首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A Tulp  M Barnhoorn  E Bause    H Ploegh 《The EMBO journal》1986,5(8):1783-1790
Deoxymannojirimycin (dMM) or swainsonine (SW), which block conversion of high-mannose to complex-type N-linked glycans, strongly inhibited the production of immunoglobulin (Ig) when added to cultures of human lymphocytes together with the polyclonal B cell activators pokeweed mitogen (PWM) and Staphylococcus aureus (SAC). To obtain the inhibitory effect, inhibitor had to be present during the first 36 h of culture. Addition at later timepoints was less effective and showed that neither inhibitor interfered with rate of production or secretion of Ig as such. Viability and proliferation of the lymphocytes, as defined by cell number and rate of DNA synthesis, were not influenced by the presence of dMM or SW, and no changes in the relative number of helper (T4+) or suppressor (T8+) cells were observed. Thus, for normal differentiation of human B lymphocytes into Ig secreting (plasma) cells in response to PWM and SAC, conversion of high-mannose to complex N-linked glycans is essential.  相似文献   

2.
The suppressive effect of wheat germ agglutinin (WGA) on lectin-stimulated blastogenesis and immunoglobulin production was studied. Addition of WGA at 10 micrograms/ml inhibited phytohemagglutinin (PHA)-, concanavalin-A (Con-A)-, and pokeweed mitogen (PWM)-induced mitogenic responses by 70-80%. PWM-driven immunoglobulin synthesis was suppressed by 45% with WGA. The inhibitory effects of WGA were not due to cell death or to interference with lectin binding at the cell surface. Inhibition was dependent on the presence of WGA in the cell culture during the first 24 hr of mitogen exposure and was observed in cultures of both monocyte-depleted peripheral blood mononuclear cells as well as T-cell-enriched populations. WGA-induced inhibition of blastogenesis was blocked by the addition of N-acetylglucosamine (GluNAc) which prevents WGA binding to the cell surface. WGA was found to mimic the suppressive effect of a soluble immune suppressor supernatant (SISS) derived from Con-A-activated mononuclear cell cultures. PHA responses were inhibited by 80 and 95% with SISS and WGA, respectively. The inhibition by both WGA and SISS was totally reversed with addition of GluNAc. Furthermore, WGA and SISS demonstrated competition for the same cell surface receptor site. WGA may therefore be useful as an in vitro model of a saccharide-specific, biologically relevant, soluble mediator for the investigation of mechanisms of immunologic suppression.  相似文献   

3.
The intercellular influences regulating immunoglobulin (Ig) synthesis by normal human peripheral blood leukocytes (PBL) were investigated in cells stimulated by pokeweed mitogen (PWM). This system was shown to be totally T lymphocyte dependent as purified B lymphocytes (less than or equal to 1% T lymphocytes) failed to make significant amounts of Ig. No evidence was obtained for an Ig class switch as all classes of Ig (IgM, IgG, IgA) were shown to be produced in increasing amounts over a 6-day time period. T lymphocytes demonstrated maximum helper effect when mixed with equal numbers of B cells. This helper effect was mediated through the dual mechanisms of increasing the number of B lymphocytes containing cytoplasmic Ig and by increasing the maturity of these B lymphocytes as demonstrated by an increasing Ig production per B lymphocyte. When present in higher numbers, T lymphocytes were also capable of suppressing Ig production. This T-mediated suppression was first evident as a decrease in the Ig produced per B lymphocyte (decreased maturity). With maximum T suppression Ig-containing B lymphocyte numbers were also diminished. T lymphocyte help was relatively independent of macrophages (phagocytic cells) and did not require DNA synthesis for expression. Both T help and suppression were shown to cross allogeneic barriers. Immature T lymphocytes (thymocytes) were incapable of mediating either activity. Normal human PBL contain T lymphocytes campable of mediating both T help and suppression and the Ig produced by PBL was shown to be the balance of these activities. This balance probably represent the participation of distinct T lymphocyte subpopulations analogous to the T helper (Ly 1+) and T suppressor (Ly 2+, 3+) populations in the mouse.  相似文献   

4.
Multiple signals are involved in the regulation of Ig production by human B lymphocytes. Leukotrienes, especially LTB4, have been shown to inhibit Ig production by increasing the number and function of suppressor lymphocytes. Production of leukotrienes has been demonstrated by mast cells, basophils, eosinophils, polymorphonuclear leukocytes, monocytes, and macrophages. In this paper we demonstrate that a human T-T hybridoma grown at 5 x 10(5) cells/ml constitutively produces 5 ng/ml of LTC4. Furthermore, we demonstrate that either the supernatant from this hybridoma containing 0.5 to 10 ng/ml LTC4 or purified LTC4 in the range of 0.5 to 5 ng/ml can suppress 50 to 70% of Ig production by unfractionated human mononuclear cells, by normal human cells stimulated with Staphylococcus aureus Cowan I and B cell differentiation factors, and by the EBV-transformed B cell line SKW.6 in the presence of B cell differentiation factors. Thus, LTC4 can have direct effects on B cells and may have a role in normal B cell regulation.  相似文献   

5.
The effects of glycyrrhizin, a component of licorice (Glycyrrhiza glabra) roots, on the production of interferon-gamma in human peripheral lymphocyte-macrophage cultures by concanavalin A (Con A) was examined. Interferon-gamma production in normal lymphocyte-macrophage cultures treated with 10 to 100 micrograms/ml of glycyrrhizin at 37 degrees C for 12 hr or longer, and then treated with 10 micrograms/ml of Con A, was enhanced four to eight times compared to control cell cultures. Lymphocyte-macrophage cultures treated with 10 to 100 micrograms/ml of glycyrrhizin alone did not produce interferon. No significant difference in the adsorption of [3H]Con A to glycyrrhizin-treated and control lymphocyte-macrophage cultures was found, but RNA and protein synthesis of the treated lymphocytes was increased compared to control cells; DNA synthesis, however, was reduced. Collaboration between enriched T-lymphocytes and macrophages, both treated with glycyrrhizin, was needed for the enhancement of interferon-gamma production. A smaller increase in interferon production was also observed in the glycyrrhizin-treated peripheral lymphocyte-macrophage cultures derived from an asymptomatic carrier of hepatitis B virus, in response to Con A and surface antigen of hepatitis B virus.  相似文献   

6.
The effect of plant lectins on amino acid uptake and DNA synthesis in cultured human skin fibroblasts stimulated by various peptide mitogens was studied. Wheat germ agglutinin (WGA), at a concentration of 5 micrograms/ml, which by itself had little effect on 3H-aminoisobutyric acid (AIB) uptake, markedly inhibited stimulation of 3H-AIB uptake by somatomedin-C, insulin, epidermal growth factor (EGF) and platelet-derived growth factor. This inhibition could not be overcome by increasing the concentration of peptide added. Neither WGA nor concanavalin A (Con A) significantly affected basal 3H-thymidine incorporation. However both lectins, at concentrations of 5-20 micrograms/ml, decreased EGF- and insulin-stimulated DNA synthesis while succinyl Con A, a divalent lectin derivative, did not. The inhibitory effects of lectins on mitogenic stimulation were reversed by alpha-methyl mannose (Con A) or N-acetylglucosamine (WGA), and were not due to a reduction in the binding of growth factors to their receptors. It is concluded that certain lectins noncompetitively inhibit the response of human fibroblasts to multiple peptide mitogens at the post-receptor level, possibly by interfering with lateral mobility and aggregation of mitogen-receptor complexes.  相似文献   

7.
Summary Extensive screening of the mitogens lipopolysaccharide (LPS), pokeweed mitogen (PWM), andStaphylococcus aureus Cowan I (SAC I), alone and in combination and with and without interleukin (IL) was performed forin vitro activation of regional lymph node lymphocytes from lung cancer patients for the production of human IgG, IgM, and IgA. As assessed by electrofusion of the lymphocytes following their exposure to these agents with mouse myeloma cells and incubation of the fused hybridoma, a remarkable stimulatory effect was shown by LPS and particularly by LPS plus IL-4, which was substantially greater than that of either SAC I or PWM with or without various IL. Optimization studies indicated that the addition of PWM to LPS and IL-4 in the culture medium further stimulated the human antibody (Ab) production, and that the optimal formulation for stimulations of human IgG production was a culture medium containing 20 μg/ml of LPS, 1/500 of PWM, and 100 u/ml of IL-4.  相似文献   

8.
We have examined the functional and metabolic properties of immunoglobulin (Ig)-secreting cells in adult (rib) bone marrow, the tissue which provides the major proportion of serum Igs. In the absence of polyclonal activators, high rate Ig production (1-2 micrograms/day/10(6) marrow mononuclear cells) was sustained from the beginning of culture throughout 2 weeks and then declined. Ten percent of the Ig secreted was of the IgM isotype and IgG/A made up the remainder at equal proportions. Infection of marrow cells with Epstein-Barr virus (EBV) induced the production of large amounts of IgM, but virtually all IgG/A-committed cells were refractory to stimulation with EBV. Both EBV-induced and the "spontaneous" Ig production was inhibited by cycloheximide, but only EBV-induced IgM production was blocked by hydroxyurea and gamma-irradiation. The polyclonal activators PHA and PWM induce suppressor-T-cell activity in marrow cultures. This suppressor function involves nonproliferating cells which acquire suppressive activity 3-4 days after mitogenic activation. Prednisolone and cyclosporine A modulate Ig production in cultures of peripheral lymphocytes but had no effect on Ig secretion in marrow cell cultures. This observation was reminiscent of the absent or at best marginal short-term effects on in vivo serum Ig levels which is typical for these drugs. Our observations suggest that the marrow Ig-producing B-lymphoid cell compartment shows major differences to other tissue sites with respect to properties of the Ig-secreting cells the immunoregulatory activities able to control their function, and the response of these cells to clinically important drugs.  相似文献   

9.
Significant immunoglobulin (Ig) production by human peripheral blood lymphocytes was induced in vitro by stimulating the cells with pokeweed mitogen (PWM) and Staphylococcus aureus Cowan I (SpA CoI). IgG, IgM, and IgA were determined by a combination of the latex fixation test and radioimmunoassay. High levels (1,000 to 5,000 μg/ml) of IgG and IgM and a lesser amount of IgA were constantly produced during 7 to 8 days of incubation with both stimulants. Ig production induced by SpA Col stimulation was independent of the presence of T cells, while Ig production induced by PWM required T cells exclusively. Depletion of monocytes in the culture caused but a slight decrease in Ig production (particularly in the case of IgG). While the addition of a small number of monocytes enhanced IgG induction by both stimulants, coculture with an excess number of monocytes inhibited Ig induction (particularly IgG) by PWM stimulation but not by SpA CoI stimulation. Marked suppression of Ig production (IgG, IgM, and IgA) was observed in cocultures with Con A-activated T cells. The phenomena of suppression were observed in both the SpA Col-stimulated and PWM-stimulated lymphocytes. These data indicate that Ig production from B cells stimulated with a polyclonal B cell activator, SpA CoI, was independent of T cells and relatively of independent of monocytes, but could be subjected to the regulation of the Con A-induced suppressor T cells.  相似文献   

10.
The circulating mononuclear cells of normal adult human volunteers were fractionated into T and non-T lymphocytes. The T cells were then fractionated into TM and non-TM cells and the non-T cells were further fractionated, by both positive and negative isolation, into B cells and null cells. Culture of non-T cells, TM cells, and PWM for 7 to 8 days resulted in cytoplasmic Ig (cIg) synthesis by all B cells, as detected by immunofluorescence. However, culture of either purified B or null cells with TM cells and PWM resulted in a marked reduction (75%) of cIg-synthesizing cells. The addition of monocytes did not enhance cIg synthesis. Culture of reconstituted B and null cells with TM cells and PWM restored the capacity to synthesize cIg to the cells. It is concluded that null cells are required, as well as TM cells and PWM, for cIg synthesis by B cells.  相似文献   

11.
1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) dose-dependently suppressed immunoglobulin (Ig) production of human B cells, as evaluated by IgG-plaque-forming cells (IgG-PFC) in the culture of pokeweed mitogen (PWM)-activated B cells. Similar suppressive effect of 1,25(OH)2D3 on Ig production of B cells was observed in the Staphylococcus aureus Cowan I(SAC)-induced Ig-producing system. The mean percentage of inhibitions at a concentration of 10(-9) M were 60.0 +/- 8.2% (mean +/- SE, n = 6) and 65.1 +/- 4.7% (n = 10) in PWM- and SAC-stimulated cultures, respectively. The suppression was strongly exhibited only when 1,25(OH)2D3 was added at the start of the 6-day culture, accompanied by a decrease in DNA synthesis of B cells in both culture systems. On the other hand, the addition of 1,25(OH)2D3 on day 4, when DNA synthesis reached at plateau and IgG-PFC began to be detectable, had no noticeable affect on either the number of PFC or DNA synthesis of B cells. Furthermore, 1,25(OH)2D3 suppressed Ig production even when B cells were exposed to the agent for 4 hr after the activation with PWM or SAC, but not before the activation. These results indicate that 1,25(OH)2D3 inhibits B cell proliferation before differentiation to Ig-secreting cells, consequently reducing Ig production; and that its action appears to be mediated by the cytosol receptors expressed on activated B cells. Thus, the agent may serve as an immunoregulating hormone in vivo, as well as in vitro.  相似文献   

12.
The role of factors released by monocytes (M phi) in the activation of human B lymphocytes was examined by studying the effect of an antiserum against human leukocytic pyrogen (LP) on mitogen-stimulated B cell proliferation and the generation of immunoglobulin-secreting cells (ISC) by peripheral blood mononuclear cells (PBM). Antiserum against LP was obtained from rabbits immunized with LP-containing human M phi supernatants. The globulin fraction of this antiserum inhibited pokeweed mitogen- (PWM) stimulated B cell proliferation and the generation of ISC in a concentration-dependent manner, with 50% inhibition of responsiveness observed with 10 micrograms/ml. By contrast, PWM-induced T cell [3H]thymidine incorporation was not inhibited by concentrations of anti-LP as great as 2000 micrograms/ml. The F(ab')2 fraction of anti-LP also inhibited the generation of ISC in response to both PWM and formalinized Staphylococcus aureus, but required 50 micrograms/ml to achieve 50% inhibition. Anti-LP inhibited the generation of ISC only if present during the first 24 hr of a 6 to 7-day incubation; later addition was not inhibitory. Inhibition was more marked in cultures partially depleted of M phi than in whole PBM cultures. Whereas absorption of the anti-LP with PBM failed to remove the capacity to inhibit the generation of ISC, anti-LP-mediated inhibition of responsiveness could be reversed by the addition of crude M phi culture supernatants or a variety of highly purified interleukin 1 (IL 1) preparations, but not by T cell supernatants. These results indicate anti-LP inhibits human B cell activation by removing the requisite M phi-derived factor IL 1 and also confirm that IL 1 plays an essential role in B cell proliferation and the generation of ISC in man.  相似文献   

13.
The growth and differentiation of B cells to immunoglobulin (Ig)-secreting cells is regulated by a variety of soluble factors. This study presents data that support a role for transforming growth factor (TGF)-beta in this regulatory process. B lymphocytes were shown to have high-affinity receptors for TGF-beta that were increased fivefold to sixfold after in vitro activation. The addition of picogram quantities of TGF-beta to B cell cultures suppressed factor-dependent, interleukin 2 (IL 2) B cell proliferation and markedly suppressed factor-dependent (IL 2 or B cell differentiation factor) B cell Ig secretion. In contrast, the constitutive IgG production by an Epstein Barr virus-transformed B cell line was not modified by the presence of TGF-beta in culture. This cell line was found to lack high-affinity TGF-beta receptors. The degree of inhibition of B cell proliferation observed in in vitro cultures was found to be dependent not only on the concentration of TGF-beta added but also on the concentration of the growth stimulatory substance (IL 2) present. By increasing the IL 2 concentrations in culture, the inhibition of proliferation induced by TGF-beta could be partially overcome. In contrast, the inhibition of Ig secretion induced by TGF-beta could not be overcome by a higher concentration of stimulatory factor, demonstrating that the suppression of B cell differentiation by TGF-beta is not due solely to its effects on proliferation. Furthermore, it was demonstrated that B lymphocytes secrete TGF-beta. Unactivated tonsillar B cells had detectable amounts of TGF-beta mRNA on Northern blot analysis, and B cell activation with Staphylococcus aureus Cowan (SAC) resulted in a twofold to threefold increase in TGF-beta mRNA. Supernatants conditioned by unactivated B cells had small amounts of TGF-beta, SAC activation of the B cells resulted in a sixfold to sevenfold increase in the amount of TGF-beta present in the supernatants. Thus, B lymphocytes synthesize and secrete TGF-beta and express receptors for TGF-beta. The addition of exogenous TGF-beta to cultures of stimulated B cells inhibits subsequent proliferation and Ig secretion. TGF-beta may function as an autocrine growth inhibitor that limits B lymphocyte proliferation and ultimate differentiation.  相似文献   

14.
Previously it was demonstrated that the human autoreactive CD4+ T cell clone MTC-4 is bifunctional, having the capacity to augment differentiation of autologous B cells into Ig-secreting cells in the absence of PWM and the capacity to suppress such differentiation in the presence of PWM. In the present study it was shown that these two functions of MTC-4 are mediated by distinctly different mechanisms. In the presence of autologous class II MHC Ag, MTC-4 releases one or more non-MHC-restricted soluble factors which stimulate B cell differentiation. The helper factors are different from IL-2, and act on both resting (small) and activated (large) B cells. The suppressor function of MTC-4 cells is elicited when MTC-4 cells are co-cultured with autologous non-T cells preincubated with PWM for 4 h, but not with non-T cells preincubated with PWM for 24 h; thus, activated autologous non-T cells have a transient capacity to induce MTC-4 suppressor function. Induction of MTC-4 suppressor activity is not associated with increased proliferation of MTC-4 and is mediated by low numbers of these cells. Unlike helper function, MTC-4 suppression of Ig synthesis can occur late in B cell cultures, and MTC-4 suppresses Ig production by autologous B cells, but not by allogeneic B cells. Finally, in co-cultures with activated autologous non-T cells and allogeneic B cells, MTC-4 can simultaneously produce helper factors that augment Ig synthesis by allogeneic B cells and suppress Ig synthesis by autologous B cells. In summary, exposure of MTC-4 to autologous non-T cells causes release of non-MHC-restricted factors which augment Ig production by both resting and activated autologous B cells, whereas exposure of MTC-4 to recently activated B cells causes MTC-4 to express the additional function of directly suppressing Ig production by differentiated autologous B cells. Thus autoreactive T cells may be uniquely suited to regulate Ig production.  相似文献   

15.
Stimulation of in vitro immunoglobulin production by interferon-alpha   总被引:2,自引:0,他引:2  
The effect of various natural and recombinant DNA-derived human interferon-alpha (IFN-alpha) on immunoglobulin (Ig) production by human B cells was investigated. The cell populations examined included peripheral blood mononuclear cells (PBMC) and highly purified B cell and helper T cell populations obtained by negative selection by using monoclonal antibodies and a fluorescence-activated cell sorter. In the presence of all forms of IFN-alpha tested, IgG and IgM production by PBMC increased twofold to fourfold. This increase was noted in the absence of pokeweed mitogen (PWM), was not affected by depletion of monocytes, required that IFN-alpha was present early in the culture period, and reached maximal levels around 500 U/ml IFN-alpha. Both IgG and IgM production were affected, but the magnitude of the IgM response was greater. The augmentation of Ig production was noted with the recombinant DNA-derived subtype, IFN-alpha F, two analogs, IFN-alpha Con1 and IFN-alpha Con2, as well as with buffy-coat-derived (leukocyte) IFN-alpha. The recombinant DNA-derived forms of IFN-alpha appeared to differ in their ability to augment Ig production. In the presence of PWM, IFN-alpha Con1 failed to increase Ig production by PBMC. In contrast to these results with PBMC, IFN-alpha Con1 increased the Ig production of purified B cells 10- to 20-fold in the presence of PWM. This increase reached maximal levels around 500 U/ml IFN-alpha Con1. Although purified B cells responded to IFN-alpha and PWM, maximal responses occurred in the presence of low numbers of helper T cells. Cell dilution experiments suggested that the effect observed with purified B cells was the result of the interaction of B cells with residual cells, e.g., helper T cells, remaining in the preparations.  相似文献   

16.
There is evidence for an impaired T cell-mediated B cell response during senescence. In thirty aged donors, pokeweed mitogen (PWM)-driven immunoglobulin (Ig) synthesis by B cells co-cultured with autologous enriched CD4+ lymphocytes and low amounts of monocytes, was evaluated. Under such experimental conditions, elderly cultures displayed a reduced IgG and/or IgM production when compared with the younger counterpart. Moreover, interleukin (IL)-2 and/or IL-5 addition to cultures led to an enhancement of Ig release. In contrast, IL-4 supplementation failed to positively modulate B cell differentiation. At the same time, aged cells cultured in the presence of IL-2 + IL-5 exhibited an increased Ig synthesis, while the addition of IL-2 + IL-4 or IL-4 + IL-5 mixtures did not induce any significant effect in comparison with homologous untreated samples. The results suggest a critical role for IL-2, IL-4 and IL-5 in the modulation of T helper cell-driven B cell polyclonal responsiveness in the elderly.  相似文献   

17.
The present study demonstrates that neonatal human lymphocytes that are incapable of producing IgG and IgA antibodies may differentiate into IgE-secreting cells under the influence of IL4. Indeed, the addition of recombinant IL4 to cultures of unfractionated umbilical cord blood mononuclear cells (CBMC) induces a dose-dependent synthesis of IgE but not of the other classes of Ig. Moreover, IgE-secreting B lymphoblastoid cell lines can be derived from neonatal lymphocytes costimulated with EBV and IL4. Comparison of the mechanisms regulating the in vitro IgE synthesis by adult and neonatal lymphocytes indicates that in most cases IFN-gamma markedly potentiates the IgE synthesis in CBMC cultures whereas it has a reverse effect on adult lymphocytes. These reciprocal effects of IFN-gamma are specifically blocked by a neutralizing mAb to IFN-gamma; they are dose-dependent and they are observed when IFN-gamma is added at the initiation of the culture or shortly thereafter. Moreover, in a small number of cases IFN-gamma may also potentiate IgE synthesis by adult lymphocytes. The potentiation or the suppression of IgE synthesis by IFN-gamma is not explained by a differential effect of IFN-gamma on the production of soluble CD23 (sCD23); indeed in both cases IFN-gamma slightly increases the IL4-induced production of sCD23. Moreover, the spontaneous and the IL4-induced production of sCD23 by CBMC is comparable to that of adult lymphocytes. The IgE response is dependent upon the expression of Fc epsilon RII (CD23) inasmuch as it is specifically blocked by anti-CD23 mAb.  相似文献   

18.
Adenosine deaminase (ADA) deficiency and the resultant accumulation of deoxyadenosine (AdR) are associated with profound T cell dysfunction and variable B cell dysfunction in vivo. We examined the effects of AdR on the in vitro function of normal human peripheral blood B and T lymphocytes whose ADA activity was inhibited by 2'-deoxycoformycin. We found that OKT8+ T cell-mediated suppression of SPA-induced Ig production was markedly reduced by concentrations of AdR (3 to 10 microM) that did not affect helper T cell function. Because the lectin-induced proliferative responses of OKT8+ T cells and OKT8- T cells were equally susceptible to AdR, modulation of in vitro immune responses by low-dose AdR probably reflected different proliferative requirements for the expression of T cell helper or suppressor functions. Although low doses of AdR did not inhibit Ig production in SPA-stimulated cultures, we found that T cell-dependent, SPA-stimulated B cell proliferation was blocked by 3 to 10 microM AdR. Therefore, it appeared that B cell proliferation was not required for the induction of Ig synthesis in this system. Higher doses (30 to 100 microM) of AdR did block the induction of Ig synthesis, presumably by interfering with T-helper functions via a mechanism other than inhibition of proliferation and/or by inhibiting B cell differentiation events.  相似文献   

19.
The suppressive effect of human natural killer (NK) cells on Epstein-Barr virus (EBV)-induced immunoglobulin (Ig) synthesis by autologous B cells was investigated. By Percoll discontinuous density gradient centrifugation, low-density fractions enriched for NK cells were isolated from human peripheral blood lymphocytes. These NK-enriched fractions were added to purified autologous B cells in the presence of EBV, were cultivated for 8 days, and were examined for their suppressive effect on Ig synthesis by an enzyme-linked immunosorbent assay. The fractions markedly suppressed both IgM and IgG synthesis induced by EBV. It was possible to reduce the suppressive effect of NK-enriched cells by complement-dependent lysis of NK cells and Leu-11, but not by OKT3 monoclonal antibody, indicating that NK cells may be responsible for the suppression of Ig synthesis. Upon close examination of interferon (IFN) activity, it was revealed that the co-cultures of NK-enriched cells and EBV-infected B cells generated production of IFN-alpha, which might be produced by NK cells in response to EBV-stimulated B cells. Addition of anti-IFN-alpha but not anti-IFN-gamma serum almost completely abrogated the suppressive effect of NK-enriched cells on Ig synthesis, indicating that IFN-alpha produced are required for the NK cell-mediated suppression of Ig synthesis. However, addition of IFN-alpha into purified B cells showed no direct suppressive effect on EBV-induced Ig synthesis by B cells in the absence of NK cells. Nevertheless, NK cells when previously incubated with IFN-alpha and added to B cells showed a suppressor activity on Ig synthesis to a level higher than that of untreated NK controls. These results strongly suggest the possibility that NK cells display an interaction with EBV-infected B cells and produce IFN-alpha, which in turn activates NK cells. These activated NK cells suppress the Ig synthesis by B cells, which undergo transformation induced by EBV.  相似文献   

20.
Interferons (IFN) are known to modulate immune responses in either an inhibitory or a stimulating manner. The present study was initiated to investigate the mechanisms by which alpha-IFN modulates Ig production of human peripheral blood mononuclear cells (PBMC). IgG and IgM production was measured in pokeweed mitogen- (PWM) stimulated 7-day cultures of PBMC. Significant enhancement of IgM and IgG production was observed when alpha-IFN was added. Overnight preincubation followed by washing also produced significant enhancement. The effect of alpha-IFN was not obtained in the absence of PWM or T cells. The effect of alpha-IFN on cultures of B and T cells was not altered by irradiation of T cells (2000 rad). alpha-IFN was not shown to enhance the production of helper factor but did increase the responsiveness of B cells to helper factor if the B cells were preincubated with alpha-IFN. Finally, alpha-IFN did not increase the Ig production of PBMC induced by Epstein Barr virus (EBV), and the outgrowth of EBV-infected PBMC was not affected. Overall, these results show for the first time that the effect of alpha-IFN on PBMC is due to an enhanced responsiveness of B cells to helper factors produced by radioresistant T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号