首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
GTP-binding proteins in plants: new members of an old family   总被引:17,自引:0,他引:17  
Regulatory guanine nucleotide-binding proteins (G proteins) have been studied extensively in animal and microbial organisms, and they are divided into the heterotrimeric and the small (monomeric) classes. Heterotrimeric G proteins are known to mediate signal responses in a variety of pathways in animals and simple eukaryotes, whiole small G proteins perform diverse functions including signal transduction, secretion, and regulation of cytoskeleton. In recent years, biochemical analyses have produced a large amount of information on the presence and possible functions of G proteins in plants. Further, molecular cloning has clearly demonstrated that plants have both heterotrimeric and small G proteins. Although the functions of the plant heterotrimeric G proteins are yet to be determined, expression analysis of an Arabidopsis G protein suggests that it may be involved in the regulation of cell division and differentiation. In contrast to the very few genes cloned thus far that encode heterotrimeric G proteins in plants, a large number of small G proteins have been identified by molecular cloning from various plants. In addition, several plant small G proteins have been shown to be functional homologues of their counterparts in animals and yeasts. Future studies using a number of approaches are likely to yield insights into the role plant G proteins play.  相似文献   

3.
Rheb proteins represent a novel and unique family of the Ras superfamily GTP-binding proteins that is conserved from yeast to human. Biochemical studies establish that they bind and hydrolyze GTP. Molecular modeling studies reveal a few structural differences between Rheb and Ras, which may suggest that residues involved in biochemical activities differ between the two G-proteins. The function of Rheb has been studied in a number of organisms that point to the involvement of Rheb in cell growth and cell cycle progression. In addition, studies in fungi suggest that Rheb is involved in arginine uptake. Further studies in Drosophila and mammalian cells have shown that the effects of Rheb on growth and cell cycle progression are mediated by the effect on the insulin/TOR/S6K signaling pathway. These studies have also shown that a complex consisting of the tuberous sclerosis gene products, Tsc1/Tsc2, serves as a GTPase activating protein (GAP) for Rheb, implying Rheb's role in this genetic disorder. Finally, Rheb proteins have been shown to be farnesylated and small molecule inhibitors of protein farnesyltransferase can block the ability of Rheb to activate the TOR/S6K signaling.  相似文献   

4.
RGK proteins are small Ras-related GTP-binding proteins that function as potent inhibitors of voltage-dependent calcium channels, and two members of the family, Gem and Rad, modulate Rho-dependent remodeling of the cytoskeleton. Within the Ras superfamily, RGK proteins have distinct structural and regulatory characteristics. It is an open question as to whether RGK proteins catalyze GTP hydrolysis in vivo. Binding of calmodulin and the 14-3-3 protein to RGK proteins controls downstream pathways. Here, we discuss the structural and functional properties of RGK proteins and highlight recent work by Beguin and colleagues addressing the mechanism of Gem regulation by calmodulin and 14-3-3.  相似文献   

5.
In a previous publication we identified a novel human GTP-binding protein that was related to DRG, a developmentally regulated GTP-binding protein from the central nervous system of mouse. Here we demonstrate that both the human and the mouse genome possess two closely related drg genes, termed drg1 and drg2. The two genes share 62% sequence identity at the nucleotide and 58% identity at the protein level. The corresponding proteins appear to constitute a separate family within the superfamily of the GTP-binding proteins. The DRG1 and the DRG2 mRNA are widely expressed in human and mouse tissues and show a very similar distribution pattern. The human drg1 gene is located on chromosome 22q12, the human drg2 gene on chromosome 17p12. Distantly related species including Caenorhabditis elegans, Schizosaccharomyces pombe and Saccharomyces cerevisiae also possess two drg genes. In contrast, the genomes of archaebacteria (Halobium, Methanococcus, Thermoplasma) harbor only one drg gene, while eubacteria do not seem to contain any. The high conservation of the polypeptide sequences between distantly related organisms indicates an important role for DRG1 and DRG2 in a fundamental pathway.  相似文献   

6.
7.
Kłopocka W  Redowicz MJ 《Protoplasma》2003,220(3-4):163-172
Summary.  While there is a number of studies on the effects of Rho GTPases on the actin-based cytoskeleton in higher eukaryotes, studies in protozoans are rather limited. The problem seems to be intriguing since the structure of protozoan cytoskeletons is distinct from most vertebrate cells. By blocking endogenous Rho family proteins of highly motile Amoeba proteus with C3 transferase and antibodies against human RhoA and Rac1, we tried to assess the in vivo role of these proteins in amoebae. In migrating amoebae, both proteins are concentrated in the cortical layer and seem to colocalize with filamentous actin. Endogenous Rac1, but not RhoA, is accumulated in the perinuclear cytoskeleton. Blocking Rac- or Rho-like proteins caused distinct and irreversible changes in the locomotive shape of the examined amoebae and significant inhibition of their migration. Amoebae microinjected with anti-Rac1 antibodies were contracted, shortened, and developed only few wide pseudopodia. More pronounced changes were observed in cells treated with anti-RhoA antibodies. They exhibited an atypical locomotion not leading to their effective displacement. After treatment with 50 μg of C3 transferase per ml, cells rapidly contracted and almost completely rounded up, became refractile with the granules beaten into a dense mass, detached from the surface and died. Ten times lower concentration of the enzyme caused similar changes as the inhibition of endogenous RhoA-like protein. These results indicate that Rho family-based regulation plays a key role in amoebic migration. Received May 2, 2002; accepted August 2, 2002; published online November 29, 2002  相似文献   

8.
Kank proteins: a new family of ankyrin-repeat domain-containing proteins   总被引:2,自引:0,他引:2  
The human Kank gene was found as a candidate tumor suppressor for renal cell carcinoma, and encodes an ankyrin-repeat domain-containing protein, Kank. Here, we report a new family of proteins consisting of three Kank (Kank1)-associated members, Kank2, Kank3 and Kank4, which were found by domain and phylogenetic analyses. Besides the conserved ankyrin-repeat and coiled-coil domains, there was a conserved motif at the N-terminal (KN motif) containing potential motifs for nuclear localization and export signals. Gene expression of these genes was examined by RT-PCR at the mRNA level and by Western blotting and immunostaining at the protein level. Kank family genes showed variations in the expression level among tissues and kidney cell lines. Furthermore, the results of overexpression of these genes in NIH3T3 cells suggest that all of these family proteins have an identical role in the formation of actin stress fibers.  相似文献   

9.
10.
Cell biology depends on the interactions of macromolecules, such as protein—DNA, protein—protein or protein—nucleotide interactions. GTP-binding proteins are no exception to the rule. They regulate cellular processes as diverse as protein biosynthesis and intracellular membrane trafficking. Recently, a large number of genes encoding GTP-binding proteins and the proteins that interact witht these molecular switches have been cloned and expressed. The 3D structures of some of these have also been elucidated  相似文献   

11.
Evolution of the Rab family of small GTP-binding proteins.   总被引:33,自引:0,他引:33  
Rab proteins are small GTP-binding proteins that form the largest family within the Ras superfamily. Rab proteins regulate vesicular trafficking pathways, behaving as membrane-associated molecular switches. Here, we have identified the complete Rab families in the Caenorhabditis elegans (29 members), Drosophila melanogaster (29), Homo sapiens (60) and Arabidopsis thaliana (57), and we defined criteria for annotation of this protein family in each organism. We studied sequence conservation patterns and observed that the RabF motifs and the RabSF regions previously described in mammalian Rabs are conserved across species. This is consistent with conserved recognition mechanisms by general regulators and specific effectors. We used phylogenetic analysis and other approaches to reconstruct the multiplication of the Rab family and observed that this family shows a strict phylogeny of function as opposed to a phylogeny of species. Furthermore, we observed that Rabs co-segregating in phylogenetic trees show a pattern of similar cellular localisation and/or function. Therefore, animal and fungi Rab proteins can be grouped in "Rab functional groups" according to their segregating patterns in phylogenetic trees. These functional groups reflect similarity of sequence, localisation and/or function, and may also represent shared ancestry. Rab functional groups can help the understanding of the functional evolution of the Rab family in particular and vesicular transport in general, and may be used to predict general functions for novel Rab sequences.  相似文献   

12.
13.
SMADs是新近发观的一族细胞内信号传导蛋白,包括8个成员,即SMAD1~8。SMAD1、2、3、5和8是一类,它们被TGF-β受体或BMP受体激活而磷酸化,称为受体调节SMAD,传导TGF-β或BMP的信号。SMAD6和7是另一类,它们抑制受体调节SMAD传导信号。SMAD4是第2类,它是受体调节SMAD传导信号的伴侣。受体调节SMAD传导信号必须先与SMAD4结合形成异源复合物,才能进到核中,调节转录活动。本文简要介绍了各成员的特性及作用。  相似文献   

14.
Arf proteins are important regulators of cellular traffic and the founding members of an expanding family of homologous proteins and genomic sequences. They depart from other small GTP-binding proteins by a unique structural device, which we call the 'interswitch toggle', that implements front–back communication from the N-terminus to the nucleotide binding site. Here we define the sequence and structural determinants that propagate information across the protein and identify them in all of the Arf family proteins other than Arl6 and Arl4/Arl7. The positions of these determinants lead us to propose that Arf family members with the interswitch toggle device are activated by a bipartite mechanism acting on opposite sides of the protein. The presence of this communication device might provide a more useful basis for unifying Arf homologs as a family than do the cellular functions of these proteins, which are mostly unrelated. We review available genomic sequences and functional data from this perspective, and identify a novel subfamily that we call Arl8.  相似文献   

15.
The Rap family of small GTP-binding proteins is composed by four different members: Rap1A, Rap1B, Rap2A and Rap2B. In this work we report the identification and characterization of a fifth member of this family of small GTPases. This new protein is highly homologous to Rap2A and Rap2B, binds labeled GTP on nitrocellulose, and is recognized by a specific anti-Rap2 antibody, but not by an anti-Rap1 antibody. The protein has thus been named Rap2C. Binding of GTP to recombinant purified Rap2C was Mg(2+)-dependent. However, accurate comparison of the kinetics of nucleotide binding and release revealed that Rap2C bound GTP less efficiently and possessed slower rate of GDP release compared to the highly homologous Rap2B. Moreover, in the presence of Mg(2+), the relative affinity of Rap2C for GTP was only about twofold higher than that for GDP, while, under the same conditions, Rap2B was able to bind GTP with about sevenfold higher affinity than GDP. When expressed in eukaryotic cells, Rap2C localized at the plasma membrane, as dictated by the presence of a CAAX motif at the C-terminus. We found that Rap2C represented the predominant Rap2 protein expressed in circulating mononuclear leukocytes, but was not present in platelets. Importantly, Rap2C was found to be expressed in human megakaryocytes, suggesting that the protein may be down-regulated during platelets generation. This work demonstrates that Rap2C is a new member of the Rap2 subfamily of proteins, able to bind guanine nucleotides with peculiar properties, and differently expressed by various hematopoietic subsets. This new protein may therefore contribute to the still poorly clarified cellular events regulated by this subfamily of GTP-binding proteins.  相似文献   

16.
A new member, hARF4, of the ADP-ribosylation factor (ARF) family, a subset of the superfamily of regulatory GTP-binding proteins, has been cloned from a cDNA expression library. Two other human ARF cDNA sequences, designated human ARF1 and ARF3, have been reported previously and are 96% identical in amino acid sequence. A human ARF1 cDNA, significantly longer than previously described clones, was obtained, by cross-species hybridization using a bovine ARF1 cDNA probe. Bovine ARF1p and human ARF1p are 100% identical while each is only 80% identical to hARF4p. Thus, hARF4p is the most divergent of the mammalian ARF proteins identified. Northern blot analysis revealed the expression of at least three different ARF messages in human placenta and adrenal carcinoma cells. Both hARF1 and hARF4 encode GTP-binding proteins with predicted molecular masses of 20,000-21,000 Da. Biochemical analysis of the purified recombinant proteins revealed a high degree of conservation of nucleotide binding properties and in vitro ARF activities. ARF is an essential gene in the yeast, Saccharomyces cerevisiae, and is encoded by two genes. Expression of either hARF1p or hARF4p in yeast was found to rescue the lethal double mutant, arf1-arf2-, thus demonstrating the functional conservation of ARF functions between yeast and man. The combination of in vivo and in vitro assays for ARF function provides a specific and unambiguous means of determining bona fide ARF proteins from divergent species from among the rapidly increasing number of structurally related, small molecular weight GTP-binding proteins.  相似文献   

17.
Mitochondrial morphology depends on balanced fusion and fission events. A central component of the mitochondrial fusion apparatus is the conserved GTPase Fzo1 in the outer membrane of mitochondria. Mdm30, an F-box protein required for mitochondrial fusion in vegetatively growing cells, affects the cellular Fzo1 concentration in an unknown manner. We demonstrate that mitochondrial fusion requires a tight control of Fzo1 levels, which is ensured by Fzo1 turnover. Mdm30 binds to Fzo1 and, dependent on its F-box, mediates proteolysis of Fzo1. Unexpectedly, degradation occurs along a novel proteolytic pathway not involving ubiquitylation, Skp1-Cdc53-F-box (SCF) E3 ubiquitin ligase complexes, or 26S proteasomes, indicating a novel function of an F-box protein. This contrasts to the ubiquitin- and proteasome-dependent turnover of Fzo1 in alpha-factor-arrested yeast cells. Our results therefore reveal not only a critical role of Fzo1 degradation for mitochondrial fusion in vegetatively growing cells but also the existence of two distinct proteolytic pathways for the turnover of mitochondrial outer membrane proteins.  相似文献   

18.
Small GTP-binding proteins   总被引:10,自引:0,他引:10  
  相似文献   

19.
RGK proteins constitute a novel subfamily of small Ras-related proteins that function as potent inhibitors of voltage-dependent (VDCC) Ca(2+) channels and regulators of actin cytoskeletal dynamics. Within the larger Ras superfamily, RGK proteins have distinct regulatory and structural characteristics, including nonconservative amino acid substitutions within regions known to participate in nucleotide binding and hydrolysis and a C-terminal extension that contains conserved regulatory sites which control both subcellular localization and function. RGK GTPases interact with the VDCC beta-subunit (Ca(V)beta) and inhibit Rho/Rho kinase signaling to regulate VDCC activity and the cytoskeleton respectively. Binding of both calmodulin and 14-3-3 to RGK proteins, and regulation by phosphorylation controls cellular trafficking and the downstream signaling of RGK proteins, suggesting that a complex interplay between interacting protein factors and trafficking contribute to their regulation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号