首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the past decade there has been increasing evidence that tumor antigen-loaded dendritic cells (DC) are able to elicit anti-tumor T-cell responses. Initial clinical data for different tumor entities are encouraging, with objective tumor regressions being observed in some patients. Since GMP production of DC for clinical vaccination protocols is a time- and cost-intensive procedure, cryopreservation of DC in aliquots ready for clinical use would significantly facilitate DC-based vaccination in the clinic. We asked whether freezing and thawing alters the phenotype or functional properties of DC. DC from healthy volunteers and from patients with chronic myeloid leukemia (CML) were analyzed after freezing and thawing for their viability, morphology, immunophenotype (FACS profile), T-cell stimulatory capacity (mixed lymphocyte reaction) and mobility (time-lapse cinemicroscopy). Our results demonstrate that cryopreservation does not cause significant changes in the phenotype or function of DC, neither in DC from healthy volunteers nor in those from CML patients. Our data indicate that cryopreserved aliquots of DC are suitable for clinical application in DC-based immunotherapy protocols.  相似文献   

2.
Dendritic cells (DCs) have been proposed to play a critical role as adjuvants in vaccination and immunotherapy. In this study we evaluated the combined effect of soluble Leishmania donovani Ag (SLDA)-pulsed syngeneic bone marrow-derived DC-based immunotherapy and antimony-based chemotherapy for the treatment of established murine visceral leishmaniasis. Three weekly injections of SLDA-pulsed DCs into L. donovani-infected mice reduced liver and splenic parasite burden significantly, but could not clear parasite load from these organs completely. Strikingly, the conventional antileishmanial chemotherapy (sodium antimony gluconate) along with injections of SLDA-pulsed DCs resulted in complete clearance of parasites from both these organs. Repetitive in vitro stimulation of splenocytes from uninfected or L. donovani-infected mice with SLDA-pulsed DCs led to the emergence of CD4(+) T cells with characteristics of Th1 cells. Our data indicate that DC-based immunotherapy enhances the in vivo antileishmanial potential of antimony or vice versa.  相似文献   

3.
Dendritic cells (DC) presenting tumor antigens are crucial to induce potent T cell-mediated anti-tumor immune responses. Therefore DC-based cancer vaccines have been established for therapy, however clinical outcomes are often poor and need improvement. Using a mouse model of B16 melanoma, we found that the route of preventive DC vaccination critically determined tumor control. While repeated DC vaccination did not show an impact of the route of DC application on the prevention of tumor growth, a single DC vaccination revealed that both the imprinting of skin homing receptors and an enhanced proliferation state of effector T cells was seen only upon intracutaneous but not intravenous or intraperitoneal immunization. Tumor growth was prevented only by intracutaneous DC vaccination. Our results indicate that under suboptimal conditions the route of DC vaccination crucially determines the efficiency of tumor defense. DC-based strategies for immunotherapy of cancer should take into account the immunization route in order to optimize tissue targeting of tumor antigen specific T cells.  相似文献   

4.
Dendritic cell (DC)-based immunotherapy has not been as effective as expected in most solid tumors even in the murine model, particularly in renal cell carcinoma (RCC). Our investigation was initiated to identify what causes the limitations of DC-based immunotherapy in solid RCC. We have investigated immunosuppressive factors from tumors and their effects on DC migration, as well as cytotoxic T lymphocyte (CTL) response and lymphocyte infiltration into the tumor mass upon vaccination with mouse renal adenocarcinoma (Renca) cell lysate-pulsed bone marrow (Bm)-derived DC in tumor-bearing mice. We also investigated pulmonary metastasis- and tumor recurrence-inhibitory effects of DC-vaccination in the solid tumor-bearing mice. In these experiments, we found that the limitations of DC-based immunotherapy to solid RCC likely result from tumor-mediated TGF-β hindrance of immune attack rather than insufficient immune induction by DC therapy. In fact, the CTL response induced by DC therapy was quite sufficient and functional for the inhibition of tumor recurrence after surgery or of tumor metastasis induced by additional tumor-challenge to the tumor-bearing mice. Taken together, our present results obtained in mouse model suggest the potential of DC immunotherapy in tumor patients for hindering or blocking disease progression by inhibition of tumor metastasis and/or tumor recurrence after surgery.  相似文献   

5.
The mechanisms of immune evasion during haematological malignancies are poorly understood. As lymphomas grow in lymphoid organs, it would be expected that if these lymphomas express neo-antigens they should be readily detected by the immune system. To test this assumption, we generated a new non-Hodgkin B-cell lymphoma model expressing the model tumour neo-antigen Ovalbumin (OVA), and analysed the endogenous antigen-specific CD8(+) T-cell response that it elicited in recipient mice. The OVA+ lymphoma cells were eliminated by cytotoxic T lymphocytes (CTL) in mice that had been previously vaccinated against OVA. In contrast, the immune system of na?ve mice ignored the malignant cells even though these continuously expressed and presented OVA on their MHC class I molecules. This state of ignorance could be overcome by therapeutic vaccination, which led to the expansion of endogenous anti-OVA-specific CD8(+) T cells. However, the cytotoxic and interferon-γ secretion capacity of these T cells were impaired. The tumour model that we describe thus reproduces several key aspects of human lymphoma; tumor ignorance can be broken by vaccination but the ensuing immune response remains ineffective. This model can be exploited to further understand the mechanisms of lymphoma immunoevasion and devise effective immunotherapy.  相似文献   

6.
Dendritic cells for specific cancer immunotherapy   总被引:8,自引:0,他引:8  
The characterization of tumor-associated antigens recognized by human T lymphocytes in a major histocompatibility complex (MHC)-restricted fashion has opened new possibilities for immunotherapeutic approaches to the treatment of human cancers. Dendritic cells (DC) are professional antigen presenting cells that are well suited to activate T cells toward various antigens, such as tumor-associated antigens, due to their potent costimulatory activity. The availability of large numbers of DC, generated either from hematopoietic progenitor cells or monocytes in vitro or isolated from peripheral blood, has profoundly changed pre-clinical research as well as the clinical evaluation of these cells. Accordingly, appropriately pulsed or transfected DC may be used for vaccination in the field of infectious diseases or tumor immunotherapy to induce antigen-specific T cell responses. These observations led to pilot clinical trials of DC vaccination for patients with cancer in order to investigate the feasibility, safety, as well as the immunologic and clinical effects of this approach. Initial clinical studies of human DC vaccines are generating encouraging preliminary results demonstrating induction of tumor-specific immune responses and tumor regression. Nevertheless, much work is still needed to address several variables that are critical for optimizing this approach and to determine the role of DC-based vaccines in tumor immunotherapy.  相似文献   

7.
Dendritic cells (DCs) are the most powerful antigen-presenting cells that induce and maintain primary immune responses in vitro and in vivo. The development of protocols for the ex vivo generation of DCs provided a rationale for designing and developing DC-based vaccination studies for the treatment of infectious and malignant diseases. Recently, it was shown that DCs transfected with ribonucleic acid (RNA) coding for a tumour-associated antigen or whole tumour RNA are able to induce potent antigen and tumour-specific T-cell responses directed against multiple epitopes. The first RNA-transfected-DC-based clinical studies have shown that this form of vaccination is feasible and safe. In some cases, clinical responses were observed, but the preliminary data require further extensive investigations that should address the technical and biological problems of manipulating human DCs, as well as the development of standardised protocols and definitions of clinical settings.  相似文献   

8.
The confirmation that most cancers express one or more molecular changes, which may act as tumour-associated antigens (TAA), combined with the knowledge that T lymphocytes recognize even single amino acid differences in MHC presented peptides has stimulated renewed clinical interest in immunotherapeutic strategies. Dendritic cells (DC) are now recognized as specialist antigen-presenting cells, which initiate, direct and regulate immune responses. Recent data suggest that DC are not recruited into, or activated by, cancers and that other abnormalities in DC function are associated with malignancy, including multiple myeloma. This provides a rationale for designing immunotherapeutic strategies, which exploit DC as nature's adjuvant either in vivo or in vitro. Low-grade lymphoma and multiple myeloma are slowly progressive malignancies, which generally express a unique immunoglobulin idiotype as a potential TAA. Data from animal models and clinical studies suggest that DC-based immunotherapy strategies, applied when the patient has minimal residual disease, may improve the long-term prognosis in these diseases.  相似文献   

9.
Natural attenuation of ALVAC virus in mammals makes it an attractive vector for cancer vaccine therapy of immunocompromised hosts, such as patients with lymphoid malignancies. However, the transduction efficiency of ALVAC constructs in lymphoid tumors has not yet been characterized. We studied a wide spectrum of human T- and B-cell leukemia and lymphomas and found significant heterogeneity of the ALVAC-mediated gene product expression in these tumors. While ALVAC-B7.1, ALVAC-B7.2, or ALVAC-luciferase vectors effectively expressed recombinant genes in malignancies arising from T- or early B-cell precursors, negative or low expression of ALVAC recombinant genes occurred in tumors arising from mature B-cells. We showed that ALVAC-encoded B7.1 or B7.2 was continuously expressed on the infected, and subsequently irradiated, leukemia cells, and only cells with ALVAC-mediated expression of costimulatory molecules (but not unmodified leukemia cells or those infected with the ALVAC-parental vector) induced significant proliferation and IFN-gamma production by alloreactive T-cells. These data provide the rationale for clinical studies using the ALVAC vector system for gene transfer into lymphoid tumors of T- and early B-cell origin to render them more immunogenic, while alternative strategies should be considered for immunotherapy of mature B-cell malignancies.  相似文献   

10.
Dendritic cells (DCs) are central players of the immune response. To date, DC-based immunotherapy is explored worldwide in clinical vaccination trials with cancer patients, predominantly with ex vivo-cultured monocyte-derived DCs (moDCs). However, the extensive culture period and compounds required to differentiate them into DCs may negatively affect their immunological potential. Therefore, it is attractive to consider alternative DC sources, such as blood DCs. Two major types of naturally occurring DCs circulate in peripheral blood, myeloid DCs (mDCs) and plasmacytoid (pDCs). These DC subsets express different surface molecules and are suggested to have distinct functions. Besides scavenging pathogens and presenting antigens, DCs secrete cytokines, all of which is vital for both the acquired and the innate immune system. These immunological functions relate to Toll-like receptors (TLRs) expressed by DCs. TLRs recognize pathogen-derived products and subsequently provoke DC maturation, antigen presentation and cytokine secretion. However, not every TLR is expressed on each DC subset nor causes the same effects when activated. Considering the large amount of clinical trials using DC-based immunotherapy for cancer patients and the decisive role of TLRs in DC maturation, this review summarizes TLR expression in different DC subsets in relation to their function. Emphasis will be given to the therapeutic potential of TLR-matured DC subsets for DC-based immunotherapy.  相似文献   

11.
Trifunctional bispecific antibodies (trAbs) used in tumor immunotherapy have the unique ability to recruit T cells toward antigens on the tumor cell surface and, moreover, to activate accessory cells through their immunoglobulin Fc region interacting with activating Fcγ receptors. This scenario gives rise to additional costimulatory signals required for T cell–mediated tumor cell destruction and induction of an immunologic memory. Here we show in an in vitro system that most effective trAb-dependent T-cell activation and tumor cell elimination are achieved in the presence of dendritic cells (DCs). On the basis of these findings, we devise a novel approach of cancer immunotherapy that combines the specific advantages of trAbs with those of DC-based vaccination. Simultaneous delivery of trAbs and in vitro differentiated DCs resulted in a markedly improved tumor rejection in a murine melanoma model compared with monotherapy.  相似文献   

12.
Pancreatic cancer is an extremely aggressive malignancy with a dismal prognosis. Cancer patients and tumor-bearing mice have multiple immunoregulatory subsets including regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSC) that may limit the effectiveness of anti-tumor immunotherapies for pancreatic cancer. It is possible that modulating these subsets will enhance anti-tumor immunity. The goal of this study was to explore depletion of immunoregulatory cells to enhance dendritic cell (DC)-based cancer immunotherapy in a murine model of pancreatic cancer. Flow cytometry results showed an increase in both Tregs and MDSC in untreated pancreatic cancer–bearing mice compared with control. Elimination of Tregs alone or in combination with DC-based vaccination had no effect on pancreatic tumor growth or survival. Gemcitabine (Gem) is a chemotherapeutic drug routinely used for the treatment for pancreatic cancer patients. Treatment with Gem led to a significant decrease in MDSC percentages in the spleens of tumor-bearing mice, but did not enhance overall survival. However, combination therapy with DC vaccination followed by Gem treatment led to a significant delay in tumor growth and improved survival in pancreatic cancer–bearing mice. Increased MDSC were measured in the peripheral blood of patients with pancreatic cancer. Treatment with Gem also led to a decrease of this population in pancreatic cancer patients, suggesting that combination therapy with DC-based cancer vaccination and Gem may lead to improved treatments for patients with pancreatic cancer.  相似文献   

13.
In this paper we develop a new mathematical model of immunotherapy and cancer vaccination, focusing on the role of antigen presentation and co-stimulatory signaling pathways in cancer immunology. We investigate the effect of different cancer vaccination protocols on the well-documented phenomena of cancer dormancy and recurrence, and we provide a possible explanation of why adoptive (i.e. passive) immunotherapy protocols can sometimes actually promote tumour growth instead of inhibiting it (a phenomenon called immunostimulation), as opposed to active vaccination protocols based on tumour-antigen pulsed dendritic cells. Significantly, the results of our computational simulations suggest that elevated numbers of professional antigen presenting cells correlate well with prolonged time periods of cancer dormancy.  相似文献   

14.
Dendritic cell (DC) vaccines have emerged as a promising strategy to induce antitumoral cytotoxic T cells for the immunotherapy of cancer. The maturation state of DC is of critical importance for the success of vaccination, but the most effective mode of maturation is still a matter of debate. Whereas immature DC carry the risk of inducing tolerance, extensive stimulation of DC may lead to DC unresponsiveness and exhaustion. In this study, we investigated how short-term versus long-term DC activation with a Toll-like receptor 9 agonist influences DC phenotype and function. Murine DC were generated in the presence of the hematopoietic factor Flt3L (FL-DC) to obtain both myeloid and plasmacytoid DC subsets. Short activation of FL-DC for as little as 4 h induced fully functional DC that rapidly secreted IL-12p70 and IFN-α, expressed high levels of costimulatory and MHC molecules and efficiently presented antigen to CD4 and CD8 T cells. Furthermore, short-term activated FL-DC overcame immune suppression by regulatory T cells and acquired high migratory potential toward the chemokine CCL21 necessary for DC recruitment to lymph nodes. In addition, vaccination with short-term activated DC induced a strong cytotoxic T-cell response in vivo and led to the eradication of tumors. Thus, short-term activation of DC generates fully functional DC for tumor immunotherapy. These results may guide the design of new protocols for DC generation in order to develop more efficient DC-based tumor vaccines.  相似文献   

15.
Allergen-specific immunotherapy has been carried out for almost a century and remains one of the few antigen-specific treatments for inflammatory diseases. The mechanisms by which allergen-specific immunotherapy exerts its effects include the modulation of both T-cell and B-cell responses to allergen. There is a strong rationale for improving the efficacy of allergen-specific immunotherapy by reducing the incidence and severity of adverse reactions mediated by IgE. Approaches to address this problem include the use of modified allergens, novel adjuvants and alternative routes of administration. This article reviews the development of allergen-specific immunotherapy, our current understanding of its mechanisms of action and its future prospects.  相似文献   

16.
Dendritic cells (DC) are professional antigen-presenting cells uniquely suited for cancer immunotherapy. They induce primary immune responses, potentiate the effector functions of previously primed T-lymphocytes, and orchestrate communication between innate and adaptive immunity. The remarkable diversity of cytokine activation regimens, DC maturation states, and antigen-loading strategies employed in current DC-based vaccine design reflect an evolving, but incomplete, understanding of optimal DC immunobiology. In the clinical realm, existing DC-based cancer immunotherapy efforts have yielded encouraging but inconsistent results. Despite recent U.S. Federal and Drug Administration (FDA) approval of DC-based sipuleucel-T for metastatic castration-resistant prostate cancer, clinically effective DC immunotherapy as monotherapy for a majority of tumors remains a distant goal. Recent work has identified strategies that may allow for more potent “next-generation” DC vaccines. Additionally, multimodality approaches incorporating DC-based immunotherapy may improve clinical outcomes.  相似文献   

17.
Dendritic cells (DC) have been successfully used in clinical pilot studies to induce tumor-specific immunity as well as clinical response in selected patients. However, DC-based immunotherapy remains a challenge and several parameters need to be examined in order to optimize the induction of anti-tumor immune responses. This study focuses on DC vaccination for leukemia and evaluates the in vitro efficacy of three different strategies for generating antigen-loaded DC-based vaccines for the induction of major histocompatibility complex (MHC) class I-restricted anti-leukemia cytotoxic T lymphocyte (CTL) responses. These included direct fusion of DC with leukemia cells to generate DC-leukemia cell hybrids, and DC pulsed with either apoptotic leukemia cell fragments or whole tumor cell lysates. Using either the U937 cell line or primary human acute myeloid leukemia blasts (AML), DC-leukemia cell hybrids were found to be the most potent in vitro inducers of CTL activity. DC pulsed with apoptotic tumor cell fragments were less efficient, but induced a more potent CTL response compared to tumor lysate-pulsed DC. The CTL responses were both MHC class I-restricted and antigen-specific, as shown by the inability of the CTL to lyse other control targets. The data presented here suggest that the method of antigen loading onto DC may be critical in the design of tumor vaccines.  相似文献   

18.
As a treatment for solid tumors, dendritic cell (DC)-based immunotherapy has not been as effective as expected. Here, we review the reasons underlying the limitations of DC-based immunotherapy for solid tumors and ask what can be done to improve immune cell-based cancer therapies. Several reports show that, rather than a lack of immune induction, the limited efficacy of DC-based immunotherapy in cases of renal cell carcinoma (RCC) likely results from inhibition of immune responses by tumor-secreted TGF-β and an increase in the number of regulatory T (Treg) cells in and around the solid tumor. Indeed, unlike DC therapy for solid tumors, cytotoxic T lymphocyte (CTL) responses induced by DC therapy inhibit tumor recurrence after surgery; CTL responses also limit tumor metastasis induced by additional tumor-challenge in RCC tumor-bearing mice. Here, we discuss the mechanisms underlying the poor efficacy of DC-based therapy for solid tumors and stress the need for new and improved DC immunotherapies and/or combination therapies with killer cells to treat resistant solid tumors.  相似文献   

19.
Accumulating evidence suggests that despite the potency of cytotoxic anticancer agents, and the great specificity that can be achieved with immunotherapy, neither of these two types of treatment by itself has been sufficient to eradicate the disease. Still, the combination of these two different modalities holds enormous potential for eliciting therapeutic results. Indeed, certain chemotherapeutic agents have shown immunomodulatory activities, and several combined approaches have already been attempted. For instance, chemotherapy has been proven to enhance the efficacy of tumor cell vaccines, and to favor the activity of adoptively transferred tumor-specific T cells. A number of mechanisms have been proposed for the chemotherapy-triggered enhancement of immunotherapy response. Thus, chemotherapy may favor tumor cell death, and by that enhance tumor-antigen cross-presentation in vivo. Drug-induced myelosuppression may induce the production of cytokines favoring homeostatic proliferation, and/or ablate immunosuppression mechanisms. Furthermore, the recently reported synergy between monoclonal antibodies and chemotherapy or peptide vaccination is based upon the induction of endogenous humoral and cellular immune responses. This would suggest that monoclonal antibodies may not only provide passive immunotherapy but can also promote tumor-specific active immunity. This article will review several strategies in which immunotherapy can be exploited in preclinical and clinical studies in combination with other agents and therapeutic modalities that are quite unique when compared with “conventional” combination therapies (ie, treatments with chemotherapeutic drugs or chemotherapy and radiotherapy based protocols). The results from these studies may have significant implications for the development of new protocols based on combinatorial treatments including vaccines, chemotherapy and monoclonal antibodies, suggesting an exciting potential for therapeutic synergy with general applicability to various cancer types. Given the complicity of immune-based therapies and cancer pharmacology, it will be necessary to bring together cancer immunologists and clinicians, so as to provide a robust stimulus for realizing the successful management of cancer in the near future.  相似文献   

20.
The discovery of tumor-associated antigens, which are either selectively or preferentially expressed by tumors, together with an improved insight in dendritic cell biology illustrating their key function in the immune system, have provided a rationale to initiate dendritic cell-based cancer immunotherapy trials. Nevertheless, dendritic cell vaccination is in an early stage, as methods for preparing tumor antigen presenting dendritic cells and improving their immunostimulatory function are continuously being optimized. In addition, recent improvements in immunomonitoring have emphasized the need for careful design of this part of the trials. Still, valuable proofs-of-principle have been obtained, which favor the use of dendritic cells in subsequent, more standardized clinical trials. Here, we review the recent developments in clinical DC generation, antigen loading methods and immunomonitoring approaches for DC-based trials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号