首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intracellular responses from receptors and postsynaptic units have been recorded in the median ocellus of the dragonfly. The receptors respond to light with a graded, depolarizing potential and a single, tetrodotoxin-sensitive impulse at "on." The postsynaptic units (ocellar nerve dendrites) hyperpolarize during illumination and show a transient, depolarizing response at "off." The light-evoked slow potential responses of the postsynaptic units are not altered by the application of tetrodotoxin to the ocellus. It appears, therefore, that the graded receptor potential, which survives the application of tetrodotoxin, is responsible for mediating synaptic transmission in the ocellus. Comparison of pre- and postsynaptic slow potential activity shows (a) longer latencies in postsynaptic units by 5–20 msec, (b) enhanced photosensitivity in postsynaptic units by 1–2 log units, and (c) more transient responses in postsynaptic units. It is suggested that enhanced photosensitivity of postsynaptic activity is a result of summation of many receptors onto the postsynaptic elements, and that transients in the postsynaptic responses are related to the complex synaptic arrangements in the ocellar plexus to be described in the following paper.  相似文献   

2.
Two types of photoreceptors are found in the median ocellus of Limulus. One type is maximally sensitive to ultraviolet (UV) light, the other to green light; they are called UV and VIS cells, respectively. Biphasic receptor potentials, consisting of a small initial hyperpolarizing phase and a later slow depolarizing phase, can be recorded from both receptor types. These biphasic responses are elicited in UV cells in response to long-wavelength light, and in VIS cells in response to ultraviolet light. Another type of hyperpolarizing response can be recorded in UV cells: after a bright ultraviolet stimulus, the cell remains depolarized; long-wavelength light rapidly returns the membrane potential to its value preceding ultraviolet illumination (this long-wavelength-induced potential change is called a "repolarizing response"). Also, a long-wavelength stimulus superimposed during a UV stimulus elicits a sustained repolarizing response. A third cell type (arhabdomeric cell) found in the median ocellus generates large action potentials and is maximally sensitive to UV light. Biphasic responses and repolarizing responses also can be recorded from arhabdomeric cells. The retina is divided into groups of cells; both UV cells and VIS cells can occur in the same group. UV cells in the same group are electrically coupled to one another and to an arhabdomeric cell.  相似文献   

3.
The spectral sensitivities of single Limulus median ocellus photoreceptors have been determined from records of receptor potentials obtained using intracellular microelectrodes. One class of receptors, called UV cells (ultraviolet cells), depolarizes to near-UV light and is maximally sensitive at 360 nm; a Dartnall template fits the spectral sensitivity curve. A second class of receptors, called visible cells, depolarizes to visible light; the spectral sensitivity curve is fit by a Dartnall template with λmax at 530 nm. Dark-adapted UV cells are about 2 log units more sensitive than dark-adapted visible cells. UV cells respond with a small hyperpolarization to visible light and the spectral sensitivity curve for this hyperpolarization peaks at 525–550 nm. Visible cells respond with a small hyperpolarization to UV light, and the spectral sensitivity curve for this response peaks at 350–375 nm. Rarely, a double-peaked (360 and 530 nm) spectral sensitivity curve is obtained; two photopigments are involved, as revealed by chromatic adaptation experiments. Thus there may be a small third class of receptor cells containing two photopigments.  相似文献   

4.
Electrical responses (ERG) to light flashes of various wavelengths and energies were obtained from the dorsal median ocellus and lateral compound eye of Limulus under dark and chromatic light adaptation. Spectral mechanisms were studied by analyzing (a) response waveforms, e.g. response area, rise, and fall times as functions of amplitude, (b) slopes of amplitude-energy functions, and (c) spectral sensitivity functions obtained by the criterion amplitude method. The data for a single spectral mechanism in the lateral eye are (a) response waveforms independent of wavelength, (b) same slope for response-energy functions at all wavelengths, (c) a spectral sensitivity function with a single maximum near 520 mµ, and (d) spectral sensitivity invariance in chromatic adaptation experiments. The data for two spectral mechanisms in the median ocellus are (a) two waveform characteristics depending on wavelength, (b) slopes of response-energy functions steeper for short than for long wavelengths, (c) two spectral sensitivity peaks (360 and 530–535 mµ) when dark-adapted, and (d) selective depression of either spectral sensitivity peak by appropriate chromatic adaptation. The ocellus is 200–320 times more sensitive to UV than to visible light. Both UV and green spectral sensitivity curves agree with Dartnall's nomogram. The hypothesis is favored that the ocellus contains two visual pigments each in a different type of receptor, rather than (a) various absorption bands of a single visual pigment, (b) single visual pigment and a chromatic mask, or (c) fluorescence. With long duration light stimuli a steady-state level followed the transient peak in the ERG from both types of eyes.  相似文献   

5.
The ocellar potential (OP) of planaria was recorded using microelectrode techniques. The action spectrum and spectral sensitivity of the OP are described. Maximum OP sensitivity was found with 508 nm light. A moderate increase in sensitivity to blue light was observed. This is typical of many invertebrate photoreceptors and was shown, by selective chromatic adaptation, not to indicate the presence of a second pigment.  相似文献   

6.
Organization of Brain Synaptic Vesicle Proteins   总被引:2,自引:1,他引:1  
Abstract: The topographical arrangement of proteins and glycoproteins of mouse brain synaptic vesicles was studied with trypsin and galactose oxidase, reagents known to be impermeable with respect to other membranes. Incubation of vesicles with trypsin at a concentration of 1 μg/ml extensively degraded seven polypeptides of molecular weights (M.W.) (×10-3) 125, 107, 95, 83, 70, 60, and 36; higher concentrations degraded two additional species of 75,000 and 46,000 M.W., while leaving unaffected polypeptides of M.W. 66,000, 55,000, 33,000, 26,000, 22,000, 19,000, and 16,000. All of the trypsin-sensitive species of greater than 70,000 M.W. stained positively with the periodic acid-Schiff reagent; several other glycoproteins, all of M.W. less than 70,000, were identified, and all of these were insensitive to trypsin. Galactose oxidase-NaB3H4 treatment of synaptic vesicles heavily and exclusively labeled material of greater than 70,000 M.W. All of the polypeptides studied were sensitive to each reagent when the synaptic vesicles were first treated with detergents. Extraction of vesicles with 0.05 M-NaOH partially or completely removed a wide variety of polypeptides, including most of those in the M.W. range 46,000–83,000; none of the glycoproteins was solubilized. Essentially the opposite results were obtained when the vesicles were extracted with 0.5% Triton X-100. Most of the vesicle's species were insensitive to several bisimidate cross-linking reagents. These results suggest that: (a) The polypeptides of M.W. 125K, 107K, 95K, 83K, 75K, 70K, 60K, 46K, and 36K are externally oriented in the vesicle, whereas those of 66K, 55K, 33K, 26K, 22K, 19K, and 16K are internally oriented; (b) the vesicles contain two classes of glycoproteins, one consisting of high-molecular-weight, externally oriented species that are rich in galactose, and the other consisting of low-molecular-weight, internally oriented species of relatively low galactose content; (c) the vesicles contain a large class of nonglycosylated species that are relatively loosely attached to the membrane; and (d) most of the vesicles' polypeptides are probably freely mobile in the membrane. The organization of synaptic vesicle proteins is compared with that of the proteins of synaptosomal plasma membrane, with which the vesicle is believed to fuse.  相似文献   

7.
The molecular organization of the epicuticle (the outermost layer) of insect wings is vital in the formation of the nanoscale surface patterns that are responsible for bestowing remarkable functional properties. Using a combination of spectroscopic and chromatographic techniques, including Synchrotron-sourced Fourier-transform infrared microspectroscopy (FTIR), x-ray photoelectron spectroscopy (XPS) depth profiling and gas chromatography-mass spectrometry (GCMS), we have identified the chemical components that constitute the nanoscale structures on the surface of the wings of the dragonfly, Hemianax papuensis. The major components were identified to be fatty acids, predominantly hexadecanoic acid and octadecanoic acid, and n-alkanes with even numbered carbon chains ranging from C14 to C30. The data obtained from XPS depth profiling, in conjunction with that obtained from GCMS analyses, enabled the location of particular classes of compounds to different regions within the epicuticle. Hexadecanoic acid was found to be a major component of the outer region of the epicuticle, which forms the surface nanostructures, and was also detected in deeper layers along with octadecanoic acid. Aliphatic compounds were detected throughout the epicuticle, and these appeared to form a third discrete layer that was separate from both the inner and outer epicuticles, which has never previously been reported.  相似文献   

8.
Large nerve fibers in the ocellar nerves of dragonflies are spontaneously active. In the absence of inhibitory influence the spontaneous activity is rhythmic. Inhibition occurs in the dark-adapted state and during illumination. Miniature inhibitory postsynaptic potentials occur in the dark-adapted state. These modulate by temporary suppression the otherwise rhythmic discharge of ocellar nerve impulses. The presence of random spontaneous receptor cell excitations is inferred from the presence of the miniature i.p.s.p.'s. Light stimulates many or all the receptor cells simultaneously, masking the random spontaneous activity of individual receptor cells. The result is a sustained hyperpolarizing i.p.s.p. and sustained inhibition of the nerve discharge. Preceding resumption of the spontaneous activity at "off" the i.p.s.p. may oscillate, overshoot the baseline as a negative after-potential, or do both. These phases of the off-effect may generate nerve impulses in an off-burst.  相似文献   

9.
10.
The planarian ocellar potential (OP), an action potential evoked from the planarian ocellus by a light flash, was recorded with microelectrodes. OP amplitude, latency, and peak delay varied as a function of stimulus intensity and state of adaptation in a manner similar to the responses of other photoreceptors. Changes in the OP that occurred with different directions of incident light are described and attributed to screening effects of the ocellar pigment cells. The temperature coefficient (Q10) of OP latency was 1.5; latency decreased continuously as temperature was increased to destructive levels. The energy of activation of the rate of OP formation was calculated to approximate 10 kcal. These findings suggest dependence of OP latency on ionic diffusion and of OP formation on a biocatalytic process.  相似文献   

11.
Dorsal ocelli are small cup-like organs containing a layer of photoreceptor cells, the short axons of which synapse at the base of the cup with dendritic terminals of ocellar nerve fibers. The ocellar ERG of dragonflies, recorded from the surface of the receptor cell layer and from the long lateral ocellar nerve, contains four components. Component 1 is a depolarizing sensory generator potential which originates in the distal ends of the receptor cells and evokes component 2. Component 2 is believed to be a depolarizing response of the receptor axons. It evokes a hyperpolarizing postsynaptic potential, component 3, which originates in the dendritic terminals of the ocellar nerve fibers. Ocellar nerve fibers in dragonflies are spontaneously active, discharging afferent nerve impulses (component 4) in the dark-adapted state. Component 3 inhibits this discharge. The ERG of the cockroach ocellus is similar. The main differences are that component 3 is not as conspicuous as in the dragonflies and that in most cases ocellar nerve impulses appear only as a brief burst at "off." In one preparation a spontaneous discharge of nerve impulses was observed. As in the dragonflies, this was inhibited by illumination.  相似文献   

12.
13.
The ERG of the dragonfly ocellus has been analyzed into four components, two of which originate in the photoreceptor cells, two in the ocellar nerve fibers (Ruck, 1961 a). Component 1 is a sensory generator potential, component 2 a response of the receptor axons. Component 3 is an inhibitory postsynaptic potential, component 4, a discharge of afferent nerve impulses in ocellar nerve fibers. Responses to flickering light are examined in terms of this analytic scheme. It has been found that the generator potential can respond to higher rates of flicker—up to 220/sec.—than can the receptor axon responses, the postsynaptic potential, or the ocellar nerve impulses. The maximum flicker fusion frequency as measured by fusion of the ERG is that of the sensory generator potential itself.  相似文献   

14.
M Martínez  C Romero  C Cuadrado 《Génome》1995,38(4):772-779
Secale vavilovii PMCs have more univalents and a lower frequency of bound arms at metaphase I than other diploid Secale species. The spreading technique applied at prophase I showed that the nuclei were able to complete synapsis at pachytene. However, 25% of the nuclei analyzed, which had more than 90% of their total length paired, showed two abnormalities: long fold-back loops, which were located mainly on the nucleolar organizer bivalent, and pairing-partner switches, probably involving all the chromosome complement. These synaptic abnormalities are unusual in diploid species and give rise to a high frequency of nonhomologous pairing regions and, therefore, could produce desynapsis, which could explain the data obtained from metaphase I. The possible origin of the unusual synaptic abnormalities of S. vavilovii is discussed.  相似文献   

15.
16.
17.
18.
19.
Camel erythrocyte membranes are distinguished by some unique properties of stability and composition. Notable is their abundance in proteins (protein: lipid ratio of 3 : 1). Membrane proteins of camel erythrocytes were compared with those of human erythrocytes, which have been intensively investigated. Proteins were extracted with various aqueous media (EDTA, alkaline or high ionic strength) and with ionic and non-ionic detergents and were analyzed by gel electrophoresis. In membranes of camel erythrocytes, the peripheral proteins constitute, proportionally, a much smaller fraction of total proteins than in the human erythrocyte, while their distribution is identical per unit of surface area. The camel erythrocyte membrane is particularly rich in integral proteins and in intramembranous particles. The proteins in this membrane are more closely organized than in the human system, as revealed by crosslinking and freeze-etching studies. It is proposed that protein-protein interaction of integral proteins, presumably constituting an “integral skeleton”, is a dominant structural feature stabilizing the camel erythrocyte membrane.  相似文献   

20.
Organization and structure in central-nerve myelin.   总被引:6,自引:0,他引:6  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号