首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Characteristics of the cellulolytic system of the anaerobic fungus Piromyces sp. strain E2 with respect to adsorption onto microcrystalline cellulose were examined. Cellulolytic enzymes were separated by gel filtration chromatography into a high-molecular-mass complex with an apparent mass of approximately 1,200 to 1,400 kDa and proteins of lower molecular weights. Adsorption of cellulolytic enzymes was not only very fast (within 2 min, equilibrium was attained) but also very effective: Avicelase, endoglucanase, and beta-glucosidase activities from the high-molecular-mass complex were almost completely removed by Avicel. Adsorption of these enzyme activities was proportional and appeared to obey the Langmuir isotherm. For Avicelase, endoglucanase, and beta-glucosidase activities, the maximum amounts adsorbed (Amax) and apparent adsorption constants (Kad) were 16.8, 600, and 33.5 IU/g and 284, 6.93 and 126 ml/IU, respectively. The results of this study strongly support the existence of a multiprotein enzyme complex. This complex was found not to be specifically associated with cell wall fragments as judged by chitin determination.  相似文献   

2.
Anaerobic fungi have very high cellulolytic activities and thus degrade cellulose very efficiently. In cellulose hydrolysis, beta-glucosidases play an important role in prevention of product inhibition because they convert oligosaccharides to glucose. A beta-glucosidase gene (cel1A) was isolated from a cDNA library of the anaerobic fungus Piromyces sp. E2. Sequence analysis revealed that the gene encodes a modular protein with a calculated mass of 75800 Da and a pI of 5.05. A secretion signal was followed by a negatively charged domain with unknown function. This domain was coupled with a short linker to a catalytic domain that showed high homology with glycosyl hydrolases belonging to family 1. Southern blot analysis revealed the multiplicity of the gene in the genome. Northern analysis showed that growth on fructose resulted in a high expression of cel1A. The cel1A gene was successfully expressed in Pichia pastoris. The purified heterologously expressed protein was shown to be encoded by the cel1A gene by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis of a tryptic digest. Purified heterologous Cel1A was active towards several artificial and natural substrates with beta-1-4 linked glucose molecules with a remarkably high activity on cellodextrins. The enzyme was strongly inhibited by D-glucono-1,5-delta-lactone (K(i)=22 microM), but inhibition by glucose was much less (K(i)=9.5 mM). pH and temperature optimum were 6 and 39 degrees C, respectively. The enzyme was fairly stable, retaining more than 75% of its activity when incubated at 37 degrees C for 5 weeks. Transglycosylation activity could be demonstrated by MALDI-TOF MS analysis of products formed during degradation of cellopentaose.  相似文献   

3.
Summary A system was developed for the semi-continuous cultivation of an anaerobic fungus, Piromyces sp. strain E2 (isolated from an Indian elephant), on Avicel (microcrystalline cellulose). The fungus was grown in a semi-continuous culture system: solids and fungal biomass was retained by means of a simple filter construction whereas the culture fluid was removed continuously. The production of fermentation products (acetate, ethanol, formate, lactate, hydrogen or methane), cellulolytic and xylanolytic enzymes, and protein by the fungus in monoculture or co-culture with Methanobacterium formicicum during growth on Avicel was monitored up to 45 days. These productions stabilized after an adaptation period of 24 and 30 days in the semi-continuous co-culture and monoculture, respectively. After this period the average (±SD) avicelase, -glucosidase, endoglucanase, and xylanase production in the semi-continuous monoculture were 27±6, 140±16, 1057±120 and 5012±583 IU.l–1.dya–1, respectively. Co-culture with the methanogen caused a shift in fermentation products to more acetate, and less ethanol and lactate. Furthermore, the production of all cellulolytic enzymes increased (40%) and xylanolytic enzyme production decreased (35%).Correspondence to: H. J. M. Op den Camp  相似文献   

4.
Anaerobic chytridiomycete fungi possess hydrogenosomes, which generate hydrogen and ATP, but also acetate and formate as end-products of a prokaryotic-type mixed-acid fermentation. Notably, the anaerobic chytrids Piromyces and Neocallimastix use pyruvate:formate lyase (PFL) for the catabolism of pyruvate, which is in marked contrast to the hydrogenosomal metabolism of the anaerobic parabasalian flagellates Trichomonas vaginalis and Tritrichomonas foetus, because these organisms decarboxylate pyruvate with the aid of pyruvate:ferredoxin oxidoreductase (PFO). Here, we show that the chytrids Piromyces sp. E2 and Neocallimastix sp. L2 also possess an alcohol dehydrogenase E (ADHE) that makes them unique among hydrogenosome-bearing anaerobes. We demonstrate that Piromyces sp. E2 routes the final steps of its carbohydrate catabolism via PFL and ADHE: in axenic culture under standard conditions and in the presence of 0.3% fructose, 35% of the carbohydrates were degraded in the cytosol to the end-products ethanol, formate, lactate and succinate, whereas 65% were degraded via the hydrogenosomes to acetate and formate. These observations require a refinement of the previously published metabolic schemes. In particular, the importance of the hydrogenase in this type of hydrogenosome has to be revisited.  相似文献   

5.
Abstract Piromyces citronii sp. nov. was isolated from the caecum of one pony and three donkeys. It differed from other anaerobic fungal species in that it had a filamentous monocentric thallus composed of a globular or elliptic sporangium, which was occasionally bifid or trifid (monocarpic thallus), or several sporangia (polycarpic thallus), with a short sporangiophore. P. citronii also differed from other species in that it did not grow with starch or maltose as carbon source and it did not produce d-lactate. The uniflagellate zoospores presented a standard ultrastructure.  相似文献   

6.
Longcore JE 《Mycologia》2004,96(1):162-171
Rhizophydium136 was isolated from pollen bait placed in a water culture containing garden soil from Penobscot County, Maine. It is an important isolate because its entire mitochondrial genome has been sequenced and it is the representative member of the Chytridiales in a fungal phylogeny based on mitochondrial protein sequences. Also, this isolate is included in an 18S rDNA, chytrid phylogeny. On nutrient agar, many inflated rhizoidal axes extend from the base of the zoosporangium, zoosporangia mature in 3 d and zoospores discharge through numerous, lenticular, discharge pores. Smooth-walled resting spores form in crowded cultures. Zoospores are a variation of the Rhizophydium subtype. This chytrid differs from R. sphaerotheca sensu Barr and because it cannot be placed in a described species it herein is described as Rhizophydium brooksianum sp. nov. Many of the differences between Rhizophydium brooksianum and other multipored Rhizophydium isolates were observed only in pure culture. Attributing a spherical, multipored Rhizophydium to a species that was described without developmental information from pure culture is untenable. Epitypes or neotypes for inadequately characterized species need to be selected, and cultures made available.  相似文献   

7.
The recycling of photosynthetically fixed carbon in plant cell walls is a key microbial process. In anaerobes, the degradation is carried out by a high molecular weight multifunctional complex termed the cellulosome. This consists of a number of independent enzyme components, each of which contains a conserved dockerin domain, which functions to bind the enzyme to a cohesin domain within the protein scaffoldin protein. Here we describe the first three-dimensional structure of a fungal dockerin, the N-terminal dockerin of Cel45A from the anaerobic fungus Piromyces equi. The structure contains a novel fold of 42 residues. The ligand binding site consists of residues Trp 35, Tyr 8 and Asp 23, which are conserved in all fungal dockerins. The binding site is on the opposite side of the N- and C-termini of the molecule, implying that tandem dockerin domains, seen in the majority of anaerobic fungal plant cell wall degrading enzymes, could present multiple simultaneous binding sites and, therefore, permit tailoring of binding to catalytic demands.  相似文献   

8.
The anaerobic fungus Piromyces sp. strain E2 produces extracellular cellulolytic enzymes present both in a high molecular mass (HMM) complex or as individual proteins. Although the HMM complex was present in the culture fluid during all growth stages, the highest amounts of complex were obtained when cultures were harvested at the end of fungal growth. The complex obtained after gel-filtration chromatography on Sephacryl S-300 HR was found to be the major factor in hydrolysis of cellulose to glucose (sole product, up to 250 mM). The complex was very stable as demonstrated by identical hydrolysis patterns with fresh preparations or preparations stored at 4° C for 2 months. From inhibition experiments with gluconic acid lactone and glucose, it was concluded that the HMM complex must contain at least one glucohydrolase. SDS-PAGE analysis revealed that a partially purified HMM complex was composed of at least ten polypeptides and contained numerous endoglucanases and one β-glucosidase. Received: 10 October 1996 / Accepted: 11 December 1996  相似文献   

9.
The anaerobic fungusPiromyces sp. strain E2 appeared restricted in nitrogen utilization. Growth was only supported by ammonium as source of nitrogen. Glutamine also resulted in growth, but this was due to release of ammonia rather than to uptake and utilization of the amino acid. The fungus was not able to grow on other amino acids, albumin, urea, allantoin, or nitrate. Assimilation of ammonium is very likely to be mediated by NADP-linked glutamate dehydrogenase (NADP-GDH) and glutamine synthetase (GS). One transaminating activity, glutamate-oxaloacetate transaminase (GOT), was demonstrated. Glutamate synthase (GOGAT), NAD-dependent glutamate dehydrogenase (NAD-GDH), and the transaminating activity glutamate-pyruvate transaminase (GPT) were not detected in cell-free extracts ofPiromyces sp. strain E2. Specific enzyme activities of both NADP-GDH and GS increased four-to sixfold under nitrogen-limiting conditions.Abbreviations GDH Glutamate dehydrogenase - GOGAT Glutamate synthase - GOT Glutamate-oxaloacetate transaminase - GPT Glutamate-pyruvate transaminase - GS Glutamine synthetase  相似文献   

10.
A thermophilic anaerobic bacterium Clostridium sp. TCW1 was isolated from dairy cow dung and was used to produce hydrogen from cellulosic feedstock. Extracellular cellulolytic enzymes produced from TCW1 strain were identified as endoglucanases (45, 53 and 70 kDa), exoglucanase (70 kDa), xylanases (53 and 60 kDa), and β-glucosidase (45 kDa). The endoglucanase and xylanase were more abundant. The optimal conditions for H2 production and enzyme production of the TCW1 strain were the same (60 °C, initial pH 7, agitation rate of 200 rpm). Ten cellulosic feedstock, including pure or natural cellulosic materials, were used as feedstock for hydrogen production by Clostridium strain TCW1 under optimal culture conditions. Using filter paper at 5.0 g/L resulted in the most effective hydrogen production performance, achieving a H2 production rate and yield of 57.7 ml/h/L and 2.03 mol H2/mol hexose, respectively. Production of cellulolytic enzyme activities was positively correlated with the efficiency of dark-H2 fermentation.  相似文献   

11.
【背景】硝呋烯腙能够抑制厌氧真菌。共存甲烷菌可以促进厌氧真菌的生长以及对木质纤维素的降解,然而关于共存甲烷菌对厌氧真菌抗逆性影响的研究较少。【目的】旨在研究甲烷菌共存对厌氧真菌耐受硝呋烯腙的影响。【方法】采用体外批次培养,以稻草为底物,添加不同浓度的硝呋烯腙(0、5、10、25 mg/L),分别接种厌氧真菌纯培养和厌氧真菌与甲烷菌共培养悬浮液,于39°C静置培养96 h。测定不同时间点的产气量和甲烷产量,结束后测定p H、干物质降解率(DMD)、中性洗涤纤维消失率(NDFD)、半纤维素消失率(ADSD)、酸性洗涤纤维消失率(ADFD)以及上清液中甲酸、乳酸和乙酸的浓度。【结果】添加5、10和25 mg/L硝呋烯腙皆显著降低了厌氧真菌纯培养的发酵活性(P0.05);添加5 mg/L硝呋烯腙没有显著降低厌氧真菌与甲烷菌共培养的发酵活性(P0.05),添加10和25 mg/L硝呋烯腙则显著降低了共培养发酵活性(P0.05);比较5、10 mg/L硝呋烯腙对纯培养和共培养发酵活性影响的结果表明,共培养发酵活性显著高于纯培养发酵活性(P0.05)。【结论】硝呋烯腙对厌氧真菌纯培养和厌氧真菌与甲烷菌共培养的抑制作用都存在剂量效应,在一定添加浓度范围内(25 mg/L),甲烷菌共存可以显著提高厌氧真菌对硝呋烯腙的耐受性。  相似文献   

12.
The assembly into supramolecular complexes of proteins having complementary activities is central to cellular function. One such complex of considerable biological and industrial significance is the plant cell wall-degrading apparatus of anaerobic microorganisms, termed the cellulosome. A central feature of bacterial cellulosomes is a large non-catalytic protein, the scaffoldin, which contains multiple cohesin domains. An array of digestive enzymes is incorporated into the cellulosome through the interaction of the dockerin domains, present in the catalytic subunits, with the cohesin domains that are present in the scaffoldin. By contrast, in anaerobic fungi, such as Piromyces equi, the dockerins of cellulosomal enzymes are often present in tandem copies; however, the identity of the cognate cohesin domains in these organisms is unclear, hindering further biotechnological development of the fungal cellulosome. Here, we characterise the solution structure and function of a double-dockerin construct from the P. equi endoglucanase Cel45A. We show that the two domains are connected by a flexible linker that is short enough to keep the binding sites of the two domains on adjacent surfaces, and allows the double-dockerin construct to bind more tightly to cellulosomes than a single domain and with greater coverage. The double dockerin binds to the GH3 beta-glucosidase component of the fungal cellulosome, which is thereby identified as a potential scaffoldin.  相似文献   

13.
14.
The order Lobulomycetales contains chytrids from soil, freshwater and marine habitats; environmental DNA sampling has indicated that representatives of this order might be found in deep ocean localities. We describe Alogomyces tanneri as the first lobulomycetalean chytrid isolated from horse manure; A. tanneri is also the first species in the order to possess a rumposome in its zoospore. This species widens the range of habitats, ultrastructural variation and thallus morphology for Lobulomycetales.  相似文献   

15.
A mitochondrial-type ADP/ATP carrier (AAC) has been identified in the hydrogenosomes of the anaerobic chytridiomycete fungus Neocallimastix sp. L2. Biochemical and immunocytochemical studies revealed that this ADP/ATP carrier is an integral component of hydrogenosomal membranes. Expression of the corresponding cDNA in Escherichia coli confers the ability on the bacterial host to incorporate ADP at significantly higher rates than ATP--similar to isolated mitochondria of yeast and animals. Phylogenetic analysis of this AAC gene (hdgaac) confirmed with high statistical support that the hydrogenosomal ADP/ATP carrier of Neocallimastix sp. L2 belongs to the family of veritable mitochondrial-type AACs. Hydrogenosome-bearing anaerobic ciliates possess clearly distinct mitochondrial-type AACs, whereas the potential hydrogenosomal carrier Hmp31 of the anaerobic flagellate Trichomonas vaginalis and its homologue from Trichomonas gallinae do not belong to this family of proteins. Also, phylogenetic analysis of genes encoding mitochondrial-type chaperonin 60 proteins (HSP 60) supports the conclusion that the hydrogenosomes of anaerobic chytrids and anaerobic ciliates had independent origins, although both of them arose from mitochondria.  相似文献   

16.
In this study, carbonic anhydrase (CA) enzyme has been purified and separately characterized according to bound form in 4 steps as outer peripheral, cytosolic, inner peripheral, and integral from bovine leukocyte. Affinity chromatography has also been used for purification of the enzyme in four steps. CA has been found for each step. Measurment of enzyme activity has been done by CO2 hydratase activity and esterase activity methods. Optimum pH and optimum temperature have been defined for each step of purified enzyme. The behaviors of CA with specific inhibitors, such as KSCN and NaN3 have been investigated. In each step, molecular weight and purity have been determined by gel filtration and SDS-PAGE electrophoresis. In addition, enzyme K(M) and Vmax values have been determined with the method of Lineweaver-Burk.  相似文献   

17.
A gene encoding a novel component of the cellulolytic complex (cellulosome) of the anaerobic fungus Piromyces sp. strain E2 was identified. The encoded 538 amino acid protein, named celpin, consists of a signal peptide, a positively charged domain of unknown function followed by two fungal dockerins, typical for components of the extracellular fungal cellulosome. The C-terminal end consists of a 380 amino acid serine proteinase inhibitor (or serpin) domain homologue, sharing 30 % identity and 50 % similarity to vertebrate and bacterial serpins. Detailed protein sequence analysis of the serpin domain revealed that it contained all features of a functional serpin. It possesses the conserved amino acids present in more than 70 % of known serpins, and it contained the consensus of inhibiting serpins. Because of the confined space of the fungal cellulosome inside plant tissue and the auto-proteolysis of plant material in the rumen, the fungal serpin is presumably involved in protection of the cellulosome against plant proteinases. The celpin protein of Piromyces sp. strain E2 is the first non-structural, non-hydrolytic fungal cellulosome component. Furthermore, the celpin protein of Piromyces sp. strain E2 is the first representative of a serine proteinase inhibitor of the fungal kingdom.  相似文献   

18.
19.
Tsai CF  Qiu X  Liu JH 《Anaerobe》2003,9(3):131-140
Cellulase family and some other glycosyl hydrolases of anaerobic fungi inhabiting the digestive tract of ruminants are believed to form an enzyme complex called cellulosome. Study of the individual component of cellulosome may shed light on understanding the organization of this complex and its functional mechanism. We have analysed the primary sequences of two cellulase clones, cel5B and cel6A, isolated from the cDNA library of ruminal fungus, Piromyces rhizinflata strain 2301. The deduced amino acid sequences of the catalytic domain of Cel5B, encoded by cel5B, showed homology with the subfamily 4 of the family 5 (subfamily 5(4)) of glycosyl hydrolases, while cel6A encoded Cel6A belonged to family 6 of glycosyl hydrolases. Phylogenetic tree analysis suggested that the genes of subfamily 5(4) glycosyl hydrolases of P. rhizinflata might have been acquired from rumen bacteria. Cel5B and Cel6A were modular enzymes consisting of a catalytic domain and dockerin domain(s), but not a cellulose binding domain. The occurrence of dockerin domains indicated that both enzymes were cellulosome components. The catalytic domain of the Cel5B (Cel5B') and Cel6A (Cel6A') recombinant proteins were purified. The optimal activity conditions with carboxymethyl cellulose (CMC) as the substrate were pH 6.0 and 50 degrees C for Cel5B', and pH 6.0 and 37-45 degrees C for Cel6A'. Both Cel5B' and Cel6A' exhibited activity against CMC, barley beta-glucan, Lichenan, and oat spelt xylan. Cel5B' could also hydrolyse p-nitrophenyl-beta-d-cellobioside, Avicel and filter paper while Cel6A' did not show any activity on these substrates. It is apparent that Cel6A' acted as an endoglucanase and Cel5B' possessed both endoglucanase and exoglucanase activities. No synergic effect was observed for these recombinant enzymes in vitro on Avicel and CMC.  相似文献   

20.
An anaerobic rumen fungus, Piromyces sp. strain OTS1, was incubated in the presence or absence of a mixed, A-type, protozoal population obtained from a goat, in a medium containing filter paper cellulose as energy source and antibiotics to suppress bacterial growth. Fermentation end products, cellulose degradation, and chitin as an indicator of fungal biomass were examined. In the presence of protozoa, total volatile fatty acids, notably propionate and butyrate, increased, and lactate decreased. In fungus-protozoan coincubations, formate was not detected at the end of the experiment and the amount of reducing sugars remained low throughout the incubation period. The fungal growth in the coincubations was negatively affected. While protozoal predation on zoospores was one mechanism of inhibition, mature fungal cells were also affected. Total cellulose degradation was greater in fungal monocultures, but the amount of cellulose degraded per unit of fungal biomass was 25% larger in the coincubations. The negative effects that the protozoal predatory activity had on the fungal growth and subsequently on the amount of cellulose degraded by Piromyces sp. strain OTS1 were partially attenuated by the protozoal fibrolytic activity or by an enhanced fungal activity due to a more favorable environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号