首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Decomposers drive essential ecosystem functions, such as organic matter turnover and nutrient cycling, thereby functioning as key determinants of soil fertility and nutrient uptake by plants. However, knowledge of interacting effects of functional dissimilar decomposer groups, such as microorganisms and animals, on aboveground functions is scarce.We set up a microcosm experiment to investigate single and combined effects of microbial (the fungus Fusarium graminearum) and animal decomposers (the earthworm Aporrectodea caliginosa) on the performance of winter wheat (Triticum aestivum) and aphids (Rhopalosiphum padi) in a full factorial design. We tested the shape of response of every variable in order to explore if interacting impacts of decomposers are under-additive (logarithmic fit), additive (linear fit) or over-additive (quadratic and exponential fit).Both microbial and animal decomposers increased the majority of the studied plant and herbivore performance parameters. While decomposers had additive effects on five plant performance variables they had over-additive effects on seven plant variables and three herbivore variables.The dominance of over-additive effects suggests positive interactions between microbial and animal decomposers. Facilitation in the decomposition process most likely synergistically increased nutrient supply for plants and food availability and quality for aphids.The present study indicates that functionally dissimilar decomposer groups of different kingdoms synergistically impact plant performance. Further, these beneficial effects propagated to herbivores suggesting that belowground functional diversity and positive interactions alter essential aboveground ecosystem functions over several trophic levels.  相似文献   

2.
Plant-mediated interactions between belowground (BG) and aboveground (AG) herbivores have received increasing interest recently. However, the molecular mechanisms underlying ecological consequences of BG–AG interactions are not fully clear yet. Herbivore-induced plant defenses are complex and comprise phytohormonal signaling, gene expression and production of defensive compounds (defined here as response levels), each with their own temporal dynamics. Jointly they shape the response that will be expressed. However, because different induction methods are used in different plant-herbivore systems, and only one or two response levels are measured in each study, our ability to construct a general framework for BG–AG interactions remains limited. Here we aim to link the mechanisms to the ecological consequences of plant-mediated interactions between BG and AG insect herbivores. We first outline the molecular mechanisms of herbivore-induced responses involved in BG–AG interactions. Then we synthesize the literature on BG–AG interactions in two well-studied plant-herbivore systems, Brassica spp. and Zea mays, to identify general patterns and specific differences. Based on this comprehensive review, we conclude that phytohormones can only partially mimic induction by real herbivores. BG herbivory induces resistance to AG herbivores in both systems, but only in maize this involves drought stress responses. This may be due to morphological and physiological differences between monocotyledonous (maize) and dicotyledonous (Brassica) species, and differences in the feeding strategies of the herbivores used. Therefore, we strongly recommend that future studies explicitly account for these basic differences in plant morphology and include additional herbivores while investigating all response levels involved in BG–AG interactions.  相似文献   

3.
Plants have a variety of chemical defenses that often increase in concentration following attack by herbivores. Such induced plant responses can occur aboveground, in the leaves, and also belowground in the roots. We show here that belowground organisms can also induce defense responses aboveground and vice versa. Indirect defenses are particularly sensitive to interference by induced feeding activities in the other compartment, and this can disrupt multitrophic interactions. Unravelling the involvement of induced plant responses in the interactions between aboveground and belowground communities associated with plants is likely to benefit from comprehensive metabolomic analyses. Such analyses are likely to contribute to a better understanding of the costs and benefits involved in the selection for induced responses in plants.  相似文献   

4.
Phytophagous insects generally feed on a restricted range of host plants, using a number of different sensory and behavioural mechanisms to locate and recognize their host plants. Phloem-feeding aphids have been shown to exhibit genetic variation for host preference of different plant species and genetic variation within a plant species can also have an effect on aphid preference and acceptance. It is known that genotypic interactions between barley genotypes and Sitobion avenae aphid genotypes influence aphid fitness, but it is unknown if these different aphid genotypes exhibit active host choice (preference) for the different barley genotypes. Active host choice by aphid genotypes for particular plant genotypes would lead to assortative association (non-random association) between the different aphid and plant genotypes. The performance of each aphid genotype on the plant genotypes also has the ability to enhance these interactions, especially if the aphid genotypes choose the plant genotype that also infers the greatest fitness. In this study, we demonstrate that different aphid genotypes exhibit differential preference and performance for different barley genotypes. Three out of four aphid genotypes exhibited preference for (or against) particular barley genotypes that were not concordant with differences in their reproductive rate on the specific barley genotype. This suggests active host choice of aphids is the primary mechanism for the observed pattern of non-random associations between aphid and barley genotypes. In a community context, such genetic associations between the aphids and barley can lead to population-level changes within the aphid species. These interactions may also have evolutionary effects on the surrounding interacting community, especially in ecosystems of limited species and genetic diversity.  相似文献   

5.
Cyanogenic glucosides are phytoanticipins known to be present in more than 2500 plant species. They are considered to have an important role in plant defense against herbivores due to bitter taste and release of toxic hydrogen cyanide upon tissue disruption. Some specialized herbivores, especially insects, preferentially feed on cyanogenic plants. Such herbivores have acquired the ability to metabolize cyanogenic glucosides or to sequester them for use in their predator defense. A few species of Arthropoda (within Diplopoda, Chilopoda, Insecta) are able to de novo synthesize cyanogenic glucosides and, in addition, some of these species are able to sequester cyanogenic glucosides from their host plant (Zygaenidae). Evolutionary aspects of these unique plant-insect interactions with focus on the enzyme systems involved in synthesis and degradation of cyanogenic glucosides are discussed.  相似文献   

6.
Effects of plant spinescence on large mammalian herbivores   总被引:11,自引:0,他引:11  
Summary Plant thorns and spines had these effects on the feeding behaviour of the three species of browsing ungulate that we studied, kudu, impala and domestic goats: (i) bite sizes were restricted, in most cases to single leaves or leaf clusters; (ii) hooked thorns retarded biting rates; (iii) the acceptability of those plant species offering small leaf size in conjunction with prickles was lower, at least for the kudus, than those of other palatable plant species; (iv) the inhibitory effect of prickles on feeding was much less for the smaller impalas and goats than for the larger kudus; (v) from certain hook-thorned species the kudus bit off shoot ends despite their prickles; (vi) for certain straight-thorned species the kudus compensated partially for the slow eating rates obtained by extending their feeding durations per encounter. Most spinescent species were similar in their acceptability to the ungulates to unarmed palatable species, despite higher crude protein contents in their foliage than the latter. Such structural features furthermore reduce the tissue losses incurred by plants per encounter by a large ungulate herbivore, by restricting the eating rates that the animals obtain. In this way prickles function to restrict foliage losses to large herbivores below the levels that might otherwise occur.  相似文献   

7.
Soil‐dwelling insects commonly co‐occur and feed simultaneously on belowground plant parts, yet patterns of damage and consequences for plant and insect performance remain poorly characterized. We tested how two species of root‐feeding insects affect the performance of a perennial plant and the mass and survival of both conspecific and heterospecific insects. Because root damage is expected to impair roots’ ability to take up nutrients, we also evaluated how soil fertility alters belowground plant–insect and insect–insect interactions. Specifically, we grew common milkweed Asclepias syriaca in low or high nutrient soil and added seven densities of milkweed beetles Tetraopes tetraophthalmus, wireworms (mainly Hypnoides abbreviatus), or both species. The location and severity of root damage was species‐specific: Tetraopes caused 59% more damage to main roots than wireworms, and wireworms caused almost seven times more damage to fine roots than Tetraopes. Tetraopes damage decreased shoot, main root and fine root biomass, however substantial damage by wireworms did not decrease any component of plant biomass. With the addition of soil nutrients, main root biomass increased three times more, and fine root biomass increased five times more when wireworms were present than when Tetraopes were present. We detected an interactive effect of insect identity and nutrient availability on insect mass. Under high nutrients, wireworm mass decreased 19% overall and was unaffected by the presence of Tetraopes. In contrast, Tetraopes mass increased 114% overall and was significantly higher when wireworms were also present. Survival of wireworms decreased in the presence of Tetraopes, and both species’ survival was negatively correlated with conspecific density. We conclude that insect identity, density and soil nutrients are important in mediating the patterns and consequences of root damage, and suggest that these factors may account for some of the contradictory plant responses to belowground herbivory reported in the literature.  相似文献   

8.
Abstract Tritrophic interaction in soybean system has received increasing attention recently. However, few studies have investigated the influence of plant trichomes on the population dynamics of soybean herbivores and their natural enemies. We conducted a field survey to investigate whether soybean trichomes affected the abundance of herbivores and their predators. The results of this study show that moderately or densely pubescent trichomes have positive influences on the abundance of some herbivores (e.g., Stollia guttiger) and predators (e.g., Propylaea japonica and Orius similes) although the influence may change over time, while trichome types do not affect the density of soybean aphid, Aphis glycines.  相似文献   

9.
10.
The effects of herbivores and diversity on plant communities have been studied separately but rarely in combination. We conducted two concurrent experiments over 3 years to examine how tree seedling diversity, density and herbivory affected forest regeneration. One experiment factorially manipulated plant diversity (one versus 15 species) and the presence/absence of deer (Odocoileus virginianus). We found that mixtures outperformed monocultures only in the presence of deer. Selective browsing on competitive dominants and associational protection from less palatable species appear responsible for this herbivore-driven diversity effect. The other experiment manipulated monospecific plant density and found little evidence for negative density dependence. Combined, these experiments suggest that the higher performance in mixture was owing to the acquisition of positive interspecific interactions rather than the loss of negative intraspecific interactions. Overall, we emphasize that realistic predictions about the consequences of changing biodiversity will require a deeper understanding of the interaction between plant diversity and higher trophic levels. If we had manipulated only plant diversity, we would have missed an important positive interaction across trophic levels: diverse seedling communities better resist herbivores, and herbivores help to maintain seedling diversity.  相似文献   

11.
Abstract.
  • 1 The interactions between the univoltine mirid bug Cupsodes infuscatus and its food plant, the geophyte Asphodelus ramosus, were studied in the Negev desert for a 5 year period. The bug feeds mainly on Asphodelus inflorescence meristems, flowers and fruits, and in some years may destroy more than 95% of the plant population expected fruit production.
  • 2 Asphodelus expected fruit production fluctuated widely during the study period, but was not related to precipitation. Cupsodes density was related to the plant expected fruit production, but with a 1 year time lag. In years of high inflorescence production, a high per-capita reproduction of the bug resulted in a dense bug population in the following year. This dense population then decimated the plant fruit production, became food limited and had a low per-capita reproduction.
  • 3 This kind of time lag is expected to be common among desert insect herbivores that specialize in using ephemeral resources. The rare years of high plant production are in general preceded and followed by years of low plant production. Hence, in years which contribute most to plant reserves (seed, underground storage organs), insect herbivores are relatively rare as a result of food limitation in preceding low production years. But the insect populations which build up during years of high plant production decimate their food resources and become food limited in subsequent years with low plant production.
  • 4 Thus, herbivorous insects seem to have a limited ability to affect plant population dynamics in desert ecosystems. In contrast, the potential appears to be much greater for herbivorous insects to be regulated by their food plants.
  相似文献   

12.
13.
Plant growth, reproduction and survival can be affected both by mycorrhizal fungi and aboveground herbivores, but few studies have examined the interactive effects of these factors on plants. Most of the available data suggest that severe herbivory reduces root colonization by vesicular-arbuscular and ectomycorrhizal fungi. However, the reverse interaction has also been documented - mycorrhizal fungi deter herbivores and interact with fungal endophytes to influence herbivory. Although consistent patterns and mechanistic explanations are yet to emerge, it is likely that aboveground herbivore-mycorrhiza interactions have important implications for plant populations and communities.  相似文献   

14.
Plant strategies for nutrient acquisition and recycling are key components of ecosystem functioning. How the evolution of such strategies modifies ecosystem functioning and services is still not well understood. In the present work, we aim at understanding how the evolution of different phenotypic traits link aboveground and belowground processes, thereby affecting the functioning of the ecosystem at different scales and in different realms. Using a simple model, we follow the dynamics of a limiting nutrient inside an ecosystem. Considering trade-offs between aboveground and belowground functional traits, we study the effects of the evolution of such strategies on ecosystem properties (amount of mineral nutrient, total plant biomass, dead organic matter, and primary productivity) and whether such properties are maximized. Our results show that when evolution leads to a stable outcome, it minimizes the quantity of nutrient available (following Tilman’s R* rule). We also show that considering the evolution of aboveground and belowground functional traits simultaneously, total plant biomass and primary productivity are not necessarily maximized through evolution. The coupling of aboveground and belowground processes through evolution may largely diminish predicted standing biomass and productivity (extinction may even occur) and impact the evolutionary resilience (i.e., the return time to previous phenotypic states) of the ecosystem in the face of external disturbances. We show that changes in plant biomass and their effects on evolutionary change can be understood by accounting for the links between nutrient uptake and mineralization, and for indirect effects of nutrient uptake on the amount of detritus in the system.  相似文献   

15.
Understanding the interactions among plants, hemipterans, and ants has provided numerous insights into a range of ecological and evolutionary processes. In these systems, however, studies concerning the isolated direct and indirect effects of aphid colonies on host plant and other herbivores remain rare at best. The aphid Uroleucon erigeronensis forms dense colonies on the apical shoots of the host plant Baccharis dracunculilfolia (Asteraceae). The honeydew produced by these aphids attracts several species of ants that might interfere with other herbivores. Four hypotheses were tested in this system: (1) ants tending aphids reduce the abundance of other herbivores; (2) the effects of ants and aphids upon herbivores differ between chewing and fluid-sucking herbivores; (3) aphids alone reduce the abundance of other herbivores; and (4), the aphid presence negatively affects B. dracunculifolia shoot growth. The hypotheses were evaluated with ant and aphid exclusion experiments, on isolated plant shoots, along six consecutive months. We adjusted linear mixed-effects models for longitudinal data (repeated measures), with nested spatial random effect. The results showed that: (1) herbivore abundance was lower on shoots with aphids than on shoots without aphids, and even lower on shoots with aphids and ants; (2) both chewing and fluid-sucking insects responded similarly to the treatment, and (3) aphid presence affected negatively B. dracunculifolia shoot growth. Thus, since aphids alone changed plant growth and the abundance of insect herbivores, we suggest that the ant–aphid association is important to the organization of the system B. dracunculifolia-herbivorous insects.  相似文献   

16.
Chemical compounds from plants may exhibit stimulatory and/or inhibitory effects on surrounding organisms. However, research on belowground biochemical interactions among plants has focused more effort on elucidating negative effects. Moreover, the effect of shoot litter on belowground plant–plant interactions has remained relatively unexplored. In a field experiment with four target plant species (Artemisia frigida Willd., Solidago missouriensis Nutt.), Bouteloua gracilis (Willd. ex Kunth) Lag. ex Griffiths and Poa pratensis L.) interacting with intact grassland neighbours, we manipulated root competition using PVC tubes and shoot litter, and belowground chemical interaction by adding activated carbon (AC) to the soil. In A. frigida, shoot litter significantly interacted with root competition and root chemicals. Plants grown plus AC were larger than those minus AC when shoot litter was left intact suggesting inhibitory effects from neighbours and/or decomposing products. However, when shoot litter was removed, plants grown minus AC were larger suggesting stimulatory effects of root exudates. B. gracilis showed a similar trend but results were non-significant. Results demonstrate that the effects of neighbours can be inhibitory or facilitative depending on the presence or absence of shoot litter and mediation through AC.  相似文献   

17.
Elderd BD 《Oecologia》2006,147(2):261-271
Disturbances, such as flooding, play important roles in determining community structure. Most studies of disturbances focus on the direct effects and, hence, the indirect effects of disturbances are poorly understood. Within terrestrial riparian areas, annual flooding leads to differences in the arthropod community as compared to non-flooded areas. In turn, these differences are likely to alter the survival, growth, and reproduction of plant species via an indirect effect of flooding (i.e., changes in herbivory patterns). To test for such effects, an experiment was conducted wherein arthropod predators and herbivores were excluded from plots in flooded and non-flooded areas and the impact on a common riparian plant, Mimulus guttatus was examined. In general, the direct effect of flooding on M. guttatus was positive. The indirect effects, however, significantly decreased plant survival for both years of the experiment, regardless of predator presence, because of an increased exposure to grasshoppers, the most abundant herbivore in the non-flooded sites. Leafhoppers, which were more abundant in the flooded sites, had much weaker and varying effects. During 2000, when the leafhopper herbivory was high, arthropod predators did not significantly reduce damage to plants. In 2001, the mean herbivory damage was lower and predators were able to significantly reduce overall leafhopper damage. The effects of predators on leafhoppers, however, did not increase plant survival, final weight, or the reproduction potential and, thus, did not initiate a species-level trophic cascade. Overall, it was the differences in the herbivore community that led to a significant decrease in plant survival. While flooding certainly alters riparian plant survival through direct abiotic effects, it also indirectly affects riparian plants by changing the arthropod community, in particular herbivores, and hence trophic interactions.  相似文献   

18.
Predators and plant resistance may act together to control herbivorous arthropod populations or antagonistically, which would reduce the control of pest populations. In a field experiment we enhanced predation by adding simulated leaf domatia to plants. Leaf domatia are small structures that often harbor predaceous arthropods that are potentially beneficial to the plant. We also manipulated host plant quality by inducing resistance with controlled, early season exposure of seedlings to spider mite herbivory.
Our manipulations had profound consequences for the natural community of arthropods that inhabited the plants. Leaf domatia had a direct positive effect on abundances of two species of bugs and one species of thrips, all of which are largely predators of herbivores. On leaves with domatia, each of the predators was found inside the domatia two to three times more often than outside the domatia. Eggs of predaceous bugs inside leaf domatia were protected from parasitism compared to eggs outside the domatia. The positive effects of leaf domatia on predator abundances were associated with reduced populations of herbivorous spider mites, aphids, and whiteflies. Plants with experimental leaf domatia showed significantly enhanced reproductive performance.
Induced resistance also affected the community of arthropods. Of the abundant predators, all of which also fed on the plant, only minute pirate bugs were negatively affected by induced resistance. Populations of herbivorous spider mites and whiteflies were directly and negatively affected by induction. In contrast, aphid populations were higher on plants with induced resistance compared to uninduced plants. Effects of induced resistance and domatia were additive for each of the predators and for aphids. However, spider mite and whitefly populations were not suppressed further by employing both induced resistance and domatia compared to each strategy alone. Our manipulations suggest that plant defense strategies can have positive effects on some species and negative effects on others. Negative effects of “resistance traits” on predators and positive effects on some herbivores may reduce the benefits of constitutive expression of resistance traits and may favor inducible defense strategies. Multiple plant strategies such as inducible resistance and morphological traits that aid in the recruitment of predators of herbivores may act together to maximize plant defenses, although they may also be redundant and not act additively.  相似文献   

19.
20.
Often, plant-pathogenic microbe interactions are discussed in a host-microbe two-component system, however very little is known about how the diversity of rhizospheric microbes that associate with plants affect host performance against pathogens. There are various studies, which specially direct the importance of induced systemic defense (ISR) response in plants interacting with beneficial rhizobacteria, yet we don’t know how rhizobacterial associations modulate plant physiology. In here, we highlight the many dimensions within which plant roots associate with beneficial microbes by regulating aboveground physiology. We review approaches to study the causes and consequences of plant root association with beneficial microbes on aboveground plant-pathogen interactions. The review provides the foundations for future investigations into the impact of the root beneficial microbial associations on plant performance and innate defense responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号