzed the phosphorylation of an exogenous protein substrate added to the medium, dephospho-α-casein, and this activity competed with the endogenous phosphorylation for extracellular ATP. Based on these criteria, three protein components migrating in sodium dodecyl sulfate gels with apparent molecular weights of 105K, 39K, and 20K were identified as exclusive substrates of ecto-protein kinase in PC12 cells. Of the phosphate incorporated into these proteins from extracellular ATP, 75–87% was found in phosphothreonine. The phosphorylation of the 39K protein by ecto-protein kinase did not require Mg2+, implicating this activity in the previously demonstrated regulation of Ca2+-dependent, high-affinity norepinephrine uptake in PC12 cells by extracellular ATP. The protein kinase inhibitor K-252a inhibited both intra- and extracellular protein phosphorylation in intact PC12 cells. Its hydrophilic analogue K-252b, had only minimal effects on intracellular protein phosphorylation but readily inhibited the phosphorylation of specific substrates of ecto-protein kinase in PC12 cells incubated with extracellular ATP, suggesting the involvement of ecto-protein kinase in the reported inhibition of NGF-induced neurite extension by K-252b. Preincubation of PC12 cells with 50 ng/ml of NGF for 5 min stimulated the activity of ecto-protein kinase toward all its endogenous substrates. Exposure of PC12 cells to the same NGF concentration for 3 days revealed another substrate of ecto-protein kinase, a 53K protein, whose surface phosphorylation is expressed only after NGF-induced neuronal differentiation. In the concentration range (10–100 μM) at which 6-thioguanine blocked NGF-promoted neurite outgrowth in PC12 cells, 6-thioguanine effectively inhibited the phosphorylation of specific proteins by ecto-protein kinase. This study provides the basis for continued investigation of the involvement of ecto-protein kinase and its surface protein substrates in neuronal differentiation, neuritogenesis, and synaptogenesis.  相似文献   

2.
Monocytes encounter basement membranes and interact with laminins while crossing the vascular barrier. It is known that these cells possess ecto-protein kinase activity on their surface. Several proteins of the extracellular matrix can be phosphorylated by ectokinases. Therefore, it has been hypothesized that monocyte ectokinases could phosphorylate laminins and influence their biological properties. In order to test the above hypothesis, we used intact human monocytes and adenosine triphosphate labeled with radioactive phosphate at the third phosphate ([gamma-32P]-ATP) to phosphorylate laminin-1. Autoradiography after sodium dodecyl sulphate polyacrylamyde gel electrophoresis (SDS-PAGE) electrophoresis indicated phosphorylation of laminin-1 on the beta and/or gamma chains. After phosphorylation, phosphoserine could be detected on Western blots by a specific monoclonal antibody. Phosphorylation was not detected when monocytes were pre-treated with trypsin and was inhibited by a specific ecto-protein kinase inhibitor (K252b). Laminin phosphorylation was also inhibited by heparin, a known inhibitor of casein kinase II and by pretreatment of monocytes by a monoclonal anti-casein kinase II antibody. Heparin binding, cell attachment and proliferation, and monocyte migration were enhanced on the phosphorylated laminin-1 as compared to the non-phosphorylated controls. These data indicate that laminin-1 can be phosphorylated by monocyte casein kinase II type ectokinase. This phosphorylation influences important functions of laminin and therefore could provide an additional means for the interaction of monocytes with basement membranes.  相似文献   

3.
The growth of new blood vessels plays an important role in the pathogenesis of several diseases including cancer, diabetes, and arthritis. Beta-cyclodextrin tetradecasulfate, when administered with an appropriate steroid inhibits angiogenesis, and can stimulate angiogenesis when given alone. The regulation of angiogenesis is not well understood, and the mechanism of action of beta-cyclodextrin tetradecasulfate is similarly not well defined. Ecto-protein kinase activity that utilizes extracellular ATP has recently been reported on several types of cells. Human neutrophils appear to possess two distinct ecto-protein kinase activities; one that phosphorylates exogenous substrates including vitronectin and basic fibroblast growth factor, and one that phosphorylates endogenous cell-surface proteins. This report shows that beta-cyclodextrin tetradecasulfate inhibits the phosphorylation of the exogenous substrates casein, vitronectin (the major ecto-protein kinase substrate in serum), and basic fibroblast growth factor by human neutrophil ecto-protein kinase activity. In contrast, beta-cyclodextrin tetradecasulfate had no effect on the phosphorylation of endogenous cell-surface proteins by the neutrophil ecto-protein kinase activity. Ecto-protein kinase activity that was inhibited by beta-cyclodextrin tetradecasulfate was also detected on porcine aortic and human umbilical vein endothelial cells. The effects of beta-cyclodextrin tetradecasulfate on ecto-protein kinase activities may play a role in its effects on angiogenesis.  相似文献   

4.
Fibronectin phosphorylation by ecto-protein kinase   总被引:1,自引:0,他引:1  
The presence of membrane-associated, extracellular protein kinase (ecto-protein kinase) and its substrate proteins was examined with serum-free cultures of Swiss 3T3 fibroblast. When cells were incubated with [gamma-32]ATP for 10 min at 37 degrees C, four proteins with apparent molecular weights between 150 and 220 kDa were prominently phosphorylated. These proteins were also radiolabeled by lactoperoxidase catalyzed iodination and were sensitive to mild tryptic digestion, suggesting that they localized on the cell surface or in the extracellular matrix. Phosphorylation of extracellular proteins with [gamma-32P]ATP in intact cell culture is consistent with the existence of ecto-protein kinase. Anti-fibronectin antibody immunoprecipitated one of the phosphoproteins which comigrated with a monomer and a dimer form of fibronectin under reducing and nonreducing conditions of electrophoresis, respectively. The protein had affinity for gelatin as demonstrated by retention with gelatin-conjugated agarose. This protein substrate of ecto-protein kinase was thus concluded to be fibronectin. The sites of phosphorylation by ecto-protein kinase were compared with those of intracellularly phosphorylated fibronectin by the analysis of radiolabeled amino acids and peptides. Ecto-protein kinase phosphorylated fibronectin at serine and threonine residues which were distinct from the sites of intracellular fibronectin phosphorylation.  相似文献   

5.
We have characterized a novel ecto-protein kinase activity and a novel ecto-protein phosphatase activity on the membrane surface of human platelets. Washed intact platelets, when incubated with [gamma-32P]ATP in Tyrode's buffer, showed the phosphorylation of a membrane surface protein migrating with an apparent molecular mass of 42 kDa on 5-15% SDS polyacrylamide gradient gels. The 42 kDa protein could be further resolved on 15% SDS gels into two proteins of 39 kDa and 42 kDa. In this gel system, it was found that the 39 kDa protein became rapidly phosphorylated and dephosphorylated, whereas the 42 kDa protein was phosphorylated and dephosphorylated at a much slower rate. NaF inhibited the dephosphorylation of these proteins indicating the involvement of an ecto-protein phosphatase. The platelet membrane ecto-protein kinase responsible for the phosphorylation of both of these proteins was identified as a serine kinase and showed dependency on divalent cations Mg2+ or Mn2+ ions. Ca2+ ions potentiated the Mg(2+)-dependent ecto-protein kinase activity. The ecto-protein kinase rapidly phosphorylated histone and casein added exogenously to the extracellular medium of intact platelets. Following activation of platelets by alpha-thrombin, the incorporation of [32P]phosphate from exogenously added [gamma-32P]ATP by endogenous protein substrates was reduced by 90%, suggesting a role of the ecto-protein kinase system in the regulation of platelet function. The results presented here demonstrate that both protein kinase and protein phosphatase activities reside on the membrane surface of human platelets. These activities are capable of rapidly phosphorylating and dephosphorylating specific surface platelet membrane proteins which may play important roles in early events of platelet activation and secretion.  相似文献   

6.
Permeabilized cell models of muscle and nonmuscle cells have proven useful for examining the regulation of actin, myosin, and other cytoskeletal proteins during cell contraction. Upon addition of Ca2+ and ATP, glycerinated chick embryonic skin fibroblasts retract their tails and lamellipodia. Ca2+-independent contractions are obtained by preincubation of cell models in Ca2+ ATP gamma S, followed by EGTA and ATP addition, or by addition of trypsin-treated myosin light chain kinase that no longer requires Ca2+ for reactivation. By pretreating cells before glycerination with colchicine, it is possible to study lamellipodial contraction independent of tail contraction. Similar responses to ATP gamma S pretreatment and unregulated myosin light chain kinase are observed in cells that only contain lamellipodia. SDS-PAGE electrophoresis of glycerinated fibroblasts incubated in ATP gamma 35S and Ca2+ shows that only two major proteins are thiophosphorylated, and that one of them, a band that comigrates with the 20K MW light chain of myosin, is thiophosphorylated in a Ca2+-dependent manner. Since the rate of tail contraction is several-fold faster after Ca2+ and ATP gamma S pretreatment or incubation in excess myosin light chain kinase, myosin light chain phosphorylation may be a rate-limiting step during contraction.  相似文献   

7.
This study examined the hypothesis that ATP, released together with norepinephrine (NE) from brain noradrenergic nerve terminals, may serve as a cosubstrate for an extracellular protein phosphorylation system that regulates the reuptake of the transmitter, NE. The possible regulation of high-affinity uptake (uptake 1) of [3H]NE by divalent cations and ATP, both of which are involved in protein phosphorylation, was examined in rat cerebral cortical synaptosomes. A marked inhibition of uptake 1 by 5'-adenylylimidodiphosphate [App(NH)p], a nonhydrolyzable, competitive antagonist of ATP, was observed. A similar inhibition of uptake was observed when Ca2+ and Mg2+ were both omitted from the incubation medium. App(NH)p distinguished the actions of Ca2+ from those of Mg2+: Ca2+-stimulated uptake 1 was blocked by App(NH)p; Mg2+-stimulated uptake was not. In parallel experiments, the patterns of protein phosphorylation in crude and purified preparations of synaptosomes were examined under conditions similar to those used in uptake assays. A striking correlation was found between the inhibition of uptake 1, by either App(NH)p or Ca-omission, and inhibition of the phosphorylation of one specific, 39,000-dalton, Ca2+-dependent, protein component in synaptosomes. This 39K protein was distinct from the alpha subunit of pyruvate dehydrogenase, a mitochondrial protein of similar electrophoretic mobility. These findings are consistent with the possibility that an ectokinase on synaptosomes utilizes extracellular ATP and Ca2+ in phosphorylating a protein(s) associated with the regulation of NE uptake.  相似文献   

8.
Adenosine-5'-O-(3-thiotriphosphate) (ATP gamma S) was used to examine the role of phosphorylation in the regulation of norepinephrine secretion by digitonin-permeabilized PC12 cells. While most kinases will use ATP gamma S to thiophosphorylate proteins, thiophosphorylated proteins are relatively resistant to dethiophosphorylation by protein phosphatases. Norepinephrine secretion by permeabilized PC12 cells was ATP- and Ca2+-dependent but resistant to calmodulin antagonists. Half-maximum secretion was obtained in 0.75 microM Ca2+. Permeabilized PC12 cells were incubated with ATP gamma S in the absence of Ca2+, the ATP gamma S was removed, and norepinephrine secretion was determined. Preincubation with ATP gamma S increased the amount of norepinephrine secreted in the absence of Ca2+, but it had no effect on the amount released in the presence of Ca2+. After a 15-min preincubation in 1 mM ATP gamma S, there was almost as much secretion in the absence of Ca2+ as in its presence. Inclusion of ATP in the preincubation inhibited the effect of ATP gamma S. Ca2+ stimulated the rate of modification by ATP gamma S as brief preincubations with ATP gamma S in the presence of Ca2+ resulted in higher levels of Ca2+-independent secretion than did preincubations with ATP gamma S in the absence of Ca2+. Similarly, brief preincubations of permeabilized cells with ATP in the presence of Ca2+ resulted in elevated levels of Ca2+-independent secretion. Secretion of norepinephrine from ATP gamma S-treated cells was ATP-dependent. These results suggest that norepinephrine secretion by PC12 cells is regulated by a Ca2+-dependent phosphorylation. Once this phosphorylation has occurred, secretion is still ATP-dependent, but it no longer requires Ca2+.  相似文献   

9.
Abstract: The effect of the hydrolysis-resistant GTP analogs, guanosine 5'- O -(3-thiotriphosphate) (GTPγS) and guanylyl imidodiphosphate (GMPPNP), on norepinephrine (NE) secretion from digitonin-permeabilized rat pheochromocytoma cells, PC12, was examined. Although secretion in the presence of saturating Ca2+ (10 μ M ) was not affected by GTP7S or GMPPNP, secretion in the absence of Ca2+ was stimulated by these GTP analogs. Secretion induced by saturating concentrations of GTPγS or GMPPNP was approximately 80% of that induced by 10 μ M Ca2+. Half-maximum stimulation was induced by 30 μ M GTPγS or GMPPNP. Both Ca2+-stimulated and GTPγS-stimulated secretion were ATP dependent and inhibited by N -ethylmaleimide. The GTPγS-stimulated secretion of NE from permeabilized PC12 cells does not appear to result from either the release of Ca2+ or the activation of protein kinase C. Activation of protein kinase C by pretreatment of intact cells with 12- O -tetradecanoyl-phorbol 13-acetate caused a 50% increase in both Ca2+-stimulated and GTP7S-stimulated secretion. Cholera and pertussis toxins did not affect Ca2+-stimulated or GTPγS-stim-ulated NE secretion. Guanosine 5'- O -(2-thiodiphosphate) (GDPβS) and GTP inhibited GTPγS-stimulated secretion but not Ca2+-stimulated secretion. The inability of GDPβS to inhibit Ca2+-stimulated secretion indicates that the process affected by GTPγS is not an essential step in the Ca2+-stimulated pathway.  相似文献   

10.
Previously we observed that rab3 GTPases modulate both the secretion of catecholamines from PC12 neuroendocrine cells and the steady-state accumulation of exogenous norepinephrine (NE) into these cells (Weber, E., Jilling, T., and Kirk, K. L. (1996) J. Biol. Chem. 271, 6963-6971). Here we addressed the mechanisms by which these monomeric GTPases stimulate NE uptake by PC12 cells including their effects on uptake kinetics, their sites of action (secretory granule membrane versus plasma membrane), and the involvement of rab3-interacting proteins in this process. We observed that rab3B stimulated the rate and maximal accumulation of radiolabeled NE into large dense core vesicles within intact PC12 cells. rab3A and rab3B also increased NE uptake into large dense core vesicles in digitonin-permeabilized PC12 cells, which indicates that these GTPases stimulate catecholamine uptake at the level of the secretory granule membrane. In an attempt to identify rab3B targets that may mediate this effect on NE uptake, we found that rab3B interacts directly with phosphoinositide 3-kinase (PI3K) in a GTP-dependent fashion and that PI3K activity was elevated in PC12 cells overexpressing rab3B. Furthermore, two structurally distinct inhibitors of PI3K (wortmannin and LY294002) inhibited NE uptake in intact as well as digitonin-permeabilized PC12 cells, but had no effect on calcium-evoked NE secretion. Our results indicate that rab3 and PI3K positively and coordinately regulate NE uptake in PC12 neuroendocrine cells at least in part by stimulating the secretory vesicle uptake step.  相似文献   

11.
A protein kinase capable of phosphorylating basic fibroblast growth factor (FGF) can be localized on the outer cell surface of human hepatoma cells (SK-Hep cells). The addition of [gamma-32P]ATP, but not H3(32)PO4, results in a rapid (less than 10 min) incorporation of 32P into exogenously added basic FGF. The reaction is time and concentration dependent (apparent Km, 170 nM) and is stimulated by the addition of cAMP (EC50, 0.5 microM), but not the phorbol ester 12-O-tetradecanoyl-phorbol-13-acetate. There is also no tyrosine protein kinase detected on the cell surface. The inhibition of basic FGF binding to its low and/or high affinity sites decreases the phosphorylation of basic FGF by the ecto-protein kinase. Accordingly, pretreatment of cells with heparinase for 30 min or coincubation with heparin (0.1-10 micrograms/ml) decreases phosphorylation in a dose-dependent manner. Furthermore, the addition of a nonphosphorylatable peptide analog of basic FGF ([Val112] basic FGF-(106-146)NH2) that can compete with basic FGF binding to cells prevents the phosphorylation of basic FGF. Together, these observations suggest that 1) exogenous basic FGF must associate with its low and/or high affinity binding sites to be phosphorylated, and 2) the kinase is cAMP dependent and associated with the outer cell surface, and support the hypothesis that phosphorylation may regulate the activity and/or bioavailability of the growth factor.  相似文献   

12.
NADPH-oxidase-catalyzed superoxide (O2-) formation in membranes of HL-60 leukemic cells was activated by arachidonic acid in the presence of Mg2+ and HL-60 cytosol. The GTP analogues, guanosine 5'-[gamma-thio]triphosphate (GTP[gamma S] and guanosine 5'-[beta,gamma-imido]triphosphate, being potent activators of guanine-nucleotide-binding proteins (G proteins), stimulated O2- formation up to 3.5-fold. The adenine analogue of GTP[gamma S], adenosine 5'-[gamma-thio]triphosphate (ATP[gamma S]), which can serve as donor of thiophosphoryl groups in kinase-mediated reactions, stimulated O2- formation up to 2.5-fold, whereas the non-phosphorylating adenosine 5'-[beta,gamma-imido]triphosphate was inactive. The effect of ATP[gamma S] was half-maximal at a concentration of 2 microM, was observed in the absence of added GDP and occurred with a lag period two times longer than the one with GTP[gamma S]. HL-60 membranes exhibited nucleoside-diphosphate kinase activity, catalyzing the thiophosphorylation of GDP to GTP[gamma S] by ATP[gamma S]. GTP[gamma S] formation was half-maximal at a concentration of 3-4 microM ATP[gamma S] and was suppressed by removal of GDP by creatine kinase/creatine phosphate (CK/CP). The stimulatory effect of ATP[gamma S] on O2- formation was abolished by the nucleoside-diphosphate kinase inhibitor UDP. Mg2+ chelation with EDTA and removal of endogenous GDP by CK/CP abolished NADPH oxidase activation by ATP[gamma S] and considerably diminished stimulation by GTP[gamma S]. GTP[gamma S] also served as a thiophosphoryl group donor to GDP, with an even higher efficiency than ATP[gamma S]. Transthiophosphorylation of GDP to GTP[gamma S] was only partially inhibited by CK/CP. Our results suggest that NADPH oxidase is regulated by a G protein, which may be activated either by exchange of bound GDP by guanosine triphosphate or by thiophosphoryl group transfer to endogenous GDP by nucleoside-diphosphate kinase.  相似文献   

13.
Renal mesangial cells express high levels of matrix metalloproteinase 9 (MMP-9) in response to inflammatory cytokines such as interleukin (IL)-1 beta. We demonstrate here that the stable ATP analog adenosine 5'-O-(thiotriphosphate) (ATP gamma S) potently amplifies the cytokine-induced gelatinolytic content of mesangial cells mainly by an increase in the MMP-9 steady-state mRNA level. A Luciferase reporter gene containing 1.3 kb of the MMP-9 5'-promoter region showed weak responses to ATP gamma S but conferred a strong ATP-dependent increase in Luciferase activity when under the additional control of the 3'-untranslated region of MMP-9. By in vitro degradation assay and actinomycin D experiments we found that ATP gamma S potently delayed the decay of MMP-9 mRNA. Gel-shift and supershift assays demonstrated that three AU-rich elements (AREs) present in the 3'-untranslated region of MMP-9 are constitutively bound by complexes containing the mRNA stabilizing factor HuR. The RNA binding of these complexes was markedly increased by ATP gamma S. Mutation of each ARE element strongly impaired the RNA binding of the HuR containing complexes. Reporter gene assays revealed that mutation of one ARE did not affect the stimulatory effects by ATP gamma S, but mutation of all three ARE motifs caused a loss of ATP-dependent increase in luciferase activity without affecting IL-1 beta-inducibility. By confocal microscopy we demonstrate that ATP gamma S increased the nucleo cytoplasmic shuttling of HuR and caused an increase in the cytosolic HuR level as shown by cell fractionation experiments. Together, our results indicate that the amplification of MMP-9 expression by extracellular ATP is triggered through mechanisms that likely involve a HuR-dependent rise in MMP-9 mRNA stability.  相似文献   

14.
Ceramide serves as a second messenger produced from sphingomyelin by the activation of sphingomyelinase (SMase). Here, we suggest that neutral SMase 2 (nSMase2) may regulate dopamine (DA) uptake. nSMase2 siRNA-transfected PC12 cells showed lower levels of nSMase activity and ceramide than scramble siRNA-transfected and control cells. Interestingly, transfection of nSMase2 siRNA or pretreatment with the nSMase2-specific inhibitor GW4869 resulted in decreased DA uptake. Reciprocally, exposure of PC12 cells to cell-permeable C6-ceramide induced a concentration-dependent increase in DA uptake. Removal of extracellular calcium by EGTA increased DA uptake in scramble-transfected and control cells, but not in nSMase2 siRNA-transfected or GW4869-pretreated cells. Moreover, siRNA-transfected cells showed higher levels of intracellular calcium than scramble cells, while C6-ceramide treatment resulted in decreased intracellular calcium compared to vehicle treatment alone. Taken together, these data suggest that nSMase2 may increase DA uptake through inducing ceramide production and thereby decreasing intracellular calcium levels.  相似文献   

15.
[3H]-staurosporine, a non-specific protein kinase inhibitor, bound with high affinity and in a reversible manner to specific and saturable binding sites in cultured bovine cerebral cortex capillary endothelial cells. Scatchard analysis revealed the presence of one class of non-interacting binding sites with an equilibrium dissociation constant (KD) of 9.2 nM and Bmax of 19.3 fmol/10(5) cells. The binding of [3H]-staurosporine was fully displaced by unlabelled staurosporine, H-7 and ATP with IC50 values of 6.9 nM, 3 microM and 0.4 microM respectively. Mild trypsinization of cells after [3H]-staurosporine binding revealed the presence of membrane-associated, extracellular binding sites which could be an ecto-protein kinase.  相似文献   

16.
Abstract: The involvement of a purinergic system in the mechanisms of ATP- and electrically induced long-term potentiation (LTP) has been investigated in mouse hippocampal slices. Extracellular ATP (500 n M ) and its slowly hydrolyzable analogue adenosine 5'- O -(3-thiotriphosphate) (ATP-γ-S; 2.5 µ M ) amplified permanently the magnitude of the population spike. This effect was antagonized by adenylimidodiphosphate (AMPPNP), a non-hydrolyzable analogue of ATP. AMPPNP, other ATP analogues [2-methylthioadenosine triphosphate (2-MeSATP) and α,β-methyleneadenosine 5'-triphosphate (α,β-methyleneATP)], or a purinergic receptor antagonist (Cibacron Blue 3G) tested in the concentration range of 3–40 µ M did not exert agonistic activity similar to that of ATP or ATP-γ-S, suggesting that ATP hydrolysis is required to exert this effect. All the tested nonhydrolyzable analogues reduced or prevented the establishment of stable, nondecremental LTP without blocking the short-lasting increase in the magnitude of the population spike immediately after electrical stimulation (short-term potentiation). These results indicate that ATP released by high-frequency stimulation contributes to the maintenance of stable LTP. The underlying mechanism operating in this process may involve a new type of ATP receptors or hydrolysis by ecto-ATPase. However, the findings that ATP-γ-S is less potent than ATP and that other ATP analogues known to act as agonists of purinergic receptors did not induce LTP but rather inhibited its maintenance are more consistent with the possibility that ecto-protein kinase, using extracellular ATP as a cosubstrate, plays a role in mechanisms underlying synaptic plasticity.  相似文献   

17.
Extracellular nucleotides have a profound role in the regulation of the proliferation of diseased tissue. We studied how extracellular nucleotides regulate the proliferation of LXF-289 cells, the adenocarcinoma-derived cell line from human lung bronchial tumor. ATP and ADP strongly inhibited LXF-289 cell proliferation. The nucleotide potency profile was ATP = ADP = ATPgammaS > > UTP, UDP, whereas alpha,beta-methylene-ATP, beta,gamma-methylene-ATP, 2',3'-O-(4-benzoylbenzoyl)-ATP, AMP and UMP were inactive. The nucleotide potency profile and the total blockade of the ATP-mediated inhibitory effect by the phospholipase C inhibitor U-73122 clearly show that P2Y receptors, but not P2X receptors, control LXF-289 cell proliferation. Treatment of proliferating LXF-289 cells with 100 microm ATP or ADP induced significant reduction of cell number and massive accumulation of cells in the S phase. Arrest in S phase is also indicated by the enhancement of the antiproliferative effect of ATP by coapplication of the cytostatic drugs cisplatin, paclitaxel and etoposide. Inhibition of LXF-289 cell proliferation by ATP was completely reversed by inhibitors of extracellular signal related kinase-activating kinase/extracellular signal related kinase 1/2 (PD98059, U0126), p38 mitogen-activated protein kinase (SB203508), phosphatidylinositol-3-kinase (wortmannin), and nuclear factor kappaB1 (SN50). Western blot analysis revealed transient activation of p38 mitogen-activated protein kinase, extracellular signal-related kinase 1/2, and nuclear factor kappaB1 and possibly new formation of p50 from its precursor p105. ATP-induced attenuation of LXF-289 cell proliferation was accompanied by transient translocation of p50 nuclear factor kappaB1 and extracellular signal-related kinase 1/2 to the nucleus in a similar time period. In summary, inhibition of LXF-289 cell proliferation is mediated via P2Y receptors by activation of multiple mitogen-activated protein kinase pathways and nuclear factor kappaB1, arresting the cells in the S phase.  相似文献   

18.
We have recently characterised the presence of a Ca2(+)-mobilising receptor for ATP which stimulates exocytosis in differentiated HL60 cells. Here we demonstrate that the undifferentiated HL60 cells also respond to extracellular ATP by stimulating an increase in inositol phosphates and exocytosis. Of the nucleotides (ATP, UTP, ITP, ATP gamma S, AppNHp, XTP, CTP, GTP, 8-Br-ATP and GTP gamma S) that were active in stimulating inositol phosphate formation, only UTP, ATP, ITP, ATP gamma S and AppNHp were active in stimulating secretion. On differentiation, the extent of secretion due to the purinergic agonists ATP, ITP, ATP gamma S and AppNHp remained unchanged whilst secretion due to UTP, a pyrimidine, was substantially increased. These results indicate that the effect of ATP and UTP may be mediated via separate purinergic and pyrimidinergic receptors, respectively.  相似文献   

19.
The actions of thapsigargin (Tg), a plant sesquiterpene lactone, on Ca2+ homeostasis were investigated in digitonin-permeabilized GH4C1 rat pituitary cells. Tg (1 microM) caused a rapid and sustained increase in ambient Ca2+ concentration [( Ca2+]) and inhibited the rise in [Ca2+] induced by subsequent addition of TRH (100 nM), inositol 1,4,5-trisphosphate (IP3, 10 microM), or the nonhydrolyzable GTP analogue guanosine 5'-0-(3-thiotriphosphate) (GTP gamma S, 10 microM). However, neither IP3 nor GTP gamma S pretreatment, which themselves release sequestered Ca2+, prevented the Ca2+ accumulation induced by Tg. Pretreatment with heparin (100 micrograms/ml, 10 min), an IP3 receptor antagonist, did not affect Ca2+ accumulation induced by Tg, although it abolished the rise in [Ca2+] induced by IP3. The ability of Tg to increase [Ca2+] was dependent on added ATP. We conclude that, in GH4C1 cells, Tg acts, in part, on TRH-, IP3- and GTP gamma S-sensitive Ca2+ pools; however, Tg also acts on an ATP-dependent pool of intracellular Ca2+ which is not sensitive to TRH, IP3 or GTP gamma S, indicating a complexity of intracellular Ca2+ pools not previously appreciated in these cells.  相似文献   

20.
Abstract: Noradrenergic and dopaminergic projections converge in the medial prefrontal cortex and there is evidence of an interaction between dopamine (DA) and norepinephrine (NE) terminals in this region. We have examined the influence of drugs known to alter extracellular NE on extracellular NE and DA in medial prefrontal cortex using in vivo microdialysis. Local application of the NE uptake inhibitor desipramine (1.0 µM) delivered through a microdialysis probe increased extracellular DA (+149%) as well as NE (+201%) in medial prefrontal cortex. Furthermore, desipramine potentiated the tail shock-induced increase in both extracellular DA (stress alone, +64%; stress + desipramine, +584%) and NE (stress alone, +55%; stress + desipramine, +443%). In contrast, local application of desipramine did not affect extracellular DA in striatum, indicating that this drug does not influence DA efflux directly. Local application of the α2-adrenoceptor antagonist idazoxan (0.1 or 5.0 mM) increased extracellular NE and DA in medial prefrontal cortex. Conversely, the α2-adrenoceptor agonist clonidine (0.2 mg/kg; i.p.) decreased extracellular NE and DA in medial prefrontal cortex. These results support the hypothesis that NE terminals in medial prefrontal cortex regulate extracellular DA in this region. This regulation may be achieved by mechanisms involving an action of NE on receptors that regulate DA release (heteroreceptor regulation) and/or transport of DA into noradrenergic terminals (heterotransporter regulation).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号