首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
 Indirect indices of exercise-induced human skeletal muscle damage and connective tissue breakdown were studied following a single bout of voluntary eccentric muscle contractions. Subjects (six female, two male), mean (SD) age 22 (2) years performed a bout of 50 maximum voluntary eccentric contractions of the knee extensors of a single leg. The eccentric exercise protocol induced muscle soreness (P < 0.05 Wilcoxon test), chronic force loss, and a decline in the 20:100 Hz percutaneous electrical myostimulation force ratio [P < 0.01, repeated measures analysis of variance (ANOVA)]. Serum creatine kinase (CK) and lactate dehydrogenase (LDH) activities were elevated (P < 0.01, repeated measures ANOVA) following the bout. The mean (SD) CK and LDH levels recorded 3 days post-exercise were 2815 (4144) IU · l–1 and 375 (198) IU · l–1, respectively. Serum alkaline phosphatase activity showed no changes throughout the study, and a non-significant increase (P = 0.058, repeated measures ANOVA) in pyridinoline was recorded following the bout. Urinary hydroxyproline (HP) and hydroxylysine (HL) excretion, expressed in terms of creatinine (Cr) concentration, increased after exercise (P < 0.05 and P < 0.01, respectively, repeated measures ANOVA). An increased HP:Cr was recorded 2 days post-exercise and HL:Cr was increased above baseline on days 2, 5, and 9 post-exercise. This indirect evidence of exercise-induced muscle damage suggests that myofibre disruption was caused by the eccentric muscle contractions. Elevated urine concentrations of indirect indices of collagen breakdown following eccentric muscle contractions suggests an increased breakdown of connective tissue, possibly due to a localised inflammatory response. Accepted: 9 October 1996  相似文献   

2.
The aim of this study was to determine if severe exercise-induced muscle damage alters the plasma concentrations of glutamine and zinc. Changes in plasma concentrations of glutamine, zinc and polymorphonuclear elastase (an index of phagocytic cell activation) were examined for up to 10 days following eccentric exercise of the knee extensors of one leg in eight untrained subjects. The exercise bout consisted of 20 repetitions of electrically stimulated eccentric muscle actions on an isokinetic dynamometer. Subjects experienced severe muscle soreness and large increases in plasma creatine kinase activity indicative of muscle fibre damage. Peak soreness occurred at 2 days post-exercise and peak creatine kinase activity [21714 (6416) U · l−1, mean (SEM)] occurred at 3 days post-exercise (P < 0.01 compared with pre-exercise). Plasma elastase concentration was increased at 3 days post-exercise compared with pre-exercise (P < 0.05), and is presumably indicative of ongoing phagocytic leucocyte infiltration and activation in the damaged muscles. There were no significant changes in plasma zinc and glutamine concentrations in the days following eccentric exercise. We conclude that exercise-induced muscle damage does not produce changes in plasma glutamine or zinc concentrations despite evidence of phagocytic neutrophil activation. Accepted: 3 November 1997  相似文献   

3.
The effect of long-latency reflex modulation on the performance of a quick adjustment movement following a muscle stretch was studied in 26 healthy male subjects. When the subjects felt a sudden angle displacement in the direction of a wrist extension they were required to make an adjustment movement by moving a handlebar, held in the hand, to align with a target position as quickly and as accurately as possible. The index of performance (adjustment time) was the time taken to move the handle to the target position from stretch onset. A DC torque motor was used to evoke electromyographic (EMG) reflex responses on a wrist flexor. Averaging of the rectified EMG, recorded from surface electrodes placed over the flexor, showed short- and long-latency reflexes (M1 and M2 components). For all subjects, the amplitudes of the reflex components decreased during the adjustment movement because the target position for this study was fixed to the extension side of the wrist joint. The decrease in the M2 component, which is considered to be a transcortical reflex, was significantly larger than the decrease in the M1 component, which is spinal reflex. The main finding was of a positive correlation between the length of adjustment time and the degree of reduction of M1 and M2 with the adjustment movement (r = 0.602 for M1, P < 0.01; r = 0.850 for M2, P < 0.001). Moreover, there were correlations between the consistency of the voluntary response onset and the degree of M2 decrease (r = 0.577, P < 0.01), and between the consistency of the voluntary response onset and the length of the adjustment time (r = 0.603, P < 0.01). Therefore, we have concluded that the subjects who were able to perform adjustment movements within a short time could modulate the long-latency reflex of the muscle involved in such movements in order to make the function of their voluntary muscle activity more effective, and thus were able to respond appropriately. Accepted: 19 February 1997  相似文献   

4.
The aim of this study was to quantify the degenerative and regenerative changes in rat soleus muscle resulting from 3-week hindlimb suspension at 45° tilt (HS group, n = 8) and 4-week normal cage recovery (HS-R group, n = 7). Degenerative changes were quantified by microscope examination of muscle cross sections, and the myosin heavy chain (MHC) composition of soleus muscles was studied by sodium dodecyl sulphate polyacrylamide gel electrophoresis. At the end of 3-week hindlimb suspension, histological signs of muscle degenerative changes were detected in soleus muscles. There was a significant variability in the percentage of fibres referred to as degenerating (%dg) in individual animals in the HS group [%dg = 8.41 (SEM 0.5)%, range 4.66%–14.08%]. Moreover, %dg varied significantly along the length of the soleus muscle. The percentage of fibres with internal nuclei was less than %dg in HS-soleus muscles [4.12 (SEM 0.3)%, range 1.24%–8.86%]. In 4-week recovery rats, the greater part of the fibres that were not referred to as normal, retained central nuclei [15.8 (SEM 2.2)%, range 6.2%–21.1%]. A significant increase in the slow isoform of MHC was recorded in the HS-R rats, compared to muscles from age-matched rats (P < 0.01). These results would suggest that a cycle of myofibre degeneration-regeneration occurred during HS and passive recovery, and that the increased accumulation of slow MHC observed in soleus muscles after recovery from HS could be related to the prevalence of newly formed fibres. Accepted: 14 October 1996  相似文献   

5.
The aims of this study were to investigate if low-frequency fatigue (LFF) dependent on the duration of repeated muscle contractions and to compare LFF in voluntary and electrically induced exercise. Male subjects performed three 9-min periods of repeated isometric knee extensions at 40% maximal voluntary contraction with contraction plus relaxation periods of 30 plus 60 s, 15 plus 30 s and 5 plus 10 s in protocols 1, 2 and 3, respectively. The same exercise protocols were repeated using feedback-controlled electrical stimulation at 40% maximal tetanic torque. Before and 15 min after each exercise period, knee extension torque at 1, 7, 10, 15, 20, 50 and 100 Hz was assessed. During voluntary exercise, electromyogram root mean square (EMGrms) of the vastus lateralis muscle was evaluated. The 20-Hz torque:100-Hz torque (20:100 Hz torque) ratio was reduced more after electrically induced than after voluntary exercise (P < 0.05). During electrically induced exercise, the decrease in 20:100 Hz torque ratio was gradually (P < 0.05) reduced as the individual contractions shortened. During voluntary exercise, the decrease in 20:100 Hz torque ratio and the increase in EMGrms were greater in protocol 1 (P < 0.01) than in protocols 2 and 3, which did not differ from each other. In conclusion, our results showed that LFF is dependent on the duration of individual muscle contractions during repetitive isometric exercise and that the electrically induced exercise produced a more pronounced LFF compared to voluntary exercise of submaximal intensity. It is suggested that compensatory recruitment of faster-contracting motor units is an additional factor affecting the severity of LFF during voluntary exercise. Accepted: 5 November 1997  相似文献   

6.
Eccentric muscle actions are known to induce temporary muscle damage, delayed onset muscle soreness (DOMS) and muscle weakness that may persist for several days. The purpose of the present study was to determine whether DOMS-inducing exercise affects blood lactate responses to subsequent incremental dynamic exercise. Physiological and metabolic responses to a standardised incremental exercise task were measured two days after the performance of an eccentric exercise bout or in a control (no prior exercise) condition. Ten healthy recreationally active subjects (9 male, 1 female), aged 20 (SD 1) years performed repeated eccentric muscle actions during 40 min of bench stepping (knee high step; 15 steps · min−1). Two days after the eccentric exercise, while the subjects experienced DOMS, they cycled on a basket loaded cycle ergometer at a starting work rate of 150 W, with increments of 50 W every 2 min until fatigue. The order of the preceding treatments (eccentric exercise or control) was randomised and the treatments were carried out 2 weeks apart. Two days after the eccentric exercise, all subjects reported leg muscle soreness and exhibited elevated levels of plasma creatine kinase activity (P < 0.05). Endurance time and peak O2 during cycling were unaffected by the prior eccentric exercise. Minute volume, respiratory exchange ratio and heart rate responses were similar but venous blood lactate concentration was higher (P < 0.05) during cycling after eccentric exercise compared with the control condition. Peak blood lactate concentration, observed at 2 min post-exercise was also higher [12.6 (SD 1.4) vs 10.9 SD (1.3) mM; P < 0.01]. The higher blood lactate concentration during cycling exercise after prior eccentric exercise may be attributable to an increased rate of glycogenolysis possibly arising from an increased recruitment of Type II muscle fibres. It follows that determination of lactate thresholds for the purpose of fitness assessment in subjects experiencing DOMS is not appropriate. Accepted: 27 September 1997  相似文献   

7.
Resistance exercise has been suggested to increase blood volume, increase the sensitivity of the carotid baroreceptor cardiac reflex response (BARO), and decrease leg compliance, all factors that are expected to improve orthostatic tolerance. To further test these hypotheses, cardiovascular responses to standing and to pre-syncopal limited lower body negative pressure (LBNP) were measured in two groups of sedentary men before and after a 12-week period of either exercise (n = 10) or no exercise (control, n = 9). Resistance exercise training consisted of nine isotonic exercises, four sets of each, 3 days per week, stressing all major muscle groups. After exercise training, leg muscle volumes increased (P < 0.05) by 4–14%, lean body mass increased (P = 0.00) by 2.0 (0.5) kg, leg compliance and BARO were not significantly altered, and the maximal LBNP tolerated without pre-syncope was not significantly different. Supine resting heart rate was reduced (P = 0.03) without attenuating the heart rate or blood pressure responses during the stand test or LBNP. Also, blood volume (125I and 51Cr) and red cell mass were increased (P < 0.02) by 2.8% and 3.9%, respectively. These findings indicate that intense resistance exercise increases blood volume but does not consistently improve orthostatic tolerance. Accepted: 17 January 1997  相似文献   

8.
Dual energy x-ray absorptiometry (DEXA) offers the possibility of assessing regional soft tissue composition, i.e. lean mass (LM) and fat mass : LM may be considered a measure of muscle mass. We examined age-related differences in LM, percentage fat (%fat) and muscle strength in 100 healthy non-athletic women aged 18–87 years. Relationships between muscle strength and leg LM in 20 elite female weight lifters and in 18 inactive women with previous hip fractures were also studied. The LM and %fat of the whole body, trunk, arms and legs were derived from a whole body DEXA scan. Isokinetic knee extensor strength (KES) and flexor strength (KFS) at 30° · s–1 were assessed using an isokinetic dynamometer. The women aged 71–87 years had 35% lower KES and KFS than the women aged 18–40 years (P < 0.0001). Differences in LM were less pronounced. The LM of the legs, for instance, was 15% lower in the old than in the young women (P < 0.0001). In a multiple regression analysis with age, body mass, height and leg LM or KES as independent variables and KES or leg LM as the dependent variable, age was the most important predictor of KES (r partial = −0.74, P < 0.0001). The same applied to KFS. Body mass, not age, was the most important predictor of leg LM (r partial = 0.65, P < 0.0001) and of LM at all other measurement sites. The LM measured at different regions decreased equally with increasing age. The KES:leg LM ratio was negatively correlated with age (r = −0.70, P < 0.0001). The weight lifters had significantly higher KES:leg LM ratios than age-matched controls (+12%, P < 0.0001) and vice versa for the women with previous hip fractures (–36%, P < 0.0001). In conclusion, from our study it would seem that in healthy nonathletic women, age is a more important determinant of muscle strength than is LM as measured by DEXA. Muscle strengthening exercises and inactivity seem to have a considerably stronger influence on muscle strength than on LM. Accepted: 27 August 1996  相似文献   

9.
Ten females (25–50 years of age) performed isometric shoulder flexions, holding the right arm straight and in a horizontal position. The subjects were able to see the rectified surface electromyogram (EMG) from either one of two electrode pairs above the upper trapezius muscle and were instructed to keep its amplitude constant for 15 min while gradually unloading the arm against a support. The EMG electrodes were placed at positions representing a “cranial” and a “caudal” region of the muscle suggested previously to possess different functional properties. During the two contractions, recordings were made of: (1) EMG root mean square-amplitude and zero crossing (ZC) frequency from both electrode pairs on the trapezius as well as from the anterior part of the deltoideus, (2) supportive force, (3) heart rate (HR) and mean arterial blood pressure (MAP), and (4) perceived fatigue. The median responses during the cranial isoelectric contraction were small as compared to those reported previously in the literature: changes in exerted glenohumeral torque and ZC rate of the isoelectric EMG signal of −2.81% · min−1 (P = 0.003) and 0.03% · min−1 (P= 0.54), respectively, and increases in HR and MAP of 0.14 beats · min−2 (P= 0.10) and 0.06 mmHg · min−1 (P= 0.33), respectively. During the contraction with constant caudal EMG amplitude, the corresponding median responses were −2.51% · min−1 (torque), 0.01% · min−1 (ZC rate), 0.31 beats · min−2 (HR), and 0.93 mmHg · min−1 (MAP); P=0.001, 0.69, 0.005, and 0.003, respectively. Considerable deviations from the “isoelectric” target amplitude were common for both contractions. Individuals differed markedly in response, and three distinct subgroups of subjects were identified using cluster analysis. These groups are suggested to represent different motor control scenarios, including differential engagement of subdivisions of the upper trapezius, alternating motor unit recruitment and, in one group, a gradual transition towards a greater involvement of type II motor units. The results indicate that prolonged low-level contractions of the shoulder muscles may in general be accomplished with a moderate metabolic stress, but also that neuromuscular adaptation strategies differ significantly between individuals. These results may help to explain why occupational shoulder-neck loads of long duration cause musculoskeletal disorders in some subjects but not in others. Accepted: 1 March 1997  相似文献   

10.
The purpose of this study was to examine the effects of moment of antagonistic muscle on the resultant joint moment during isokinetic eccentric and concentric efforts of the knee extensors. Ten males performed maximum eccentric and concentric knee extension and flexion efforts on a Biodex dynamometer at 0.52 rad · s−1 (30° · s−1). Electromyographic (EMG) activity of vastus medialis and biceps femoris (hamstrings) was also recorded. The antagonistic moment of the hamstrings was determined by recording the integrated EMG (iEMG)/moment relationship at different levels of muscle effort. The iEMG/moment curves were fitted using second-degree polynomials. The polynomials were then used to predict the antagonistic moment exerted by the hamstrings from the antagonist iEMG. The antagonistic moment had a maximum of 42.92 Nm and 28.97 Nm under concentric and eccentric conditions respectively; paired t-tests indicated that this was a significant difference (P < 0.05). These results indicate that the resultant joint moment of knee extensors is the result of both agonist and antagonist muscle activation. The greater antagonist muscle activity under concentric activation conditions may be partly responsible for the lower resultant joint concentric moment of knee extensors compared with the corresponding eccentric activation. The antagonist moment significantly affects comparisons between the isokinetic moments and agonist EMG and in vitro force measurements under different testing (muscle action and angular velocity) conditions. Accepted: 25 February 1997  相似文献   

11.
In contrast to endurance training, little research has been carried out to investigate the effects of short (<10 s) sprint training on performance, muscle metabolism and fibre types. Nine fit male subjects performed a mean of 16 outdoor sprint running training sessions over 6 weeks. Distances sprinted were 30–80 m at 90–100% maximum speed and between 20 and 40 sprints were performed in each session. Endurance (maximal oxygen consumption; V˙O2 max), sprint (10 m and 40 m times), sustained sprint (supramaximal treadmill run) and repeated sprint (6 × 40 m sprints, 24 s recovery between each) performance tests were performed before and after training. Muscle biopsy samples (vastus lateralis) were also taken to examine changes in metabolites, enzyme activities and fibre types. After training, significant improvements were seen in 40 m time (P < 0.01), supramaximal treadmill run time (P < 0.05), repeated sprint performance (P < 0.05) and V˙O2 max (P < 0.01). Resting muscle concentrations of ATP and phosphocreatine did not change. Phosphorylase activity increased (P < 0.025), citrate synthase activity decreased (P < 0.01), but no significant changes were recorded in myokinase and phosphofructokinase activities. The proportion of type II muscle fibres increased significantly (P < 0.05). These results demonstrate that 6 weeks of short sprint training can improve endurance, sprint and repeated sprint ability in fit subjects. Increases in the proportion of type II muscle fibres are also possible with this type of training. Accepted: 5 January 1998  相似文献   

12.
The effects of the metal ions manganese and cobalt on force production by the abdominal superficial flexor muscle of the Norway lobster, Nephrops norvegicus, have been studied in response to both neuronal stimulation and electrical field stimulation applied to an isolated neuromuscular preparation, and by selectively blocking synaptic transmission with ivermectin. In response to both forms of stimulation, low concentrations of manganese added to the standard N. norvegicus saline increased the contractile force produced by the muscle, whereas higher concentrations of manganese inhibited both responses in a dose-dependent manner, until force was completely abolished at concentrations above 2.9 mM manganese. Cobalt ions produced similar effects, and no significant difference was found between the concentration of the two ions at 50% force inhibition (Km) or between the two stimulation methods (manganese: 1.22 mM; cobalt: 1.29 mM, P = 0.86). This suggests that they have a similar mode of action, and a postsynaptic site of inhibition. These Km values are considerably higher than the concentrations of these ions known to accumulate in the haemolymph of N. norvegicus under eutrophic conditions, and it therefore seems unlikely that accumulations of manganese or cobalt ions under such conditions would cause any significant inhibition of muscle contraction force. Accepted: 28 April 1999  相似文献   

13.
Testosterone and its synthetic derivatives anabolic–androgenic steroids have been shown to increase skeletal muscle work capacity and fatigue resistance, but the molecular basis for these effects remains uncertain. Since muscle performance has been related to redox status of exercising muscles, this investigation was aimed at testing whether a treatment with suprapharmacological doses of the anabolic–androgenic steroid stanozolol, (2 mg/kg body weight, 5 days/week, for 8 weeks), either alone or in conjunction with treadmill training (12 weeks), enhanced antioxidant defences in rat muscles. Stanozolol treatment did not modify thiobarbituric acid reactive substances and glutathione content in soleus and extensor digitorum longus (EDL) homogenates. In soleus from sedentary rats, superoxide dismutase and glutathione reductase activities were increased by 25% (P < 0.05) and by 40% (P < 0.01) after stanozolol administration, whereas catalase and glutathione peroxidase activities were not modified. This response was similar to that induced by training alone. In EDL from sedentary rats, stanozolol increased only superoxide dismutase activity (20%, P < 0.05). In no case, the effects of steroid administration and training were additive. HSP72 levels were up-regulated in soleus (1.5-fold, P < 0.01) and EDL (threefold, P < 0.001) following training but remained unchanged after stanozolol treatment. Endurance capacity, assessed in a treadmill endurance test, was similar for treated and control rats. We conclude that stanozolol treatment increases antioxidant capacity in selected skeletal muscles from sedentary rats. However, the steroid was not effective in improving endurance capacity or enhancing the training effects on muscle antioxidant defence systems.  相似文献   

14.
We examined the extent of morphological alterations and the myosin heavy chain (MHC) distribution in the rat soleus muscle after a 4-week period of spontaneous recovery or retraining after hindlimb suspension (HS). Moreover, we tested the hypothesis that dantrolene sodium, which affects the flux of calcium over the sarcoplasmic reticulum membrane, was able to attenuate muscle damage. Three groups of rats were submitted to 3 weeks of HS, followed by either 4 weeks of unrestricted cage activity (HC, n = 7), or running training for the same period and were compared to age-matched animals (C, n = 8). Trained rats were treated with either placebo or dantrolene sodium (HTP, HTD, n = 8 each, respectively). Four weeks after HS recovery, the percentage of myofibres with internal nuclei (%in) was determined by histological staining with hematoxylin and eosin. %in was affected by the individual rat (P < 0.001), and was higher in the mid-belly region of the muscle (P < 0.05). Muscle damage, as estimated by %in, was more extensive in trained rats (i.e. HTP and HTD) than in HC animals (23% and 12%, respectively). Moreover, dantrolene sodium tended to exert a protective effect on training-induced muscle injury. A 12% increase in type I MHC was observed in both HTP and HTD rats, in comparison with group C animals (P < 0.001). The relative proportion of type-I MHC was inversely correlated with %in (r = −0.65, P < 0.001). Running recovery led to an increased citrate synthase activity in comparison with that of C or HC rats. In conclusion, the present findings demonstrate that running recovery from HS increases the incidence of muscle damage, and that dantrolene sodium administration has only limited protective effects against exercise-induced muscle injury. Accepted: 29 April 1997  相似文献   

15.
Following a series of eccentric contractions, that is stretching of the muscle while generating active tension, the length-tension relationship of isolated amphibian muscle has been shown to shift towards longer muscle lengths (Katz 1939; Wood et al. 1993). Here we report observations of electrically stimulated ankle extensor muscles of nine human subjects, demonstrating a similar shift in optimum angle for torque generation [3.9 (1.5)°] following exercise on an inclined treadmill that involved eccentric contractions in one leg. (All values are means with the SEMs in parentheses.) The shift in the unexercised, control leg was significantly less [mean 0.4 (0.7)°P < 0.05]. Correlated with this shift was a drop in torque [25.1 (5.6)% for the experimental leg; 1.6 (0.7)% for the control leg, P < 0.002]. Optimum angles returned to pre-exercise values by 2 days post-exercise, while torque took a week to recover. A similar shift in optimum length [12 (1.3)% of rest length] was obtained for five toad (Bufo marinus) sartorius muscles subjected to 25 eccentric contractions. Isometrically contracted control muscles showed a smaller shift [3.5 (1.6)%, n = 5]. Accompanying the shift was a drop in tension of 46 (3)% after the eccentric contractions [control isometric, 23 (6)%, P < 0.0001]. By 5 h after the eccentric contractions the shift had returned to control values, while tension had not recovered. When viewed with an electron microscope, sartorius muscles fixed immediately after the eccentric contractions exhibited many small, and a few larger, regions of myofilament disruption. In muscles fixed 5 h after the contractions, no small regions of disruption were visible, and the number of large regions was no greater than in those muscles fixed immediately after the eccentric contractions. These disruptions are interpreted as the cause of the shift in length-tension relationship. Accepted: 9 January 1997  相似文献   

16.
Phylogeographic and population genetic studies using sequence information are frequently used to infer species boundaries and history; and to assess hybridization and population level processes. In this study, partial mitochondrial DNA (mtDNA) control region (423 bp) and cytochrome b sequences (666 bp) of Oryx beisa sampled from five isolated localities in its entire current range in Africa were analyzed to investigate the extent of genetic variation and differentiation between populations. We observed high nucleotide diversity at the control region in the total sample (6.3%) but within populations, it varied considerably ranging from 1.6% to 8.1%. Population pairwise genetic differentiation was generally significantly high (ranging from F ST = 0.15, P<0.01 to F ST = 0.54, P<0.001). In the total sample, 29 and 12 haplotypes were observed in the control region and the cytochrome b data sets respectively. For both data sets, the haplotypes cluster into three distinct clades (sequence divergence ranged from 6.0%–12.9% to 0.8%–1.0% for the control region and cytochrome b sequences, respectively) that do not correspond to sampling locations. Two of these clades are found in the same localities (Samburu and Marsabit), which represent the O.beisa beisa subspecies, whereas the last clade represents the fringe-eared oryx (O. beisa callotis). We interpret these findings in terms of an ancient hybridization and introgression between two formerly isolated taxa of Oryx beisa.  相似文献   

17.
The present experiment was designed to study the importance of strength and muscle mass as factors limiting maximal oxygen uptake (O2 max ) in wheelchair subjects. Thirteen paraplegic subjects [mean age 29.8 (8.7) years] were studied during continuous incremental exercises until exhaustion on an arm-cranking ergometer (AC), a wheelchair ergometer (WE) and motor-driven treadmill (TM). Lean arm volume (LAV) was estimated using an anthropometric method based upon the measurement of various circumferences of the arm and forearm. Maximal strength (MVF) was measured while pushing on the rim of the wheelchair for three positions of the hand on the rim (−30°, 0° and +30°). The results indicate that paraplegic subjects reached a similar O2 max [1.23 (0.34) l · min−1, 1.25 (0.38) l · min−1, 1.22 (0.18) l · min−1 for AC, TM and WE, respectively] and O2 max /body mass [19.7 (5.2) ml · min−1 · kg−1, 19.5 (6.14) ml · min−1 · kg−1, 19.18 (4.27) ml · min−1 · kg−1 for AC, TM and WE, respectively on the three ergometers. Maximal heart rate f c max during the last minute of AC (173 (17) beats · min−1], TM [168 (14) beats · min−1], and WE [165 (16) beats · min−1], were correlated, but f c max was significantly higher for AC than for TM (P<0.03). There were significant correlations between MVF and LAV (P<0.001) and between the MVF data obtained at different angles of the hand on the rim [311.9 (90.1) N, 313.2 (81.2) N, 257.1 (71) N, at −30°, 0° and +30°, respectively]. There was no correlation between O2 max and LAV or MVF. The relatively low values of f c max suggest that O2 max was, at least in part, limited by local aerobic factors instead of central cardiovascular factors. On the other hand, the lack of a significant correlation between O2 max and MVF or muscle mass was not in favour of muscle strength being the main factor limiting O2 max in our subjects. Accepted: 31 January 1997  相似文献   

18.
Four incremental protocols of knee extension exercise of different stage durations were compared to study the effect of the protocol upon power output at the last stage (P peak). Previous studies of knee extension have found very different power outputs with similar ergometers and these large differences have been interpreted as being the result of the fatigue due to the durations of the protocols. The knee extension device used in previous studies was modified to avoid the action of the knee and hip flexors: the subjects pushing on a lever instead of pulling a rod. In the present study five subjects performed four incremental knee extension exercises which differed with regard to stage duration (60, 90, 180 or 360 s) on this ergometer. The P peak, peak oxygen uptake (O2peak) and peak heart rate (HRpeak) were measured at the end of each of these four incremental protocols. In eight subjects, the reliability of the protocols with the two shortest increments (60 and 90-s stages) was verified by measuring P peak at 60 s and 90 s (P peak60, P peak90) twice. The knee ergometer proposed in the present paper was easy to use without any special training and should improve the measurement of P peak. The P peak60 [49.4 (SD 5.6) W] was higher than at 180 s [P peak180, 43.6 (SD 5.8) W, P < 0.05] and at 360 s [P peak360, 43.4 (SD 5.3) W, P < 0.05]. All the other differences in P peak, O2 peak and HRpeak were not significant. All correlations between P peak60, P peak90, P peak180 and P peak360 were significant, except those between P peak360 and P peak90 or P peak180. The effect of the stage duration on power output and oxygen uptake at the end of the knee extension exercises was not great. Consequently, the large differences in power output and oxygen uptake observed in previous studies cannot be explained by the protocol only. The significant difference between P peak 60 and P peak90 was of the order of 10% in agreement with findings in the literature using cycle ergometry. The reliability of P peak60 and P peak90 was high and the use of these protocols can be recommended if further studies show that the measurement of P peak, is useful in the evaluation of local endurance. Accepted: 2 April 1998  相似文献   

19.
To investigate the protection of selenium on hepatic mitochondrial functions, 90 7-day-old ducklings were randomly divided into three groups (groups I–III). Group I was used as a blank control. Group II was administered with aflatoxin B1 (0.1 mg/kg body weight). Group III was administered with aflatoxin B1 (0.1 mg/kg body weight) plus selenium (sodium selenite, 1 mg/kg body weight). All treatments were given once daily for 21 days. The results showed that the activities of hepatic mitochondrial complexes I–IV in group II ducklings significantly decreased when compared with group I (P < 0.01). Furthermore, the activities of hepatic mitochondrial complexes I–IV in group III significantly increased when compared with group II (P < 0.05). The hepatic mitochondrial respiratory control ratio (RCR) in group II ducklings significantly decreased when compared with group I (P < 0.01). In addition, the hepatic mitochondrial RCR in group III significantly increased when compared with group II (P < 0.05). These results revealed that the aflatoxin B1 significantly induced hepatic mitochondrial dysfunction in the activities of hepatic mitochondrial respiratory chain complexes I–IV and the RCR in ducklings. However, sodium selenite could significantly ameliorate the negative effect induced by aflatoxin B1.  相似文献   

20.
The present study was undertaken to determine the effects of endurance training on glycogen kinetics during exercise. A new model describing glycogen kinetics was applied to quantitate the rates of synthesis and degradation of glycogen. Trained and untrained rats were infused with a 25% glucose solution with 6-3H-glucose and U-14C-lactate at 1.5 and 0.5 μCi · min−1 (where 1 Ci = 3.7 × 1010 Bq), respectively, during rest (30 min) and exercise (60 min). Blood samples were taken at 10-min intervals starting just prior to isotopic infusion, until the cessation of exercise. Tissues harvested after the cessation of exercise were muscle (soleus, deep, and superficial vastus lateralis, gastrocnemius), liver, and heart. Tissue glycogen was quantitated and analyzed for incorporation of 3H and 14C via liquid scintillation counting. There were no net decreases in muscle glycogen concentration from trained rats, whereas muscle glycogen concentration decreased to as much as 64% (P < 0.05) in soleus in muscles from untrained rats after exercise. Liver glycogen decreased in both trained (30%) and untrained (40%) rats. Glycogen specific activity increased in all tissues after exercise indicating isotope incorporation and, thus, glycogen synthesis during exercise. There were no differences in muscle glycogen synthesis rates between trained and untrained rats after exercise. However, training decreased muscle glycogen degradation rates in total muscle (i.e., the sum of the degradation rates of all of the muscles sampled) tenfold (P < 0.05). We have applied a model to describe glycogen kinetics in relation to glucose and lactate metabolism during exercise in trained and untrained rats. Training significantly decreases muscle glycogen degradation rates during exercise. Accepted: 22 May 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号