首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Limited proteolysis of proteins transiently expressed on the surface of the opportunistic pathogen Toxoplasma gondii accompanies cell invasion and facilitates parasite migration across cell barriers during infection. However, little is known about what factors influence this specialized proteolysis or how these proteolytic events are regulated. Here we show that genetic ablation of the micronemal protein MIC5 enhances the normal proteolytic processing of several micronemal proteins secreted by Toxoplasma tachyzoites. Restoring MIC5 expression by genetic complementation reversed this phenotype, as did treatment with the protease inhibitor ALLN, which was previously shown to block the activity of a hypothetical parasite surface protease called MPP2. We show that, despite its lack of obvious membrane association signals, MIC5 occupies the parasite surface during invasion in the vicinity of the proteins affected by enhanced processing. Proteolysis of other secretory proteins, including GRA1, was also enhanced in MIC5 knockout parasites, indicating that the phenotype is not strictly limited to proteins derived from micronemes. Together, our findings suggest that MIC5 either directly regulates MPP2 activity or it influences MPP2's ability to access substrate cleavage sites on the parasite surface.  相似文献   

2.
MIC2 is an adhesive protein that participates in host cell invasion by the obligate intracellular parasite Toxoplasma gondii. Earlier studies established that MIC2 is secreted into the culture medium by extracellular parasites and that release is coincident with proteolytic modification. Since little is known about proteolytic processing of proteins secreted by T. gondii, we undertook this study to investigate the proteolytic events that accompany secretion of MIC2. We demonstrate that the C-terminal domain of MIC2 is removed by a protease, termed MPP1, when MIC2 is released into the culture supernatant. Additionally, prior to release, a second protease, termed MPP2, trims the N terminus of MIC2, resulting in the release of heterogeneously sized species of MIC2. Although MPP1 activity was unaffected by any of the protease inhibitors tested, MPP2 activity was blocked by a subset of serine and cysteine protease inhibitors. These results establish that MIC2 is proteolytically modified at multiple sites by two distinct enzymes that probably operate on the parasite surface.  相似文献   

3.
Host cell invasion by Toxoplasma gondii is critically dependent upon adhesive proteins secreted from the micronemes. Proteolytic trimming of microneme contents occurs rapidly after their secretion onto the parasite surface and is proposed to regulate adhesive complex activation to enhance binding to host cell receptors. However, the proteases responsible and their exact function are still unknown. In this report, we show that T. gondii tachyzoites lacking the microneme subtilisin protease TgSUB1 have a profound defect in surface processing of secreted microneme proteins. Notably parasites lack protease activity responsible for proteolytic trimming of MIC2, MIC4 and M2AP after release onto the parasite surface. Although complementation with full‐length TgSUB1 restores processing, complementation of Δsub1 parasites with TgSUB1 lacking the GPI anchor (Δsub1::ΔGPISUB1) only partially restores microneme protein processing. Loss of TgSUB1 decreases cell attachment and in vitro gliding efficiency leading to lower initial rates of invasion. Δsub1 and Δsub1::ΔGPISUB1 parasites are also less virulent in mice. Thus TgSUB1 is involved in micronemal protein processing and regulation of adhesive properties of macromolecular adhesive complexes involved in host cell invasion.  相似文献   

4.
Vertebrate cells are highly susceptible to infection by obligate intracellular parasites such as Toxoplasma gondii, yet the mechanism by which these microbes breach the confines of their target cell is poorly understood. While it is thought that Toxoplasma actively invades by secreting adhesive proteins from internal organelles called micronemes, no genetic evidence is available to support this contention. Here, we report successful disruption of M2AP, a microneme protein tightly associated with an adhesive protein called MIC2. M2AP knockout parasites were >80% impaired in host cell entry. This invasion defect was likely due to defective expression of MIC2, which partially accumulated in the parasite endoplasmic reticulum and Golgi. M2AP knockout parasites were also unable to rapidly secrete MIC2, an event that normally accompanies parasite attachment to a target cell. These findings indicate a critical role for the MIC2-M2AP protein complex in parasite invasion.  相似文献   

5.
Host cell entry by the Apicomplexa is associated with the sequential secretion of invasion factors from specialized apical organelles. Secretion of micronemal proteins (MICs) complexes by Toxoplasma gondii facilitates parasite gliding motility, host cell attachment and entry, as well as egress from infected cells. The shedding of MICs during these steps is mediated by micronemal protein proteases MPP1, MPP2 and MPP3. The constitutive activity of MPP1 leads to the cleavage of transmembrane MICs and is linked to the surface rhomboid protease 4 (ROM4) and possibly to rhomboid protease 5 (ROM5). To determine their importance and respective contribution to MPP1 activity, in this study ROM4 and ROM5 genes were abrogated using Cre‐recombinase and CRISPR‐Cas9 nuclease, respectively, and shown to be dispensable for parasite survival. Parasites lacking ROM4 predominantly engage in twirling motility and exhibit enhanced attachment and impaired invasion, whereas intracellular growth and egress is not affected. The substrates MIC2 and MIC6 are not cleaved in rom4‐ko parasites, in contrast, intramembrane cleavage of AMA1 is reduced but not completely abolished. Shedding of MICs and invasion are not altered in the absence of ROM5; however, this protease responsible for the residual cleavage of AMA1 is able to cleave other AMA family members and exhibits a detectable contribution to invasion in the absence of ROM4.  相似文献   

6.
Host cell invasion by apicomplexan parasites is accompanied by the rapid, polarized secretion of parasite proteins that are involved in cell attachment. The Toxoplasma gondii micronemal protein MIC2 contains several extracellular adhesive domains, a transmembrane domain, and a short cytoplasmic tail. Following apical secretion, MIC2 is transiently present on the parasite surface before being translocated backward and released by proteolytic cleavage. Mutations in the extracellular domain of MIC2, directly upstream of the transmembrane domain, prevented processing and release of the soluble protein into the supernatant. A conserved basic residue in MIC2 was essential for cleavage, and basic residues are similarly positioned in other microneme proteins. Following the induction of secretion, MIC2 processing mutants were stably expressed on the surface of the parasite. Surface MIC2-expressing mutants showed increased adhesion to host cells, yet were impaired in their capacity to invade. These data demonstrate that proteolysis is essential for releasing cell surface adhesins prior to cell entry by apicomplexan parasites.  相似文献   

7.
Maturation of cytochrome c peroxidase (Ccp1) in mitochondria occurs by the subsequent action of two conserved proteases in the inner membrane: the m-AAA protease, an ATP-dependent protease degrading misfolded proteins and mediating protein processing, and the rhomboid protease Pcp1, an intramembrane cleaving peptidase. Neither the determinants preventing complete proteolysis of certain substrates by the m-AAA protease, nor the obligatory requirement of the m-AAA protease for rhomboid cleavage is currently understood. Here, we describe an intimate and unexpected functional interplay of both proteases. The m-AAA protease mediates the ATP-dependent membrane dislocation of Ccp1 independent of its proteolytic activity. It thereby ensures the correct positioning of Ccp1 within the membrane bilayer allowing intramembrane cleavage by rhomboid. Decreasing the hydrophobicity of the Ccp1 transmembrane segment facilitates its dislocation from the membrane and renders rhomboid cleavage m-AAA protease-independent. These findings reveal for the first time a non-proteolytic function of the m-AAA protease during mitochondrial biogenesis and rationalise the requirement of a preceding step for intramembrane cleavage by rhomboid.  相似文献   

8.
Cell invasion by apicomplexan pathogens such as the malaria parasite and Toxoplasma is accompanied by extensive proteolysis of zoite surface proteins (ZSPs) required for attachment and penetration. Although there is still little known about the proteases involved, a conceptual framework is emerging for the roles of proteolysis in cell invasion. Primary processing of ZSPs, which includes the trimming of terminal peptides or segmentation into multiple fragments, is proposed to activate these adhesive ligands for tight binding to host receptors. Secondary processing, which occurs during penetration, results in the shedding of ZSPs by one of two mechanistically distinct ways, shaving or capping. Resident surface proteins are typically shaved from the surface whereas adhesive ligands mobilized from intracellular secretory vesicles are capped to the posterior end of the parasite before being shed during the final steps of penetration. Intriguingly, recent studies have revealed that ZSPs can be released either by being cleaved adjacent to the membrane anchor or actually within the membrane itself. Mounting evidence suggests that intramembrane cleavage is catalysed by one or more integral membrane serine proteases of the Rhomboid family and we propose that several malaria adhesive ligands may be potential substrates for these enzymes. We also discuss the evidence that the key reason for ZSP shedding during invasion is to break the connection between parasite surface ligands and host receptors. The sequential proteolytic events associated with invasion by pathogenic protozoa may represent vulnerable pathways for the future development of synergistic anti-protozoal therapies.  相似文献   

9.
Apicomplexan pathogens are obligate intracellular parasites. To enter cells, they must bind with high affinity to host cell receptors and then uncouple these interactions to complete invasion. Merozoites of Plasmodium falciparum, the parasite responsible for the most dangerous form of malaria, invade erythrocytes using a family of adhesins called Duffy binding ligand-erythrocyte binding proteins (DBL-EBPs). The best-characterized P. falciparum DBL-EBP is erythrocyte binding antigen 175 (EBA-175), which binds erythrocyte surface glycophorin A. We report that EBA-175 is shed from the merozoite at around the point of invasion. Shedding occurs by proteolytic cleavage within the transmembrane domain (TMD) at a site that is conserved across the DBL-EBP family. We show that EBA-175 is cleaved by PfROM4, a rhomboid protease that localizes to the merozoite plasma membrane, but not by other rhomboids tested. Mutations within the EBA-175 TMD that abolish cleavage by PfROM4 prevent parasite growth. Our results identify a crucial role for intramembrane proteolysis in the life cycle of this pathogen.  相似文献   

10.
Invasion of red blood cells by the malaria merozoite is an essential step in the life cycle of this obligate intracellular pathogen. The molecular details of invasion are only recently becoming understood, largely through studies in related apicomplexan parasites such as Toxoplasma. Protease activity is required for successful invasion to disengage interactions between parasite adhesins and host cell receptors. Shedding of at least two essential surface proteins from the merozoite is thought to occur continuously during invasion as the parasite moves into the nascent parasitophorous vacuole. This shedding is performed by way of juxtamembrane cleavage and is mediated by a sheddase, which probably belongs to the subtilisin-like superfamily. Recent revelations have shown that transmembrane adhesins that are secreted onto the Toxoplasma tachyzoite surface and capped to its posterior pole are shed by way of cleavage within their transmembrane domains. A family of intramembrane serine proteases called rhomboids have now been identified within Apicomplexa, and one Toxoplasma rhomboid has been localized to the posterior end of the parasite. This supports their role in capping proteolysis. Proteases involved in invasion constitute potential targets for the development of new protease inhibitor-based drugs.  相似文献   

11.
BACKGROUND INFORMATION: Accurate sorting of proteins to the three types of secretory granules in Toxoplasma gondii is crucial for successful cell invasion by this obligate intracellular parasite. As in other eukaryotic systems, propeptide sequences are a common yet poorly understood feature of proteins destined for regulated secretion, which for Toxoplasma occurs through two distinct invasion organelles, rhoptries and micronemes. Microneme discharge during parasite apical attachment plays a pivotal role in cell invasion by delivering adhesive proteins for host receptor engagement. RESULTS: We show here that the small micronemal proprotein MIC5 (microneme protein-5) undergoes proteolytic maturation at a site beyond the Golgi, and only the processed form of MIC5 is secreted via the micronemes. Proper cleavage of the MIC5 propeptide relies on an arginine residue in the P1' position, although P1' mutants are still cleaved to a lesser extent at an alternative site downstream of the primary site. Nonetheless, this aberrantly cleaved species still correctly traffics to the micronemes, indicating that correct cleavage is not necessary for micronemal targeting. In contrast, a deletion mutant lacking the propeptide was retained within the secretory system, principally in the ER (endoplasmic reticulum). The MIC5 propeptide also supported correct trafficking when exchanged for the M2AP propeptide, which was recently shown to also be required for micronemal trafficking of the TgMIC2 (T. gondii MIC2)-M2AP complex [Harper, Huynh, Coppens, Parussini, Moreno and Carruthers (2006) Mol. Biol. Cell 17, 4551-4563]. CONCLUSION: Our results illuminate common and unique features of micronemal propeptides in their role as trafficking facilitators.  相似文献   

12.
Rhomboids form a family of polytopic intramembrane serine proteases. In Toxoplasma gondii, an essential activity called microneme protein protease 1 (MPP1) cleaves secreted adhesive proteins within their transmembrane domains, at a site conserved in similar proteins of other Apicomplexa. Current evidence suggests that MPP1 is ubiquitous in the phylum and is encoded by a rhomboid gene. In this article, we present the current repertoire of rhomboid-like proteins in Apicomplexa using a nomenclature based on phylogenetic analyses.  相似文献   

13.
Apicomplexan parasites actively secrete proteins at their apical pole as part of the host cell invasion process. The adhesive micronemal proteins are involved in the recognition of host cell receptors. Redistribution of these receptor-ligand complexes toward the posterior pole of the parasites is powered by the actomyosin system of the parasite and is presumed to drive parasite gliding motility and host cell penetration. The microneme protein protease termed MPP1 is responsible for the removal of the C-terminal domain of TgMIC2 and for shedding of the protein during invasion. In this study, we used site-specific mutagenesis to determine the amino acids essential for this cleavage to occur. Mapping of the cleavage site on TgMIC6 established that this processing occurs within the membrane-spanning domain, at a site that is conserved throughout all apicomplexan microneme proteins. The fusion of the surface antigen SAG1 with these transmembrane domains excluded any significant role for the ectodomain in the cleavage site recognition and provided evidence that MPP1 is constitutively active at the surface of the parasites, ready to sustain invasion at any time.  相似文献   

14.
Regulated intramembrane proteolysis is a widely accepted concept describing the processing of various transmembrane proteins via ectodomain shedding followed by an intramembrane cleavage. The resulting cleavage products can be involved in reverse signaling. Presenilins, which constitute the active center of the γ-secretase complex, signal peptide peptidase (SPP), and its homologues, the SPP-like (SPPL) proteases are members of the family of intramembrane-cleaving aspartyl proteases of the GXGD-type. We recently demonstrated that Bri2 (itm2b) is a substrate for regulated intramembrane proteolysis by SPPL2a and SPPL2b. Intramembrane cleavage of Bri2 is triggered by an initial shedding event catalyzed by A Disintegrin and Metalloprotease 10 (ADAM10). Additionally primary sequence determinants within the intracellular domain, the transmembrane domain and the luminal juxtamembrane domain are required for efficient cleavage of Bri2 by SPPL2b. Using mutagenesis and circular dichroism spectroscopy we now demonstrate that a high α-helical content of the Bri2 transmembrane domain (TMD) reduces cleavage efficiency of Bri2 by SPPL2b, while the presence of a GXXXG dimerization motif influences the intramembrane cleavage only to a minor extent. Surprisingly, only one of the four conserved intramembrane glycine residues significantly affects the secondary structure of the Bri2 TMD and thereby its intramembrane cleavage. Other glycine residues do not influence the α-helical content of the transmembrane domain nor its intramembrane processing.  相似文献   

15.
Signal peptide peptidase (SPP), its homologs, the SPP-like proteases SPPL2a/b/c and SPPL3, as well as presenilin, the catalytic subunit of the γ-secretase complex, are intramembrane-cleaving aspartyl proteases of the GxGD type. In this study, we identified the 18-kDa leader peptide (LP18) of the foamy virus envelope protein (FVenv) as a new substrate for intramembrane proteolysis by human SPPL3 and SPPL2a/b. In contrast to SPPL2a/b and γ-secretase, which require substrates with an ectodomain shorter than 60 amino acids for efficient intramembrane proteolysis, SPPL3 cleaves mutant FVenv lacking the proprotein convertase cleavage site necessary for the prior shedding. Moreover, the cleavage product of FVenv generated by SPPL3 serves as a new substrate for consecutive intramembrane cleavage by SPPL2a/b. Thus, human SPPL3 is the first GxGD-type aspartyl protease shown to be capable of acting like a sheddase, similar to members of the rhomboid family, which belong to the class of intramembrane-cleaving serine proteases.  相似文献   

16.
Like its apicomplexan kin, the obligate intracellular protozoan Toxoplasma gondii actively invades mammalian cells and uses a unique form of gliding motility. The recent identification of several transmembrane adhesive complexes, potentially capable of gripping external receptors and the sub-membrane actinomyosin motor, suggests that the parasite has multiple options for host-cell recognition and invasion. To test whether the transmembrane adhesin MIC2, together with its partner protein M2AP, participates in a major invasion pathway, we utilized a conditional expression system to introduce an anhydrotetracycline-responsive mic2 construct, allowing us to then knockout the endogenous mic2 gene. Conditional suppression of MIC2 provided the first opportunity to directly determine the role of this protein in infection. Reduced MIC2 expression resulted in mistrafficking of M2AP, markedly defective host-cell attachment and invasion, the loss of helical gliding motility, and the inability to support lethal infection in a murine model of acute toxoplasmosis. Survival of mice infected with MIC2-deficient parasites correlated with lower parasite burden in infected tissues, an attenuated inflammatory immune response, and induction of long-term protective immunity. Our findings demonstrate that the MIC2 protein complex is a major virulence determinant for Toxoplasma infection and that MIC2-deficient parasites constitute an effective live-attenuated vaccine for experimental toxoplasmosis.  相似文献   

17.
Background information. Accurate sorting of proteins to the three types of secretory granules in Toxoplasma gondii is crucial for successful cell invasion by this obligate intracellular parasite. As in other eukaryotic systems, propeptide sequences are a common yet poorly understood feature of proteins destined for regulated secretion, which for Toxoplasma occurs through two distinct invasion organelles, rhoptries and micronemes. Microneme discharge during parasite apical attachment plays a pivotal role in cell invasion by delivering adhesive proteins for host receptor engagement. Results. We show here that the small micronemal proprotein MIC5 (microneme protein‐5) undergoes proteolytic maturation at a site beyond the Golgi, and only the processed form of MIC5 is secreted via the micronemes. Proper cleavage of the MIC5 propeptide relies on an arginine residue in the P1′ position, although P1′ mutants are still cleaved to a lesser extent at an alternative site downstream of the primary site. Nonetheless, this aberrantly cleaved species still correctly traffics to the micronemes, indicating that correct cleavage is not necessary for micronemal targeting. In contrast, a deletion mutant lacking the propeptide was retained within the secretory system, principally in the ER (endoplasmic reticulum). The MIC5 propeptide also supported correct trafficking when exchanged for the M2AP propeptide, which was recently shown to also be required for micronemal trafficking of the TgMIC2 (T. gondii MIC2)–M2AP complex [Harper, Huynh, Coppens, Parussini, Moreno and Carruthers ( 2006 ) Mol. Biol. Cell 17 , 4551–4563]. Conclusion. Our results illuminate common and unique features of micronemal propeptides in their role as trafficking facilitators.  相似文献   

18.
Toxoplasma gondii parasites gain entry into host cells through a process that depends on apically stored adhesins that are strategically released during invasion. One of these adhesins, microneme protein 2 (MIC2), is a type one transmembrane protein that binds to an accessory protein known as MIC2-associated protein (M2AP). Together the MIC2 x M2AP complex participates in host cell attachment and invasion. The short cytoplasmic C-domain of MIC2 is implicated in protein trafficking and mediating an association with the parasite cytoskeleton. To define the role of the cytoplasmic domain of MIC2, proteins lacking the C-domain were expressed in transgenic T. gondii. Surprisingly, protein trafficking and secretion were not affected. We hypothesized that mutant mic2 lacking the C-domain might be escorted to the micronemes by association with endogenous wild-type MIC2 possessing functional transmembrane and cytoplasmic domains. To investigate this interaction, native blue gels and gel filtration were employed to identify a stable macromolecular MIC2 x M2AP complex of approximately 450 kDa. Our findings reveal that MIC2 and M2AP proteins form stable hexamers consisting of three alphabeta dimers. Resolution of this complex has implications for how MIC2 x M2AP associates with host cell receptors and the cytoskeleton to facilitate parasite motility and invasion.  相似文献   

19.
Presenilin, the catalytic component of the gamma-secretase complex, type IV prepilin peptidases, and signal peptide peptidase (SPP) are the founding members of the family of intramembrane-cleaving GXGD aspartyl proteases. SPP-like (SPPL) proteases, such as SPPL2a, SPPL2b, SPPL2c, and SPPL3, also belong to the GXGD family. In contrast to gamma-secretase, for which numerous substrates have been identified, very few in vivo substrates are known for SPP and SPPLs. Here we demonstrate that Bri2 (Itm2b), a type II-oriented transmembrane protein associated with familial British and Danish dementia, undergoes regulated intramembrane proteolysis. In addition to the previously described ectodomain processing by furin and related proteases, we now describe that the Bri2 protein, similar to gamma-secretase substrates, undergoes an additional cleavage by ADAM10 in its ectodomain. This cleavage releases a soluble variant of Bri2, the BRICHOS domain, which is secreted into the extracellular space. Upon this shedding event, a membrane-bound Bri2 N-terminal fragment remains, which undergoes intramembrane proteolysis to produce an intracellular domain as well as a secreted low molecular weight C-terminal peptide. By expressing all known SPP/SPPL family members as well as their loss of function variants, we demonstrate that selectively SPPL2a and SPPL2b mediate the intramembrane cleavage, whereas neither SPP nor SPPL3 is capable of processing the Bri2 N-terminal fragment.  相似文献   

20.
The malarial life cycle involves repeated rounds of intraerythrocytic replication interspersed by host cell rupture which releases merozoites that rapidly invade fresh erythrocytes. Apical membrane antigen-1 (AMA1) is a merozoite protein that plays a critical role in invasion. Antibodies against AMA1 prevent invasion and can protect against malaria in vivo, so AMA1 is of interest as a malaria vaccine candidate. AMA1 is efficiently shed from the invading parasite surface, predominantly through juxtamembrane cleavage by a membrane-bound protease called SUB2, but also by limited intramembrane cleavage. We have investigated the structural requirements for shedding of Plasmodium falciparum AMA1 (PfAMA1), and the consequences of its inhibition. Mutagenesis of the intramembrane cleavage site by targeted homologous recombination abolished intramembrane cleavage with no effect on parasite viability in vitro. Examination of PfSUB2-mediated shedding of episomally-expressed PfAMA1 revealed that the position of cleavage is determined primarily by its distance from the parasite membrane. Certain mutations at the PfSUB2 cleavage site block shedding, and parasites expressing these non-cleavable forms of PfAMA1 on a background of expression of the wild type gene invade and replicate normally in vitro. The non-cleavable PfAMA1 is also functional in invasion. However - in contrast to the intramembrane cleavage site - mutations that block PfSUB2-mediated shedding could not be stably introduced into the genomic pfama1 locus, indicating that some shedding of PfAMA1 by PfSUB2 is essential. Remarkably, parasites expressing shedding-resistant forms of PfAMA1 exhibit enhanced sensitivity to antibody-mediated inhibition of invasion. Drugs that inhibit PfSUB2 activity should block parasite replication and may also enhance the efficacy of vaccines based on AMA1 and other merozoite surface proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号