首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hochachka's "Hypoxia Defense Strategies" identify oxygen signalling, metabolic arrest, channel arrest and coordinated suppression of ATP turnover rates as key factors that determine the ability of organisms to survive exposure to chronic hypoxia. In this review, I assess the developmental role played by these phenomena in the morphogenesis of the gas exchange tissues that define the pathway for oxygen transport to cytochrome c oxidase. Key areas of regulation lie in: (I) the suppression of fetal mitochondrial oxidative function in hand with mitochondrial biogenesis (metabolic arrest), (II) the role of hypoxia-driven oxygen signalling pathways in directing the scope of non-differentiated stem cell proliferation in placenta and lung development and (III) the regulation of epithelial fluid secretion/absorption in the lung through the oxygen-dependent modulation of Na+ conductance pathways. The identification of developmental roles for Hochachka's "Hypoxia Defense Strategies" in directing the morphogenesis of gas exchange structures bears with it the implication that these strategies are fundamental to establishing the scope for aerobic metabolic performance throughout life.  相似文献   

2.
The molecular basis of lung morphogenesis   总被引:35,自引:0,他引:35  
  相似文献   

3.
Many membrane-bound protein precursors, including cytokines and growth factors, are proteolytically shed to yield soluble intercellular regulatory ligands. The responsible protease, tumor necrosis factor-alpha converting enzyme (TACE/ADAM-17), is a transmembrane metalloprotease-disintegrin that cleaves multiple cell surface proteins, although it was initially identified for the enzymatic release of tumor necrosis factor-alpha (TNF-alpha). Mammalian lung growth and development are tightly controlled by cytokines and peptide growth factors. However, the biological function of the cell shedding mechanism during lung organogenesis is not understood. We therefore evaluated the role of TACE as a "sheddase" during lung morphogenesis by analyzing the developmental phenotypes of lungs in mice with an inactive TACE gene in both in vivo and ex vivo organ explant culture. Neonatal TACE-deficient mice had visible respiratory distress and their lungs failed to form normal saccular structures. These newborn mutant lungs had fewer peripheral epithelial sacs with deficient septation and thick-walled mesenchyme, resulting in reduced surface for gas exchange. At the canalicular stage of E16.5, the lungs of TACE mutant mice were impaired in branching morphogenesis, inhibited in epithelial cell proliferation and differentiation, and delayed in vasculogenesis. Embryonic TACE knockout mouse lungs (E12) branched poorly compared to wild-type lungs, when placed into serumless organ culture. Gene expression of both surfactant protein-C and aquaporin-5 were inhibited in cultured TACE-mutant embryonic lungs, indicating defects in both branching and peripheral epithelial cytodifferentiation in the absence of TACE protein. Furthermore, both the hypoplastic phenotype and the delayed cytodifferentiation in TACE-deficient lungs were rescued by exogenous addition of soluble stimulatory factors including either TNF-alpha or epidermal growth factor in embryonic lung culture. Thus, the impaired lung branching and maturation without TACE suggest a broad role for TACE in the processing of multiple membrane-anchored proteins, one or more of which is essential for normal lung morphogenesis. Taken together, our data indicate that the TACE-mediated proteolytic mechanism which enzymatically releases membrane-tethered proteins plays an indispensable role in lung morphogenesis, and its inactivation leads to abnormal lung development.  相似文献   

4.
5.
6.

Background  

Development of lung alveolar sacs of normal structure and size at late gestation is necessary for the gas exchange process that sustains respiration at birth. Mice lacking the lung differentiation gene T1α [T1α(-/-)] fail to form expanded alveolar sacs, resulting in respiratory failure at birth. Since little is known about the molecular pathways driving alveolar sacculation, we used expression microarrays to identify genes altered in the abnormal lungs and, by inference, may play roles in normal lung morphogenesis.  相似文献   

7.
Abstract. The purpose of this investigation was to determine whether lamellar inclusion body (LB) formation and surfactant apoprotein (SP-35) production are directly coordinated by temporal and positional information during development. In the present study we report a comparison between embryonic B10.A mouse lung morphogenesis and cytodifferentiation in vivo with that observed during organ culture in serumless medium. Precursor LB were first detected at embryonic day 12 (E12d), and progressively larger numbers and forms were produced during subsequent differentiation of respiratory alveolar duct epithelium. SP-35 was first detected during the canalicular period (E16.5d). Lung cultures (E12 d) showed pseudoglandular and canalicular periods of morphogenesis, and both ciliated epithelial and type II cell differentiation. Nonciliated cells produced increasing numbers of lamellar inclusion bodies throughout the culture period. SP-35 was detected at 9 days in vitro (d.i.v.). These observations indicate (i) precursor LB formation precedes SP-35 expression and is not dependent on apoprotein synthesis; (ii) E12d lung development in vitro using serumless medium proceeds at a rate equivalent to 0.5 days in vivo through 11 d.i.v.; and (iii) morphogenesis and differentiation occur in the absence of exogenous hormones and growth factors. The cell-cell interactions that play a role in morphogenesis and cell differentiation appear to be intrinsic to the developmental program for embryonic lung development and are likely to be mediated by autocrine and/or paracrine factors.  相似文献   

8.
9.
Heterozygous mutations in the human SOX9 gene cause campomelic dysplasia (CD), a skeletal malformation syndrome with various other organ defects. Severely affected CD patients usually die in the neonatal period due to respiratory distress. We analyzed the dynamic expression pattern of Sox9 in the developing mouse lung throughout morphogenesis. To determine a role of Sox9 in lung development and function, Sox9 was specifically inactivated in respiratory epithelial cells of the mouse lung using a doxycycline-inducible Cre/loxP system. Immunohistochemical and RNA analysis demonstrated extensive inactivation of Sox9 in the embryonic stage of lung development as early as embryonic day (E) 12.5. Lung morphogenesis and lung function after birth were not altered. Compensatory upregulation of Sox2, Sox4, Sox8, Sox10, Sox11, and Sox17 was not detected. Although Sox9 is expressed at high levels throughout lung morphogenesis, inactivation of Sox9 from the respiratory epithelial cells does not alter lung structure, postnatal survival, or repair following oxygen injury.  相似文献   

10.

Background

Lungs develop from the fetal digestive tract where epithelium invades the vascular rich stroma in a process called branching morphogenesis. In organogenesis, endothelial cells have been shown to be important for morphogenesis and the maintenance of organ structure. The aim of this study was to recapitulate human lung morphogenesis in vitro by establishing a three dimensional (3D) co-culture model where lung epithelial cells were cultured in endothelial-rich stroma.

Methods

We used a human bronchial epithelial cell line (VA10) recently developed in our laboratory. This cell line cell line maintains a predominant basal cell phenotype, expressing p63 and other basal markers such as cytokeratin-5 and -14. Here, we cultured VA10 with human umbilical vein endothelial cells (HUVECs), to mimic the close interaction between these cell types during lung development. Morphogenesis and differentiation was monitored by phase contrast microscopy, immunostainings and confocal imaging.

Results

We found that in co-culture with endothelial cells, the VA10 cells generated bronchioalveolar like structures, suggesting that lung epithelial branching is facilitated by the presence of endothelial cells. The VA10 derived epithelial structures display various complex patterns of branching and show partial alveolar type-II differentiation with pro-Surfactant-C expression. The epithelial origin of the branching VA10 colonies was confirmed by immunostaining. These bronchioalveolar-like structures were polarized with respect to integrin expression at the cell-matrix interface. The endothelial-induced branching was mediated by soluble factors. Furthermore, fibroblast growth factor receptor-2 (FGFR-2) and sprouty-2 were expressed at the growing tips of the branching structures and the branching was inhibited by the FGFR-small molecule inhibitor SU5402.

Discussion

In this study we show that a human lung epithelial cell line can be induced by endothelial cells to form branching bronchioalveolar-like structures in 3-D culture. This novel model of human airway morphogenesis can be used to study critical events in human lung development and suggests a supportive role for the endothelium in promoting branching of airway epithelium.  相似文献   

11.
12.
Recent investigations have suggested an active role for endothelial cells in organ development, including the lung. Herein, we investigated some of the molecular mechanisms underlying normal pulmonary vascular development and their influence on epithelial branching morphogenesis. Because the lung in utero develops in a relative hypoxic environment, we first investigated the influence of low oxygen on epithelial and vascular branching morphogenesis. Two transgenic mouse models, the C101-LacZ (epithelial-LacZ marker) and the Tie2-LacZ (endothelial-LacZ marker), were used. At embryonic day 11.5, primitive lung buds were dissected and cultured at either 20 or 3% oxygen. At 24-h intervals, epithelial and endothelial LacZ gene expression was visualized by X-galactosidase staining. The rate of branching of both tissue elements was increased in explants cultured at 3% oxygen compared with 20% oxygen. Low oxygen increased expression of VEGF, but not that of the VEGF receptor (Flk-1). Expression of two crucial epithelial branching factors, fibroblast growth factor-10 and bone morphogenetic protein-4, were not affected by low oxygen. Epithelial differentiation was maintained at low oxygen as shown by surfactant protein C in situ hybridization. To explore epithelial-vascular interactions, we inhibited vascular development with antisense oligonucleotides targeted against either hypoxia inducible factor-1 alpha or VEGF. Epithelial branching morphogenesis in vitro was dramatically abrogated when pulmonary vascular development was inhibited. Collectively, the in vitro data show that a low-oxygen environment enhances branching of both distal lung epithelium and vascular tissue and that pulmonary vascular development appears to be rate limiting for epithelial branching morphogenesis.  相似文献   

13.
14.
Although thyroid hormone (T(3)) influences epithelial cell differentiation during late fetal lung development, its effects on early lung morphogenesis are unknown. We hypothesized that T(3) would alter embryonic lung airway branching and temporal-spatial differentiation of the lung epithelium and mesenchyme. Gestational day 11.5 embryonic mouse lungs were cultured for 72 h in BGJb serum-free medium without or with added T(3) (0.2, 2.0, 10.0, or 100 nM). Evaluation of terminal bud counts showed a dose- and time-dependent decrease in branching morphogenesis. Cell proliferation was also significantly decreased with higher doses of T(3). Morphometric analysis of lung histology showed that T(3) caused a dose-dependent decrease in mesenchyme and increase in cuboidal epithelia and airway space. Immunocytochemistry showed that with T(3) treatment, Nkx2.1 and surfactant protein SP-C proteins became progressively localized to cuboidal epithelial cells and mesenchymal expression of Hoxb5 was reduced, a pattern resembling late fetal lung development. We conclude that exogenous T(3) treatment during early lung development accelerated epithelial and mesenchymal cell differentiation at the expense of premature reduction in new branch formation and lung growth.  相似文献   

15.
16.
Epithelial-mesenchymal interactions and extracellular matrix remodeling are key processes of embryonic lung development. Lung smooth muscle cells, which are derived from the mesenchyme, form a sheath around bronchi and blood vessels. During lung organogenesis, smooth muscle differentiation coincides with epithelial branching morphogenesis and closely follows developing airways spatially and temporally. The precise function of parabronchial smooth muscle (PBSM) cells in healthy adult lung remains unclear. However, PBSM may regulate epithelial branching morphogenesis during lung development by the induction of mechanical stress or through regulation of paracrine signaling pathways. Alveolar myofibroblasts are interstitial contractile cells that share features and may share an origin with smooth muscle cells. Alveolar myofibroblasts are essential for secondary septation, a process critical for the development of the gas-exchange region of the lung. Dysregulation of PBSM or alveolar myofibroblast development is thought to underlie the pathogenesis of many lung diseases, including bronchopulmonary dysplasia, asthma, and interstitial fibrosis. We review the current understanding of the regulation of PBSM and alveolar myofibroblast development, and discuss the role of PBSM in lung development. We specifically focus on the role of these cells in the context of fibroblast growth factor-10, sonic hedgehog, bone morphogenetic protein-4, retinoic acid, and Wnt signaling pathways in the regulation of lung branching morphogenesis.  相似文献   

17.
Roles of the JNK signaling pathway in Drosophila morphogenesis.   总被引:1,自引:0,他引:1  
Epithelial cell differentiation and morphogenesis are crucial in many aspects of metazoan development. Recent genetic studies in Drosophila have revealed that the conserved Jun amino-terminal kinase (JNK) signaling pathway regulates epithelial morphogenesis during the process of embryonic dorsal closure and participates in the control of planar polarity in several tissues. Importantly, these studies have linked the JNK pathway to the decapentaplegic and Frizzled pathways in these processes, suggesting a high degree of integrative signaling during epithelial morphogenesis.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号