首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The presentation of two sinusoidal tones, one to each ear, with a slight frequency mismatch yields an auditory illusion of a beating frequency equal to the frequency difference between the two tones; this is known as binaural beat (BB). The effect of brief BB stimulation on scalp EEG is not conclusively demonstrated. Further, no studies have examined the impact of musical training associated with BB stimulation, yet musicians'' brains are often associated with enhanced auditory processing. In this study, we analysed EEG brain responses from two groups, musicians and non-musicians, when stimulated by short presentation (1 min) of binaural beats with beat frequency varying from 1 Hz to 48 Hz. We focused our analysis on alpha and gamma band EEG signals, and they were analysed in terms of spectral power, and functional connectivity as measured by two phase synchrony based measures, phase locking value and phase lag index. Finally, these measures were used to characterize the degree of centrality, segregation and integration of the functional brain network. We found that beat frequencies belonging to alpha band produced the most significant steady-state responses across groups. Further, processing of low frequency (delta, theta, alpha) binaural beats had significant impact on cortical network patterns in the alpha band oscillations. Altogether these results provide a neurophysiological account of cortical responses to BB stimulation at varying frequencies, and demonstrate a modulation of cortico-cortical connectivity in musicians'' brains, and further suggest a kind of neuronal entrainment of a linear and nonlinear relationship to the beating frequencies.  相似文献   

2.
The development of the resonance EEG responses of the left and right occipital areas was studied in right-handed men during prolonged (12 or 120 s) rhythmic, photostimulation with the intensity of 0.7 J and frequencies of 6, 10, and 16 Hz. Analysis of the EEG fine spectral structure was applied to compare the accumulated baseline EEG spectra and EEG spectra during photostimulation, to observe the dynamics of the short-term spectra and to detect power changes in the EEG narrow spectral band sharply coincident with the stimulation frequency. The more pronounced EEG responses to photostimulation were observed in subjects with the initially low EEG baseline, α-rhythm. Two-minute flash trains produced a substantial increase in the EEG power within the stimulation frequency with superposed oscillatory processes with different periods. These fluctuations are considered a reflection of intricate interaction between the adaptive and resonance EEG responses to the presented intermittent stimulation. Under 12-s stimulation the resonance EEG responses are steadily recorded within the first 3 s of stimulation and immediately after the flash cessation EEG power at the stimulation frequency returns to the initial level. The resonance EEG responses were more pronounced in the right hemisphere than in the left one, especially, at the stimulation frequencies of 6 and 16 Hz. With increasing the stimulation frequency, the maximum of resonance EEG responses was reached earlier. Under the stimulation frequency of 6 Hz, the maximal response was recorded 9–12 s after the beginning of flashes, at the frequencies of 10 and 16 Hz, it was recorded within 3–6 and 3 s, respectively.  相似文献   

3.
Direct cortical responses (DCR) to a series of electrical stimuli with a frequency of I to 50 per second with 10 to 20 pulses in each series were studied in chronic experiments on dogs. The nature of cortical responses differed, depending on stimulation parameters. As the stimulation frequency increased, the amplitude and number of late DCR components decreased, and with further increase of frequency, the early components decreased as well. The following types of responses were revealed: recruiting, intermittent and decremental. As the stimulation frequency increased all the three types of responses could be obtained in one and the same cortical point. Recruiting was not typical of high-amplitude and multi-component DCR with a long phase of depression of initial negativity and slightly pronounced short-term subsequent facilitation, while the intermittent type of response appeared at lower frequencies than in other dogs (5 to 10 per sec). A decremental type of response was observed in all the dogs at a stimulation frequency higher than 30 per sec. The duration of the series of after-discharges to a burst of electrical pulses depended on the pattern of the DCR to a single stimulus and on the intensity and frequency of stimulation. With similar parameters of stimulation, the greater the amplitude and the longer the duration of the slow negative DCR wave, the longer the period of after-discharges following a series of stimuli.  相似文献   

4.
Correlations between the resting blood pressure and magnitude of depressor responses evoked by graded stimulation of the aortic nerve, were studied in rabbits anaesthetized with urethane. The strength of stimulation ranged from 1 to 10 times the threshold, and activated the myelinated afferents. The frequency of stimulation was 5 and 50 cycles/sec. At lower frequency of stimulation the correlations become significant when the intensity of stimulation is 3 times the threshold and they increase at the highest strengths of stimulation. Correlation coefficients calculated for responses obtained at the frequency of 50 cycles/sec are significant in 8 out of 9 intensities of stimulation. With increase in the strength of stimulation they increase, attain their maximum at twice the threshold and decrease at the largest used stimulus strengths. The changes in the values of the correlation coefficients are not paralleled by alterations in the mean size of depressor responses. Since all correlation coefficients are positive, it is inferred that the depressor responses produced by stimulation of the aortic nerve follow WILDER's "law of initial value". The conformity with this rule is the better the higher the values of the correlation coefficients. The strength of relationship between the resting blood pressure and the size of depressor responses is considered to reflect the efficiency of the homeostatic circulatory mechanism.  相似文献   

5.
Mechanotransduction in the femoral tactile spine of the cockroach, Periplaneta americana, was examined as a function of displacement of the spine axially in its socket. Linear behaviour was analyzed by measurement of the frequency response function between displacement and action potential output using sinusoidal stimulation and random noise stimulation. The measured frequency response functions can be well fitted by a relationship which is a fractional power of complex frequency. This power was close to 0.5 for all experiments. To distinguish between the effects of nonlinearity and of inherent variability, the averaged responses of the preparation to repeated sequences of pseudorandom noise were compared to those from experiments in which continuous pseudorandom noise were used. The lack of sensitivity of the coherence function to these two methods of measurement suggests that mechanical stimuli are encoded into action potentials with a large signal-to-noise ratio. The low value of the coherence function which is characteristics of insect mechanoreceptors is therefore due to the strong non-linearity of their responses. To investigate the nonlinear properties of transduction, the second-order frequency response function of the tactile spine was measured for random noise stimulation experiments. Two models of the transduction process were considered in which a linear element with memory was cascaded with a nonlinear element without memory in the two possible configurations. Comparison of the experimental second-order frequency response functions with predictions based upon these two models and the measured first-order frequency response suggests that the transduction mechanism can be modelled by a linear element, which may be associated with the viscoelastic properties of the dendritic tubular body, and a zeromemory nonlinearity, which is most likely to be rectification by the dendritic membrane.  相似文献   

6.
Computational modeling has played an important role in the dissection of the biophysical basis of rhythmic oscillations in thalamus that are associated with sleep and certain forms of epilepsy. In contrast, the dynamic filter properties of thalamic relay nuclei during states of arousal are not well understood. Here we present a modeling and simulation study of the throughput properties of the visually driven dorsal lateral geniculate nucleus (dLGN) in the presence of feedback inhibition from the perigeniculate nucleus (PGN). We employ thalamocortical (TC) and thalamic reticular (RE) versions of a minimal integrate-and-fire-or-burst type model and a one-dimensional, two-layered network architecture. Potassium leakage conductances control the neuromodulatory state of the network and eliminate rhythmic bursting in the presence of spontaneous input (i.e., wake up the network). The aroused dLGN/PGN network model is subsequently stimulated by spatially homogeneous spontaneous retinal input or spatio-temporally patterned input consistent with the activity of X-type retinal ganglion cells during full-field or drifting grating visual stimulation. The throughput properties of this visually-driven dLGN/PGN network model are characterized and quantified as a function of stimulus parameters such as contrast, temporal frequency, and spatial frequency. During low-frequency oscillatory full-field stimulation, feedback inhibition from RE neurons often leads to TC neuron burst responses, while at high frequency tonic responses dominate. Depending on the average rate of stimulation, contrast level, and temporal frequency of modulation, the TC and RE cell bursts may or may not be phase-locked to the visual stimulus. During drifting-grating stimulation, phase-locked bursts often occur for sufficiently high contrast so long as the spatial period of the grating is not small compared to the synaptic footprint length, i.e., the spatial scale of the network connectivity.  相似文献   

7.
By the frequency-dependent release of serotonin, Retzius neurons in the leech modulate diverse behavioral responses of the animal. However, little is known about how their firing pattern is produced. Here we have analyzed the effects of mechanical stimulation of the skin and intracellular stimulation of mechanosensory neurons on the electrical activity of Retzius neurons. We recorded the electrical activity of neurons in ganglia attached to their corresponding skin segment by segmental nerve roots, or in isolated ganglia. Mechanosensory stimulation of the skin induced excitatory synaptic potentials (EPSPs) and action potentials in both Retzius neurons in a ganglion. The frequency and duration of responses depended on the strength and duration of the skin stimulation. Retzius cells responded after T and P cells, but before N cells, and their sustained responses correlated with the activity of P cells. Trains of five impulses at 10 Hz in every individual T, P, or N cell in isolated ganglia produced EPSPs and action potentials in Retzius neurons. Responses to T cell stimulation appeared after the first impulse. In contrast, the responses to P or N cell stimulation appeared after two or more presynaptic impulses and facilitated afterward. The polysynaptic nature of all the synaptic inputs was shown by blocking them with a high calcium/magnesium external solution. The rise time distribution of EPSPs produced by the different mechanosensory neurons suggested that several interneurons participate in this pathway. Our results suggest that sensory stimulation provides a mechanism for regulating serotonin-mediated modulation in the leech.  相似文献   

8.
闭环刺激是深部脑刺激(deep brain stimulation,DBS)的重要发展方向之一,有望用于治疗多种脑神经系统疾病.与常规开环的长时间持续刺激不同,闭环刺激通常采用短促的高频脉冲序列.而神经元对于高频刺激的响应存在暂态过程,在初期的短时间内会发生很大变化,从而影响闭环刺激的作用.为了研究这种暂态过程,在大鼠...  相似文献   

9.
The purpose of the study was to evaluate the importance of the epithelium in determining the potency of exogenous vasoactive intestinal peptide (VIP) in inhibiting responses of isolated guinea pig trachea to vagal stimulation. Isolated innervated tracheal preparations (n = 56) were mounted in glass organ baths in Krebs-Henseleit (K-H) solution at 37 degrees C and gassed with 95% O2-5% CO2. The inside of the trachea was separately perfused with K-H solution at 1 ml/min. The vagal nerve trunks were stimulated (20 V, 1-ms pulses, 10-s trains) at low (0.5 Hz) and high frequency (15 Hz) alternately, and the contractile responses were measured as increases in intratracheal pressures. VIP (10(-8)-10(-7) M) inhibited responses to both high- and low-frequency stimulation. VIP was more potent in inhibiting contractions when administered to the outside than the inside surface of the trachea, and disruptionon of the epithelium abolished this difference. The endopeptidase inhibitors phosphoramidon and thiorphan (5 x 10(-6) M) potentiated the action of VIP. These data indicate that the epithelium reduces the efficacy of VIP. We suggest that the epithelium is a site of degradation of VIP by endopeptidase and may also be a diffusion barrier.  相似文献   

10.
Stability of depressor responses evoked by long-lasting continuous and intermittent stimulation of the aortic nerve was studied in rabbits anaesthetized with urethane. Continuous stimulation produces blood pressure falls whose stability at low frequencies (1-10 cycles/sec) ranges from 91 to 86%. With rise of the stimulation frequency stability is decreased : at 500 cycles/sec, it amounts to 19%. Intermittent stimulation consisting in switching excitation on and off every 10 sec increases stability of depressor responses and at 500 cycles/sec, it is significantly higher than stability of effects produced by continuous stimulation. Following transection of aortic nerves, stability is increased at all frequencies of continuous stimulation and at all but the lowest frequency of intermittent stimulation. Vagotomy performed after section of the aortic nerves does not significantly affect the changes in stability observed after severing the aortic afferents. It is suggested that at high frequencies of stimulation, stability of depressor responses is reduced by homosynaptic depression. During intermittent stimulation, its effect is counteracted by post-tetanic changes occurring at intervals when the stimulation is switched off. The increase in stability after section of aortic nerves is probably related to its effect on excitability of the vasomotor centres.  相似文献   

11.
In the isolated, blood-perfused canine right atrium, which was pretreated with propranolol, negative chronotropic and inotropic responses were evoked by stimulation of the intramural parasympathetic nerve fibers or by intra-arterial infusion of acetylcholine (ACh). Successive cholinergic interventions were applied; first, a conditioning intervention for 2 min was given, then this was followed by a test intervention for 4 min. The two interventions were separated by a rest period that varied from 15 to 240 s. The cardiac responses to the conditioning parasympathetic nerve stimulation quickly reached maximum levels, and then they "faded" or progressively diminished back toward the control level. The inotropic responses to the conditioning infusion of ACh (1 microgram/min) faded slightly but the chronotropic response did not. After the rest period, the test nerve stimulation evoked responses that also gradually faded with time. The maximal amplitude of the responses to the test stimuli were less than those to the conditioning stimuli. This reduction in the maximal amplitude of the cardiac responses to the test stimuli was more pronounced with high frequency stimulation (30 Hz) than with low frequency stimulation (5 Hz). The decrement was also more pronounced the shorter the rest period, and it was greater at earlier times after beginning the stimulation. Conversely, the maximal cardiac responses to test infusions of ACh were not appreciably less than the responses to the conditioning infusions. We conclude, therefore, that the diminution of the cardiac responses to the second test stimulation of the parasympathetic nerve fibers was mainly ascribable to a prejunctional rather than to a postjunctional mechanism.  相似文献   

12.
The coding of odor intensity by an olfactory receptor neuron model was studied under steady-state stimulation. Our model neuron is an elongated cylinder consisting of the following three components: a sensory dendritic region bearing odorant receptors, a passive region consisting of proximal dendrite and cell body, and an axon. First, analytical solutions are given for the three main physiological responses: (1) odorant-dependent conductance change at the sensory dendrite based on the Michaelis-Menten model, (2) generation and spreading of the receptor potential based on a new solution of the cable equation, and (3) firing frequency based on a Lapicque model. Second, the magnitudes of these responses are analyzed as a function of odorant concentration. Their dependence on chemical, electrical, and geometrical parameters is examined. The only evident gain in magnitude results from the activation-to-conductance conversion. An optimal encoder neuron is presented that suggests that increasing the length of the sensory dendrite beyond about 0.3 space constant does not increase the magnitude of the receptor potential. Third, the sensivities of the responses are examined as functions of (1) the concentration at half-maximum response, (2) the lower and upper concentrations actually discriminated, and (3) the width of the dynamic range. The overall gain in sensitivity results entirely from the conductance-to-voltage conversion. The maximum conductance at the sensory dendrite appears to be the main tuning constant of the neuron because it determines the shift toward low concentrations and the increase in dynamic range. The dynamic range of the model cannot exceed 5.7 log units, for a sensitivity increase at low odor concentration is compensated by a sensitivity decrease at high odor concentration.  相似文献   

13.
The medial septal area of conscious rats was stimulated through previously implanted electrodes at a frequency of 7.7 Hz for 20 min each day for 7 days to evoke rhythmic slow activity in CA1 at a similar frequency to spontaneous theta. Two weeks later in the anaesthetized rats the effects of a single subcutaneous injection of nicotine (0.4 mg x kg(-1)) on fEPSPs, evoked in the dentate gyrus by separate stimulation of the MPP and LPP, were studied and compared with those obtained in controls. Nicotine increased the firing of locus coeruleus neurones and the slope of the fEPSPs evoked by LPP stimulation, but not by MPP stimulation. Prior theta driving considerably increased the effect of nicotine on the responses evoked by stimulation of the MPP and abolished the nicotine-induced potentiation of the responses evoked by stimulation of the LPP. The results are attributed to theta driving increasing the amount of noradrenaline released by nicotine and to noradrenaline producing a beta-adrenoceptor long-lasting potentiation at the medial perforant path synapse and a long-lasting depression at the lateral perforant path synapse.  相似文献   

14.
Astrocytic responses to activation of metabotropic glutamate receptors group I (mGluRs I) and alpha(1)-adrenoreceptors in cultured cells have been assessed using spectral analyzes and calcium imaging. Concentration-dependent changes were observed after stimulation with the mGluR I agonist (S)-3,5-dihydroxyphenylglycine (DHPG). These responses changed from a regular low frequency signal with sharp peaks at 1 microm to a pronounced stage of irregularity at 10 microm. After stimulation with 100 microm the signal was again homogenous in shape and regularity but occurred at a higher frequency. In contrast, the spectral properties after stimulation with the alpha(1)-adrenoreceptor agonist phenylephrine, exhibited considerable variation for all investigated concentrations. DHPG-induced increases in [Ca(2+)](i) were also associated with astroglial glutamate release, whereas no release was observed after noradrenergic stimulation. Both DHPG-mediated calcium signaling and glutamate release were inhibited by preincubation with 10 or 100 microm phenylephrine. Collectively, the present investigation provides new information about the spatial-temporal characteristics of astroglial intracellular calcium responses and demonstrates distinct differences between noradrenergic and glutamatergic receptors regarding intracellular calcium signaling and coupling to glutamate release. The noradrenergic modulation of DHPG-induced responses indicates that intracellular astroglial processes can be regulated in a bi-directional feedback loop between closely connected astrocytes and neurons in the central nervous system.  相似文献   

15.
In response to light stimulation Chlamydomonas reinhardtii changes the beating frequency, beating pattern, and beating synchrony of the trans and cis cilia to steer the freely-swimming cell relative to light sources. To understand the cell steering behavior the impulse responses of the beating frequency and stroke velocity of each cilium have been obtained with high temporal resolution on cells held with a micropipette. Interestingly the response of each cilium is quite different. The trans cilium responds with less delay than the cis cilium for both beating frequency and stroke velocity. For light stimulation at 2 Hz, the critical cell-rotation frequency, both responses of the trans and cis cilia are about 180 degrees out of phase. The trans-cilium beating frequency response peaks at a stimulus frequency of 5-6 Hz, higher than the cis at 1-2 Hz. The stroke velocities of the trans and cis cilia have the same stimulus-frequency response (2 Hz), but the trans cilium has a shorter delay than the cis. The times to maximum response are much shorter than the time for a rotation of the cell. The use of two different approaches that enable the trans cilium to respond ahead of the cis for both the beating frequency and stroke velocity responses suggests the importance of both responses to phototaxis. Internal cell processing responsible for the time course of the responses is proposed.  相似文献   

16.
Responses in the frog glossopharyngeal nerve induced by electrical stimulation of the tongue were compared with those induced by chemical stimuli under various conditions. (a) Anodal stimulation induced much larger responses than cathodal stimulation, and anodal stimulation of the tongue adapted to 5 mM MgCl2 produced much larger responses than stimulation with the tongue adapted to 10 mM NaCl at equal current intensities, as chemical stimulation with MgCl2 produced much larger responses than stimulation with NaCl at equal concentration. (b) The enhansive and suppressive effects of 8-anilino-1-naphthalenesulfonate, NiCl2, and uranyl acetate on the responses to anodal current were similar to those on the responses to chemical stimulation. (c) Anodal stimulation of the tongue adapted to 50 mM CaCl2 resulted in a large response, whereas application of 1 M CaCl2 to the tongue adapted to 50 mM CaCl2 produced only a small response. This, together with theoretical considerations, suggested that the accumulation of salts on the tongue surface is not the cause of the generation of the response to anodal current. (d) Cathodal current suppressed the responses induced by 1 mM CaCl2, 0.3 M ethanol, and distilled water. (e) The addition of EGTA or Ca-channel blockers (CdCl2 and verapamil) to the perfusing solution of the lingual artery reversibly suppressed both the responses to chemical stimulus (NaCl) and to anodal current with 10 mM NaCl. (f) We assume from the results obtained that electrical current from the microvillus membrane of a taste cell to the synaptic area supplied by anodal stimulation or induced by chemical stimulation activates the voltage-dependent Ca channel at the synaptic area.  相似文献   

17.
The responses of mechanoreceptor neurons in the antennal chordotonal organ have been examined in cockroaches by intracellular recording methods. The chordotonal organ was mechanically stimulated by sinusoidal movement of the flagellum. Stimulus frequencies were varied between 0.5 and 150 Hz. Receptor neurons responded with spike discharges to mechanical stimulation, and were classed into two groups from plots of their average spike frequencies against stimulus frequency. Neurons in one group responded to stimulation over a wide frequency range (from 0.5 to 150 Hz), whereas those in a second group were tuned to higher frequency stimuli. The peak stimulus frequency at which receptor neurons showed maximum responses differed from cell to cell. Some had a peak response at a stimulus frequency given in the present study (from 0.5 to 150 Hz), whereas others were assumed to have peak responses beyond the highest stimulus frequency examined. The timing for the initiation of spikes or of a burst of spikes plotted against each stimulus cycle revealed that spike generation was phase-locked in most cells. Some cells showed phase-independent discharges to stimulation at lower frequency, but increasing stimulus frequencies spike initiation began to assemble at a given phase of the stimulus cycle. The response patterns observed are discussed in relation to the primary process of mechanoreception of the chordotonal organ.  相似文献   

18.
A defensive dominanta (stationary excitation focus) in the sensorimotor cortex of rabbits was formed by rhythmical electrodermal paw stimulation with the frequency of 0.5 Hz. After cessation of the stimulation, the state of hidden excitation was tested with acoustic stimuli, in response to which nonrhythmic activity of leg muscles increased or the leg rhythmically startled with the frequency close to that of the electrodermal stimulation. After conducting a routine hypnotizing procedure, the incidence of the rhythmic responses to testing stimulation increased, while the incidence of nonrhythmic responses decreased.  相似文献   

19.
In the anterosuperior and posterosuperior portions of the ectosylvian gyrus of dogs small foci were found in which clicks evoked responses with parameters close to those of primary responses (PRs), but with an initial negative wave. An analysis of PRs with an initial wave of different polarity was carried out by studying the reproducibility of the response during an increase in the frequency of stimulation and during the action of various drugs. PRs with an initial negative ("negative" focus) and positive (auditory area AI) waves were found to be reproduced when the frequency of stimulation was 20–30 Hz, whereas the negative phase of the classical PR disappeared when the stimulation frequency reached 10–15 Hz. The polarity of the response in these foci was unchanged after injection of a lethal dose of nembutal, but the negative phase of the classical PR disappeared during moderately deep anesthesia. Strychnine, on the other hand, considerably increased the amplitude of the negative wave in the positive-negative complex, but the initial negative potential was only very slightly and temporarily increased, and it was lost in the subsequent strychnine spike. GABA inhibited both the PR with initial negative wave and also the negative phase of the classical PR. The results suggest that PRs with different polarities of their initial wave differ in origin. The results of experiments with GABA indicate that PRs with an initial negative wave arise through excitation of apical dendrites.A. A. Bogomolets' Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 2, No. 5, pp. 488–496, September–October, 1970.  相似文献   

20.
Responses of neurons of the lateral (LPO) and medial (MPO) subdivisions of the preoptic region (RPO) and of the supraoptic nucleus (SO) of the hypothalamus at infusions of up to 400 µl of a hypotonic (0.2%) or a hypertonic (0.3%) NaCl solution or an isotonic (5.5%) glucose solution into the homolateral internal carotid artery were studied in acute experiments on ketamine-anesthetized cats. Changes in the firing frequency were exhibited by 69% of the examinedRPO andSO neurons, the response being of four different types: a monophasic increase (1st-type) or a monophasic decrease (2nd-type) in the activity; biphasic responses where an initial frequency rise was followed by inhibition (3rd-type) and vice versa (4th-type). Of all the neuronal responses to all stimulations, 50% (121/245) were of the 1st type; 11% (26/245), of the 2nd type; 5% (14/245), of the 3rd type; and 3% (7/245), of the 4th type. No neurons with 1st-type responses to infusion of the hypotonic NaCl solution were found in the medial sections of theMPO, and of the hypertonic solution, in the lateral sections of theLPO. Neurons with 2nd-type responses to infusion of hypo- and hypertonic NaCl solutions were almost solely detected in theSO, whereas units with such responses to glucose infusions were observed only in theRPO, being fully absent in theSO, where this stimulation gave rise only to 1st-type responses. Neurons with 3rd- and 4th-type responses to hypo- and hyperosmotic stimulations were detected predominantly in theMPO andSO, and to glucose stimulation, in theMPO andLPO.Neirofiziologiya/Neurophysiology, Vol. 25, No. 4, pp. 281–291, July–August, 1993.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号