共查询到20条相似文献,搜索用时 15 毫秒
1.
Centrosome control of the cell cycle 总被引:15,自引:0,他引:15
Early observations of centrosomes, made a century ago, revealed a tiny dark structure surrounded by a radial array of cytoplasmic fibers. We now know that the fibers are microtubules and that the dark organelles are centrosomes that mediate functions far beyond the more conventional role of microtubule organization. More recent evidence demonstrates that the centrosome serves as a scaffold for anchoring an extensive number of regulatory proteins. Among these are cell-cycle regulators whose association with the centrosome is an essential step in cell-cycle control. Such studies show that the centrosome is required for several cell-cycle transitions, including G(1) to S-phase, G(2) to mitosis and metaphase to anaphase. In this review (which is part of the Chromosome Segregation and Aneuploidy series), we discuss recent data that provide the most direct links between centrosomes and cell-cycle progression. 相似文献
2.
3.
4.
5.
《The Journal of cell biology》1995,130(4):919-927
The centriole pair in animals shows duplication and structural maturation at specific cell cycle points. In G1, a cell has two centrioles. One of the centrioles is mature and was generated at least two cell cycles ago. The other centriole was produced in the previous cell cycle and is immature. Both centrioles then nucleate one procentriole each which subsequently elongate to full-length centrioles, usually in S or G2 phase. However, the point in the cell cycle at which maturation of the immature centriole occurs is open to question. Furthermore, the molecular events underlying this process are entirely unknown. Here, using monoclonal and polyclonal antibody approaches, we describe for the first time a molecular marker which localizes exclusively to one centriole of the centriolar pair and provides biochemical evidence that the two centrioles are different. Moreover, this 96-kD protein, which we name Cenexin (derived from the Latin, senex for "old man," and Cenexin for centriole) defines very precisely the mature centriole of a pair and is acquired by the immature centriole at the G2/M transition in prophase. Thus the acquisition of Cenexin marks the functional maturation of the centriole and may indicate a change in centriolar potential such as its ability to act as a basal body for axoneme development or as a congregating site for microtubule-organizing material. 相似文献
6.
The de novo centriole assembly pathway in HeLa cells: cell cycle progression and centriole assembly/maturation 总被引:1,自引:0,他引:1
下载免费PDF全文

La Terra S English CN Hergert P McEwen BF Sluder G Khodjakov A 《The Journal of cell biology》2005,168(5):713-722
It has been reported that nontransformed mammalian cells become arrested during G1 in the absence of centrioles (Hinchcliffe, E., F. Miller, M. Cham, A. Khodjakov, and G. Sluder. 2001. Science. 291:1547-1550). Here, we show that removal of resident centrioles (by laser ablation or needle microsurgery) does not impede cell cycle progression in HeLa cells. HeLa cells born without centrosomes, later, assemble a variable number of centrioles de novo. Centriole assembly begins with the formation of small centrin aggregates that appear during the S phase. These, initially amorphous "precentrioles" become morphologically recognizable centrioles before mitosis. De novo-assembled centrioles mature (i.e., gain abilities to organize microtubules and replicate) in the next cell cycle. This maturation is not simply a time-dependent phenomenon, because de novo-formed centrioles do not mature if they are assembled in S phase-arrested cells. By selectively ablating only one centriole at a time, we find that the presence of a single centriole inhibits the assembly of additional centrioles, indicating that centrioles have an activity that suppresses the de novo pathway. 相似文献
7.
Centrosome duplication continues in cycloheximide-treated Xenopus blastulae in the absence of a detectable cell cycle 总被引:5,自引:11,他引:5
下载免费PDF全文

Cycloheximide (500 micrograms/ml) rapidly arrests cleavage, spindle assembly, and cycles of an M-phase-specific histone kinase in early Xenopus blastulae. 2 h after cycloheximide addition, most cells contained two microtubule asters radiating from perinuclear microtubule organizing centers (MTOCs). In contrast, blastomeres treated with cycloheximide for longer periods (3-6 h) contained numerous microtubule asters and MTOCs. Immunofluorescence with an anticentrosome serum and EM demonstrated that the MTOCs in cycloheximide-treated cells were typical centrosomes, containing centrioles and pericentriolar material. We conclude that centrosome duplication continues in cycloheximide-treated Xenopus blastulae in the absence of a detectable cell cycle. In addition, these observations suggest that Xenopus embryos contain sufficient material to assemble 1,000-2,000 centrosomes in the absence of normal protein synthesis. 相似文献
8.
Hosken DJ 《Current biology : CB》2003,13(9):R355-R356
Sperm length is highly variable within and across species, but relatively little attention has been paid to this variation. Two recent studies employing laboratory selection experiments have provided novel insights into the evolution of sperm size. 相似文献
9.
Centrosome reduction during spermiogenesis has been studied using anti-gamma-tubulin and anti-centrin antibodies and electron microscopy in nonhuman primates. Rhesus spermatids possess apparently normal centrosomes comprising a pair of centrioles associated with gamma-tubulin and centrin. However, they do not nucleate detectable microtubules. The spermatids discard gamma-tubulin in the residual bodies during the spermiation stage. Mature sperm do not have any detectable gamma-tubulin. About half of the centrin associated with the distal centriole degenerates during spermiogenesis and the remainder is intimately bound to the centriolar microtubules. The mature sperm possess highly degenerated distal centrioles. The centriolar microtubules degenerate in the rostral region and the ventral side of the sperm. The study indicates that the centrosome is reduced during rhesus spermiogenesis, but not completely as in mice. 相似文献
10.
11.
Hinchcliffe EH 《Current biology : CB》2003,13(16):R646-R648
12.
Molecular biology of the cell cycle 总被引:2,自引:0,他引:2
R Baserga 《International journal of radiation biology and related studies in physics, chemistry, and medicine》1986,49(2):219-226
Genes and cDNA clones have been identified in animal cells that are cell cycle-regulated, i.e. they are preferentially expressed in a phase of the cell cycle. Some of these genes, including four oncogenes, are induced when G0 cells are stimulated to proliferate. Four approaches are described to identify the genes that regulate the transition of cells from a resting to a growing stage. The interrelationship among cell cycle-regulated genes, oncogenes, growth factors and receptors for growth factors points the way to a genetic dissection of cell cycle progression. 相似文献
13.
14.
Hyman Hartman 《Journal of theoretical biology》1975,51(2):501-509
The endosymbiotic theory of the origin of the centriole is found lacking as no DNA has been found in the structure. The centriole is related to the ribosome in that it is a structure nucleated by RNA. This RNA (morphic) has the property of localizing itself at the site of the old centriole before nucleating a new one. The implication of this property of the localization of RNA is discussed with respect to the way the eukaryotic cell determines its shape. 相似文献
15.
Summary In the amoebae of the myxomycetePhysarum polycephalum, procentrioles are formed on the anterior and posterior centrioles in early prophase. Although the relative position of the parental and procentrioles is fixed, all relative positions of the daughter and parental centrioles were observed. During the different stages of mitosis daughter centrioles elongate and acquire anterior satellites, one of the characteristic features of the anterior centrioles. All other anterior morphological characteristics appear only in telophase and early reconstruction stages. In contrast to the parental posterior centrioles, which do not change morphologically during the successive mitotic stages, the parental anterior centrioles lose their morphological characteristics in late prophase and early prometaphase and then acquire the morphological features characteristic of the posterior centrioles. Thus, the following maturation scheme is suggested: a procentriole becomes an anterior centriole during the first mitosis and a posterior centriole during the second mitosis. Since posterior features are maintained during mitosis, the posterior centriole corresponds to the final state of centriole maturation. 相似文献
16.
Phosphorylation of centrin during the cell cycle and its role in centriole separation preceding centrosome duplication 总被引:1,自引:0,他引:1
Lutz W Lingle WL McCormick D Greenwood TM Salisbury JL 《The Journal of biological chemistry》2001,276(23):20774-20780
Once during each cell cycle, mitotic spindle poles arise by separation of newly duplicated centrosomes. We report here the involvement of phosphorylation of the centrosomal protein centrin in this process. We show that centrin is phosphorylated at serine residue 170 during the G(2)/M phase of the cell cycle. Indirect immunofluorescence staining of HeLa cells using a phosphocentrin-specific antibody reveals intense labeling of mitotic spindle poles during prophase and metaphase of the cell division cycle, with diminished staining of anaphase and no staining of telophase and interphase centrosomes. Cultured cells undergo a dramatic increase in centrin phosphorylation following the experimental elevation of PKA activity, suggesting that this kinase can phosphorylate centrin in vivo. Surprisingly, elevated PKA activity also resulted intense phosphocentrin antibody labeling of interphase centrosomes and in the concurrent movement of individual centrioles apart from one another. Taken together, these results suggest that centrin phosphorylation signals the separation of centrosomes at prophase and implicates centrin phosphorylation in centriole separation that normally precedes centrosome duplication. 相似文献
17.
Dissociating the centrosomal matrix protein AKAP450 from centrioles impairs centriole duplication and cell cycle progression
下载免费PDF全文

Keryer G Witczak O Delouvée A Kemmner WA Rouillard D Tasken K Bornens M 《Molecular biology of the cell》2003,14(6):2436-2446
Centrosomes provide docking sites for regulatory molecules involved in the control of the cell division cycle. The centrosomal matrix contains several proteins, which anchor kinases and phosphatases. The large A-Kinase Anchoring Protein AKAP450 is acting as a scaffolding protein for other components of the cell signaling machinery. We selectively perturbed the centrosome by modifying the cellular localization of AKAP450. We report that the expression in HeLa cells of the C terminus of AKAP450, which contains the centrosome-targeting domain of AKAP450 but not its coiled-coil domains or binding sites for signaling molecules, leads to the displacement of the endogenous centrosomal AKAP450 without removing centriolar or pericentrosomal components such as centrin, gamma-tubulin, or pericentrin. The centrosomal protein kinase A type II alpha was delocalized. We further show that this expression impairs cytokinesis and increases ploidy in HeLa cells, whereas it arrests diploid RPE1 fibroblasts in G1, thus further establishing a role of the centrosome in the regulation of the cell division cycle. Moreover, centriole duplication is interrupted. Our data show that the association between centrioles and the centrosomal matrix protein AKAP450 is critical for the integrity of the centrosome and for its reproduction. 相似文献
18.
Roth TM Chiang CY Inaba M Yuan H Salzmann V Roth CE Yamashita YM 《Molecular biology of the cell》2012,23(8):1524-1532
Drosophila male germline stem cells (GSCs) divide asymmetrically, balancing self-renewal and differentiation. Although asymmetric stem cell division balances between self-renewal and differentiation, it does not dictate how frequently differentiating cells must be produced. In male GSCs, asymmetric GSC division is achieved by stereotyped positioning of the centrosome with respect to the stem cell niche. Recently we showed that the centrosome orientation checkpoint monitors the correct centrosome orientation to ensure an asymmetric outcome of the GSC division. When GSC centrosomes are not correctly oriented with respect to the niche, GSC cell cycle is arrested/delayed until the correct centrosome orientation is reacquired. Here we show that induction of centrosome misorientation upon culture in poor nutrient conditions mediates slowing of GSC cell proliferation via activation of the centrosome orientation checkpoint. Consistently, inactivation of the centrosome orientation checkpoint leads to lack of cell cycle slowdown even under poor nutrient conditions. We propose that centrosome misorientation serves as a mediator that transduces nutrient information into stem cell proliferation, providing a previously unappreciated mechanism of stem cell regulation in response to nutrient conditions. 相似文献
19.
To help students develop successful strategies for learning how to learn and communicate complex information in cell biology, we developed a quarter-long cell biology class based on team projects. Each team researches a particular human disease and presents information about the cellular structure or process affected by the disease, the cellular and molecular biology of the disease, and recent research focused on understanding the cellular mechanisms of the disease process. To support effective teamwork and to help students develop collaboration skills useful for their future careers, we provide training in working in small groups. A final poster presentation, held in a public forum, summarizes what students have learned throughout the quarter. Although student satisfaction with the course is similar to that of standard lecture-based classes, a project-based class offers unique benefits to both the student and the instructor. 相似文献
20.
Gonzalez C 《Current opinion in cell biology》2008,20(6):694-698
Cell polarity is inherent to animal development and requires microtubules. In essentially all non-terminally differentiated somatic and male germ-line animal cells, microtubule organisation is governed by centrosomes. Animal development without centrosomes would therefore seem inconceivable. The claim of flies without centrosomes may appear to challenge this notion. Does it? 相似文献