首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To elucidate the involvement of endogenous estrogen (estradiol-17beta; E2) and the decisive factor (somatic or germinal element) in the ovarian differentiation of tropical marine teleosts, the effect of the aromatase inhibitor (AI) fadrozole on gonadal sex differentiation in the golden rabbitfish Siganus guttatus (Bloch) was examined for different dosages and periods of treatment. Fadrozole interrupted ovarian cavity formation at a dose of 500 microg g(-1) diet, while there was little effect at 10 or 100 microg g(-1). The gonads from both the 30-day and 90-day administration (500 microg g(-1) diet) groups were significantly biased toward testes (P=0.002 and <0.0001, respectively), which suggests strongly that E2 is involved in early ovarian differentiation and that its suppression is an indispensable condition for testicular differentiation in S. guttatus. The results from the two different AI treatment periods imply that the initial feminization of somatic gonadal elements determines subsequent ovarian differentiation, including oogenesis: a conclusion supported by the considerable time lag between ovarian cavity formation and subsequent oogenesis during normal ovarian differentiation in S. guttatus.  相似文献   

2.
Differentiation and development of steroid-producing cells (SPCs) and folliculogenesis during ovarian differentiation in the Nile tilapia Oreochromis niloticus were immunohistochemically and ultrastructurally examined. Clusters of immunopositive cells (IPCs) against antibodies (ABs) of cholesterol side-chain cleavage cytochrome P450 (P450scc), 3β-hydroxysteroid dehydrogenase (3βHSD), and cytochrome P450aromatase (P450arom) only appeared in the area near blood vessels in the fish ovaries at 50-60 days after hatching (dah). Ultrastructural results showed that differentiation and development of SPCs from undifferentiated to maturation occurred in the area near blood vessels, indicating that it would be the original site of SPCs. At 70-80 dah, IPC clusters invaded the interstices among oocytes at the perinucleolar stage from the area near the blood vessels. IPCs increased in number in the interstices among the previtellogenic oocytes, and some clusters began to enclose the outer thecal layer of the previtellogenic oocytes at 90 dah. The process of folliculogenesis was ultrastructurally observed. SPCs enclosed by fibroblastic cells invaded the interstitial areas among oocytes and some reached the surfaces of oocytes. The upper portions of these elongations opened and began to enclose the outer surfaces of developed oocytes to become thecal layer. Later, newly migrated SPCs reach the thecal layer to become thecal cells. These results indicate that steroid-producing thecal cells originate from the SPCs in the area near blood vessels. After thecal layer formation, an immunopositive reaction against P450arom AB, but not against P450scc or 3β-HSD ABs, appeared first in the granulosa cells enclosing the vitellogenic oocytes at 100 dah. At this time, estrogen production in serum levels rapidly increased. Thus, folliculogenesis could be essential for active production of estrogen in the ovary.  相似文献   

3.
The organ culture system is a useful tool to study the effects of various factors on the development of undifferentiated gonads. In this study, we first established an organ culture system for gonads of all genetic male and female Nile tilapia at 5-122 days after hatching (dah). This short-term (3 days) organ culture system was then used to examine the stability of the immunoreactivity of aromatase (the enzyme which converts androgen to estrogen, thus playing a crucial role in ovarian differentiation) in steroid-producing cells (SPCs). Immunohistochemical analyses revealed that aromatase-positive cells could be initially detected in the vicinity of blood vessels in the XX gonads at 7 dah. These SPCs completely lost their immunoreactivity after 3 days in culture, indicating the instability of SPCs during early ovarian differentiation. In contrast, the immunoreactivity of the SPCs was maintained to some extent even after 3 days in culture, if the gonads were from 15-23 dah. In XX gonads collected at 122 dah, there were two major populations of SPCs: one in the vicinity of the blood vessel and the other near the oocyte. The aromatase immunoreactivity was maintained in SPCs located around the oocytes, but not in those in the vicinity of the blood vessel, after 3 days in culture. These results suggest that the SPCs originate from the cells in the vicinity of the blood vessels prior to the initial ovarian differentiation in tilapia and that the degree of differentiation of SPCs is dependent on their location in the ovary.  相似文献   

4.
We report the first use of exemestane (EM), a steroidal aromatase inhibitor (AI) commercially known as aromasin, in studies of sex differentiation in fish. The effectiveness of EM was examined in two different age groups of the gonochoristic fish, Nile tilapia (Oreochromis niloticus). Untreated control fish (all female) showed normal ovarian differentiation through 120 days after hatching (dah), whereas fish treated with EM at 1000 and 2000 µg/g of feed from 9 dah through 35 dah, the critical period for sex differentiation, exhibited complete testicular differentiation; all stages of spermatogenic germ cells were evident and well developed efferent ducts were present. Fish treated with EM at 1000 µg/g of feed from 70 dah through 100 dah significantly suppressed plasma estradiol-17β level and increased level of 11-ketotestosterone. Furthermore, untreated control fish showed strong gonadal expression of the steroidogenic enzymes P450 cholesterol-side chain-cleavage enzyme (P450scc), 3β-hydroxysteroid dehydrogenase (3β-HSD), and cytochrome P450 aromatase (P450arom). In contrast, EM-treated fish showed immunopositive reactions against P450scc and 3β-HSD but not against P450arom in interstitial Leydig cells. These results indicate that treatment of tilapia juveniles with EM during sex differentiation leads to the development of testes, apparently by a complete suppression of aromatase activity.  相似文献   

5.
6.
南方鲶性腺分化的组织学观察   总被引:11,自引:2,他引:9  
用芳香化酶抑制剂(Fadrozole)、雌激素受体拮抗剂(Tamoxifen)对人工孵化的南方鲶(Silurus meridionalis)幼鱼进行雄性化诱导处理(口服),获得雄鱼。对孵化后第5—130d的南方鲶幼鱼性腺进行组织学观察,结果表明,在实验条件下,南方鲶性腺分化发生在孵化后7d左右,雌雄性分化过程差异明显。雌鱼卵巢腔在孵化后12d左右形成,生殖细胞在孵化后35d左右快速增殖,成熟分裂最早发生在孵化后55d左右;雄鱼生殖细胞在孵化后130d左右快速增殖,成熟分裂最早发生在孵化后130d左右。雌性性腺分化早于雄性。  相似文献   

7.
To clarify the importance of endogenous estrogens during sex differentiation in a teleost fish, the Nile tilapia, we examined the target events for endogenous estrogens and their role during gonadal sex differentiation. The expression of CYP19a (P450arom) precedes any morphological gonadal sex differentiation. Further to these findings, the treatment of XX fry with non-steroidal aromatase inhibitor (AI), Fadrozole, from seven to 14 days after hatching caused complete sex reversal to functional males. The XX sex reversal induced by AI was rescued completely with simultaneous estrogen treatment. We also found that XY fry treated with estrogen, before the appearance of morphological sex differences, caused complete sex reversal from males to females. Taken together, these results suggest that endogenous estrogens are required for ovarian differentiation. To identify the down-stream gene products of estrogen during ovarian differentiation, we performed subtractive hybridization using mRNA derived from normal and estrogen treated XY gonads. Two out of ten gene products were expressed in germ cells, whereas the others were expressed in somatic cells.  相似文献   

8.
Aromatase inhibitors administered before sexual differentiation of the gonads can induce sex reversal in female chickens. To analyze the process of sex reversal, we have followed for several months the changes induced by Fadrozole, a nonsteroidal aromatase inhibitor, in gonadal aromatase activity and in morphology and structure of the female genital system. Fadrozole was injected into eggs on day four of incubation, and its effects were examined during the embryonic development and for eight months after hatching. In control females, aromatase activity in the right and the left gonad was high in the middle third of embryonic development, and then decreased up to hatching. After hatching, aromatase activity increased in the left ovary, in particular during folliculogenesis, whereas in the right regressing gonad, it continued to decrease to reach testicular levels at one month. In treated females, masculinization of the genital system was characterized by the maintenance of the right gonad and its differentiation into a testis, and by the differentiation of the left gonad into an ovotestis or a testis; however, in all individuals, the left Müllerian duct and the posterior part of the right Müllerian duct were maintained. In testes and ovotestes, aromatase activity was lower than in gonads of control females (except in the right gonad as of one month after hatching) but remained higher than in testes of control and treated males. Moreover, in ovotestes, aromatase activity was higher in parts displaying follicles than in parts devoid of follicles. The main structural changes in the gonads during sex reversal were partial (in ovotestes) or complete (in testes) degeneration of the cortex in the left gonad, and formation of an albuginea and differentiation of testicular cords/tubes in the two gonads. Testicular cords/tubes transdifferentiated from ovarian medullary cords and lacunae whose epithelium thickened and became Sertolian. Transdifferentiation occurred all along embryonic and postnatal development; thus, new testicular cords/tubes were continuously formed while others degenerated. The sex reversed gonads were also characterized by an abundant fibrous interstitial tissue and abnormal medullary condensations of lymphoid-like cells; in the persisting testicular cords/tubes, spermatogenesis was delayed and impaired. Related to aromatase activity, persistence of too high levels of estrogens can explain the presence of oviducts, gonadal abnormalities and infertility in sex reversed females.  相似文献   

9.
10.
11.
American alligator (Alligator mississippiensis) ovary development is incomplete at hatching. During the months following hatching, the cortical processes of oogenesis started in ovo continues and folliculogenesis is initiated. Additionally, the medullary region of the gonad undergoes dramatic restructuring. We describe alligator ovarian histology at hatching, 1 week, 1 month, and 3 months of age in order to characterize the timing of morphological development and compare these findings to chicken ovary development. At hatching, the ovarian cortex presents a germinal epithelium containing oogonia and a few primary oocytes irregularly scattered between somatic epithelial cells. The hatchling medulla shows fragmentation indicative of the formation of lacunae. By 1 week of age, oocytes form growing nests and show increased interactions with somatic cells, indicative of the initiation of folliculogenesis. Medullary lacunae increase in diameter and contain secretory material in their lumen. At 1 month, nest sizes and lacunar diameters continue to enlarge. Pachytene oocytes surrounded by somatic cells are more frequent. Trabeculae composed of dense irregular connective tissue divide cortical nests. Three months after hatching oocytes in meiotic stages of prophase I up to diplotene are present. The ovary displays many enlarged follicles with oocytes in diplotene arrest, thecal layers, lampbrush chromosomes, and complete layers of follicular cells. The medulla is an elaborated complex of vascularized lacunae underlying the cortex and often containing discrete lymphoid aggregates. While the general morphology of the alligator ovary is similar to that of the chicken ovary, the progression of oogenesis and folliculogenesis around hatching is notably slower in alligators. Diplotene oocytes are observed at hatching in chickens, but not until 3 months in alligators. Folliculogenesis is completed at 3 weeks in chickens whereas it is still progressing at 3 months in alligators.  相似文献   

12.
13.
14.
Estrogen synthesized in the brain itself by the action of cytochrome P450 aromatase (P450arom) is known to have permanent organizing effects on the developing CNS. In fish, estrogen upregulates the predominant brain isoform (P450aromB), implying that xenoestrogens (XE) could act as neurodevelopmental toxicants by altering P450aromB. To test this hypothesis, zebrafish embryos were exposed to 17beta-estradiol (E(2)), diethylstilbestrol (DES, a potent agonist), and bisphenol A (BPA, a weak agonist). RT-PCR/Southern transfer analysis showed that E(2) (0.01-10 microM) upregulated P450aromB in a dose-response manner. The effect of DES (0.01 microM) was similar to 1 microM E(2) (three- to four-fold higher than control), but BPA was less effective (相似文献   

15.
Luteinizing hormone (Lh) and follicle-stimulating hormone (Fsh) control many aspects of gonadal development and function in teleosts. In the present paper, the specific antisera against ricefield eel Lhb (Lh beta subunit), Fshb (Fsh beta subunit), and Cga (the common pituitary glycoprotein hormone alpha subunit) were generated, and the cellular localization, initial appearance, and subsequent development of gonadotrophs in relation to early ovarian differentiation and development in the ricefield eel, a protogynous sex-changing teleost, were examined with immunochemistry. Lhb- and Fshb-immunoreactive signals were identified in distinct pituitary cells that occupied primarily the peripheral regions of the adenohypophysis. During ontogeny, Lhb-immunoreactive signals were first detected in the pituitary around 40 days after hatching (dah) when the oogonia transitioned into early primary growth oocytes, and the intensity of immunoreactivity increased concomitantly with the growth of primary oocytes from 60 to 140 dah. During overwintering from 170 to 230 dah, Lhb-immunoreactive signals were significantly decreased when a large proportion of perinucleolus oocytes contained intense Balbiani bodies. In contrast, Fshb-immunoreactive signals were not detectable in the pituitary until around 230 dah (in the spring after hatching) and slightly increased from 285 dah when the late perinucleolus oocytes began to enter the secondary growth phase. Both Lhb- and Fshb-immunoreactive cells were increased when the early cortical alveoli oocytes emerged at 300 dah. The mRNA expression of lhb and fshb coincided with their immunoreactive signals. Taken together, these results suggest that only Lh is involved in primary oocyte growth in ricefield eels, but both Fsh and Lh are important for the secondary ooctye growth.  相似文献   

16.
17.
To elucidate the mechanisms of amphibian gonadal sex differentiation, we examined the expression of aromatase and androgen receptor (AR) mRNAs for days 17-31 after fertilization. The effects of inhibitors and sex steroid hormones were also examined. In ZZ males, expression of AR decreased after day 19, while aromatase expression was low throughout the sampling period. Males treated with 17beta-estradiol (E2) showed increasing aromatase expression after day 21, and formed ovaries. AR antagonist treatment also induced high-level aromatase expression and ovarian differentiation. In males co-treated with an aromatase inhibitor and E2, the undifferentiated gonads developed into testes despite high-level aromatase expression. Males treated with androgen and E2 before and during an estrogen sensitive period, respectively, also formed testes. In ZW females, AR expression persisted at a low-level, while aromatase expression increased after day 18. Short-term treatment with an aromatase inhibitor was ineffective in preventing ovarian differentiation, whereas long-term treatment resulted in testes developing from ovarian structure. Compared with the ZZ males and ZW females, WW females did not exhibit detectable expression of AR, suggesting that the active AR gene(s) itself, or a putative gene regulating AR gene expression, is located on Z chromosomes. From the time lag of aromatase expression between ZW females and ZZ males treated with E2 and the effect of AR antagonist, it was found that in males elevated AR expression suppresses aromatase expression directly or indirectly. Consequently, endogenous androgens, accumulated by blocking estrogen biosynthesis, induced testicular differentiation. The gonadogenesis of males is dependent on sex hormone, whereas that of females has evolved to hormone-independence.  相似文献   

18.
An important feature of the pharmacological profile of aromatase inhibitors is the ability of the various inhibitors to inhibit intracellular aromatase. It is now well documented that a large proportion of breast tumors express their own aromatase. This intratumoral aromatase produces estrogen in situ and therefore may contribute significantly to the amount of estrogen to which the cell is exposed. Thus it is not only important that aromatase inhibitors potently inhibit the peripheral production of estrogen and eliminate the external supply of estrogen to the tumor cell, but that they in addition potently inhibit intratumoral aromatase and prevent the tumor cell from making its own estrogen within the cell. To study the inhibition of intracellular aromatase we have compared the aromatase-inhibiting potency of the non-steroidal aromatase inhibitors, letrozole, anastrozole and fadrozole in a variety of model cellular endocrine and tumor systems which contain aromatase. We have used hamsters ovarian tissue fragments, adipose tissue fibroblasts from normal human breast, the MCF-7Ca human breast cancer cell line transfected with the human aromatase gene and the JEG-3 human choriocarcinoma cell line. Although letrozole and anastrozole are approximately equipotent in a cell-free aromatase system (human placental microsomes), letrozole is consistently 10–30 times more potent than anastrozole in inhibiting intracellular aromatase in intact rodent cells, normal human adipose fibroblasts and human cancer cell lines. Whether these differences between letrozole and anastrozole are seen in the clinical setting will have to await the results of clinical trials which are currently in progress.  相似文献   

19.
Oogonial proliferation in fishes is an essential reproductive strategy to generate new ovarian follicles and is the basis for unlimited oogenesis. The reproductive cycle in viviparous teleosts, besides oogenesis, involves development of embryos inside the ovary, that is, intraovarian gestation. Oogonia are located in the germinal epithelium of the ovary. The germinal epithelium is the surface of ovarian lamellae and, therefore, borders the ovarian lumen. However, activity and seasonality of the germinal epithelium have not been described in any viviparous teleost species regarding oogonial proliferation and folliculogenesis. The goal of this study is to identify the histological features of oogonial proliferation and folliculogenesis during the reproductive cycle of the viviparous goodeid Ilyodon whitei. Ovaries during nongestation and early and late gestation were analyzed. Oogonial proliferation and folliculogenesis in I. whitei, where intraovarian gestation follows the maturation and fertilization of oocytes, do not correspond to the late oogenesis, as was observed in oviparous species, but correspond to late gestation. This observation offers an example of ovarian physiology correlated with viviparous reproduction and provides elements for understanding the regulation of the initiation of processes that ultimately result in the origin of the next generation. These processes include oogonia proliferation and development of the next batch of germ cells into the complex process of intraovarian gestation. J. Morphol. 275:1004–1015, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

20.
Following the implementation of the third generation aromatase inhibitors in the treatment algorithms for early breast cancer, special attention has been given to the influence of these drugs on bone health. Due to their potent estrogen suppression, the aromatase inhibitors anastrozole and letrozole, as well as the aromatase inactivator exemestane, enhance bone loss in postmenopausal women reflected in decreasing levels of bone mineral density. Moreover, all major phase III trials involving aromatase inhibitors in the adjuvant setting have reported increased fracture rates. All in all, there is no hard evidence to suggest major differences between the individual compounds concerning their side-effects on bone. The consequences of AI therapy on bone are in addition modified by a variety of factors like the BMD level prior to therapy, time since menopause, and vitamin D status. Strategies to avoid bone loss during AI therapy have shown promising results. Thus, bisphosphonates have been shown to prohibit bone loss during AI therapy if used upfront. Novel treatment strategies, like antibodies against RANKL have been developed and promising preliminary results have been published from early trials. Standardized guidelines to avoid or minimize bone loss during AI therapy have been developed, in most countries involving calcium and vitamin D supplementation, as well as BMD measurements to identify patient subgroups demanding bisphosphonate therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号