首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
The oxygen equilibria of the hemoglobins of one holostean fish, the spotted gar (Lepisosteus osculatus), and of four teleost fish, the carpsucker (Carpiodes carpio), the small mouth buffalo fish (Ictiobus bubalus), the Rio Grande cichlid (Cichlasoma cyanoguttatum), and the redear sunfish (Lepomis microlophus), have been measured as a function of pH in the presence and absence of ATP. The oxygen equilibria of the teleost hemoglobins in the presence of 200 μm ATP can be superimposed within experimental error upon the data obtained in the absence of ATP by a simple downward shift of the pH scale by 0.5 unit. Thus the effects of proton and ATP binding appear equivalent: Both can be interpreted in terms of a two-state allosteric model in which binding occurs preferentially to the low-affinity T-state. The oxygen affinities of each of the teleost hemoglobins approach asymptotically a maximal value at high pH. Although these high affinities are associated with decreased cooperativity of oxygen binding, as reflected by the Hill coefficient n, the asymptotic value of n never appears lower than 1.2 to 1.4. This indicates that the data cannot be completely described in terms of a single high-affinity R-state in alkaline solution: At least two different conformations are required. The oxygen affinity of the spotted gar hemoglobin, like that of each of the teleost hemoglobins, reaches a maximal value (minimal value of log PO2 for half-saturation) above pH 8, but unlike teleost hemoglobins, the Hill coefficient reaches maximal values of 2.6 to 2.7 at high pH. The data in the absence of ATP are superimposable on the data in its presence by a downward shift of the pH scale by 0.25 unit. The measurement of the Bohr effect (ΔlogP30ΔpH) in the presence and absence of ATP shows that the Bohr effect in each of the hemoglobins is substantially enhanced by organic phosphates, as it is in mammalian hemoglobins. The extent of the enhancement of the Bohr effect by 200 μm ATP for each of the hemoglobins is approximately the same in the range pH 6.7 to 7.3 (increase in ΔlogP50ΔpH ~ 0.3). This is a direct consequence of the equivalence of the linked-function relationship to the effects of ATP and proton binding on oxygenation.  相似文献   

2.
Prompted by the reported lack of solvation effects on the oxygen affinity of fish (trout I) hemoglobin that questioned allosteric water binding in human hemoglobin A (Bellelli, A., Brancaccio, A., and Brunori, M. (1993) J. Biol. Chem. 268, 4742-4744), we have investigated solvation effects in fish and human hemoglobins by means of the osmotic stress method and allosteric analysis. In contrast to the earlier report, we demonstrate that water potential does affect oxygen affinity of trout hemoglobin I in the presence of inert solutes like betaine. Moreover, we show that upon oxygenation electrophoretically anodic hemoglobin from trout and eel bind a similar number of water molecules as does human hemoglobin A, whereas the cathodic hemoglobins of trout and eel bind smaller, but mutually similar, numbers of water molecules. Addition of cofactors strongly increases the number of water molecules bound to eel hemoglobin A (as in human hemoglobin) but only weakly affects water binding to eel hemoglobin C.  相似文献   

3.
4.
5.
6.
7.
A review of the oxidative and nitrosative reactions of cell-free hemoglobin-based oxygen carriers (HBOCs) shows that these reactions are intimately linked and are subject to allosteric control. Cross-linking reactions used to produce HBOCs introduce conformational constraints and result in Hbs with reduced responses to heterotropic and homotropic allosteric effectors. The Nernst plots of heme oxidation of cross-linked HBOCs are shifted to higher potentials relative to unmodified Hb in the absence of allosteric effectors, in accord with their T-state stabilization and right-shifted Hill plots of O(2) binding. They exhibit enhanced rates of autoxidation and nitrite-induced oxidation, features that appear due to their having more solvent-accessible heme pockets. The stability of their NO-Hb derivatives varies as a result of allosteric effects on the extent of formation of pentacoordinate NO-heme geometry by alpha chains and subsequent oxidation of partner beta chains. The physiological implications of these findings on the safety, efficacy and design of second generation HBOCs are discussed in the framework of a reaction scheme showing linkages between Hb-mediated redox reactions. These redox reactions can drive formation of SNO-Hb and other reactive species and are of significance for the use of cell-free Hbs in vivo.  相似文献   

8.
9.
10.
Summary Physarum polycephalum microplasmodia exposed to 1.6×10–5 M cytochalasin A evidenced intracellular cytoplasmic condensation, slow contraction, and eventual breaks at discrete surface areas, within one hour. Other cytochalasins tested (CB or CD) did not substitute for CA. CA effects on plasmodia were not abolished by immediate washing or media replacement. In nutrient medium, CA plus ATP (375 M) produced within minutes herniation (blebbing) and plasmodial disruption. The order of addition of reagents was important; ATP added simultaneously with or prior to CA stimulated the phenomenon, whereas initial addition of CA resulted in no such dynamic response. Several other nucleotides (e.g., AMP, cAMP) could substitute for ATP; however, such changes were not observed with 5-adenylylimidodiphosphate. Blebbing was not abolished in the presence of 2,4-dinitrophenol. In minimal medium, it was best stimulated by simultaneous addition of Ca++ and Mg++. Preincubation of CA with L-cysteine or with -mercaptoethanol negates its individual or nucleotide-combined effects. Yet, 10–5 M ethacrynic acid, a sulfhydryl-reactive liposoluble drug, in the presence of ATP does not mimic the blebbing response. These observed effects, which take place at or near the plasmodial surface, presumably reflect acceleration of normal contractile processes inPhysarum. Abbreviations CA cytochalasin A - CB cytochalasin B - CD cytochalasin D - AMP adenosine 5-monophosphate - ADP adenosine 5-diphosphate - ATP adenosine 5-triphosphate - di-butyryl-cAMP di-butyryl-cyclic adenosine 35-monophosphate - di-butyrylcGMP di-butyryl-cyclic guanosine 35-monophasphate. This work was supported by a grant (AI-11902) from the U.S. Public Health Service.  相似文献   

11.
The hemoglobins of three snake species: Liophis miliaris, Bothrops alternatus and Boa constrictor present a single ATP binding site per tetramer. The ATP association constant values for the deoxyhemoglobins at pH 7.5 were about KD ≅ 106 M−1 (107 M−1 for B. contrictor), three to four orders of magnitude higher than the respective values for oxyhemoglobin of about KO ≅ 102 M−1. The deoxyhemoglobin constant values markedly decrease as a function of pH, becoming, at pH 8.5, about KD ≅ 103 M−1 whereas for the oxyhemoglobin the constants remain of about the same, KO ≅ 102 M−1, at the pH range studied. The high ATP binding affinity constants, compared to those of human hemoglobin A, were explained from a molecular structural standpoint, considering L. miliaris hemoglobin, whose complete primary sequence is known. Two distinct amino acid residue differences were found in the β-chain, one being Trp (NA3) (more hydrophobic) in the snake hemoglobin which substitutes the Leu (NA3) in human hemoglobin, and the second being Val 101 β (G3) instead of Glu 101 β (G3). The substitutions could provide an un-neutralized, positively charged, residue Lys-104β and, taking into account its high pK value, the pH dependence of ATP binding affinity for the snake hemoglobin would originate from pH-dependent ionization of phosphate groups of the allosteric effector. The physiological implications of the high ATP binding constant, as well as the possible protective role of the nucleotide binding against the effect of high environmental temperatures on the oxygen dissociation curves, are discussed.  相似文献   

12.
13.
14.
Allosteric modulators for adenosine receptors may have potential therapeutic advantage over orthosteric ligands. Allosteric enhancers at the adenosine A1 receptor have been linked to antiarrhythmic and antilipolytic activity. They may also have therapeutic potential as analgesics and neuroprotective agents. A3 allosteric enhancers are postulated to be useful against ischemic conditions or as antitumor agents. In this review, we address recent developments regarding the medicinal chemistry of such compounds. Most efforts have been and are directed toward adenosine A1 and A3 receptors, whereas limited or no information is available for A2A and A2B receptors. We also discuss some findings, mostly receptor mutation studies, regarding localization of the allosteric binding sites on the receptors.  相似文献   

15.
16.
17.
This paper reports the results obtained using the osmotic stress method applied to the purified cathodic and anodic hemoglobins (Hbs) from the catfish Hoplosternum littorale, a species that displays facultative accessorial air oxygenation. We demonstrate that water potential affects the oxygen affinity of H. littorale Hbs in the presence of an inert solute (sucrose). Oxygen affinity increases when water activity increases, indicating that water molecules stabilize the high-affinity state of the Hb. This effect is the same as that observed in tetrameric vertebrate Hbs. We show that both anodic and cathodic Hbs show conformational substrates similar to other vertebrate Hbs. For both Hbs, addition of anionic effectors, especially chloride, strongly increases the number of water molecules bound, although anodic Hb did not exhibit sensitivity to saturating levels of ATP. Accordingly, for both Hbs, we propose that the deoxy conformations coexist in at least two anion-dependent allosteric states, T(o) and T(x), as occurs for human Hb. We found a single phosphate binding site for the cathodic Hb.  相似文献   

18.
19.
20.
1. ATP, GTP, CTP and UTP at concentrations of 1mm markedly decrease the amount of coproporphyrin excreted by Rhodopseudomonas spheroides illuminated in a medium containing glycine, succinate and fumarate. 2. The effect of ATP is decreased if ethionine is also added to the medium. 3. Evidence is presented showing that ATP is taken up by the organisms from the medium. 4. ATP is shown to have a marked effect on the utilization of glycine. In the presence of ATP the incorporation of the methylene carbon atom of glycine into the fatty acid moieties of the phospholipids is greatly increased, and more of the carboxyl carbon atom is lost, probably as carbon dioxide. 5. ATP has little effect on the utilization of succinate or fumarate. 6. The possible significance of these results with regard to the control by ATP of porphyrin synthesis and excretion and glycine metabolism is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号