首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lipase-catalyzed glycerolysis of triolein has been examined using a group of tetraammonium-based ionic liquids (ILs) as media, specifically with functional groups in cation part. The results demonstrated that the reaction evolution and profile specificity of respective IL system could be quantitatively associated with the structural characteristics of the IL by means of quantum chemical and COSMO-RS calculation. Misfit interaction, Van der Waals interaction and chemical potential, etc. derived from COSMO-RS calculation are shown to be effective measures to delineate multiple interactions of ILs and then can be used to understand the effects of ILs on reactions. The hydrophobic substituents in the cation are found to contribute to the increase of triolein solubility and enhancement of initial reaction rate; while strong polar anion and polyethoxyl and free hydroxyl groups in the cation part dictate improved product selectivity through reducing activity coefficients of monoglycerides. Integration of these structures into the same molecule constitutes a promising group of ILs that could produce over 90% monoglyceride with almost 100% triglyceride conversion, as well as bulky productivity, of particular potential for industrial applications. Overall, this work has presented a first attempt to characterize the IL structure-dependency of reaction specificity by associating structural variations of ILs with thermodynamic property changes of resided compounds and subsequent effects on reaction specificity. This might be of general value to help to understand the multiple solvation interaction among IL reaction systems at molecular level and promote the application of IL-mediated reactions to practical interests.  相似文献   

2.
Two commercial immobilized lipases (“Lipozyme® IM” and “Novozym® 435”) were tested as biocatalysts for the glycerolysis of olive residue oil in n-hexane aimed at the production of monoglycerides (MG) and diglycerides (DG). A central composite rotatable design (CCRD) was followed to model and optimize glycerolysis as a function of both the amount of biocatalyst (L) and of the molar ratio glycerol/triglycerides (Gly/TG). For both biocatalysts, the production of free fatty acids (FFA) was described by second order models. In terms of MG and DG production, as well as of TG conversion, the best fits were obtained with first-order models. The highest MG productions were in the range 43–45% (w/w, on the basis of total fat) for both biocatalysts tested at a (Gly/TG) ratio of one. In the case of “Novozym 435”, the lowest load used (12%, w/w) gave the best results, in contrast with “Lipozyme IM” with which a concentration of about 26% (w/w) was necessary to obtain the highest production. Under these conditions, the amount of FFA produced was about 2% and 10% (w/w), respectively, for “Novozym 435” and “Lipozyme IM” catalyzed systems. Considering both FFA production and lipase loading, “Novozym 435” was shown to be a better biocatalyst for the glycerolysis of olive residue oil in n-hexane, aimed at the production of MG, than “Lipozyme IM”.  相似文献   

3.
Regioselective acylation of 1-β-d-arabinofuranosylcytosine (ara-C), using vinyl benzoate (VB) as acyl donor and Novozym 435 as catalyst, was carried out in various reaction media including pure organic solvents, organic solvent mixtures, and ionic liquid (IL)-containing systems. Although the reaction was highly regioselective in all the media assayed, remarkable enhancement of substrate conversion was achieved with a co-solvent mixture of 1-butyl-3-methylimidazolium hexafluorophosphate (C4MIm·PF6) and pyridine as the reaction medium, compared with other media tested. Additionally, the results demonstrated that the anions of ILs had a significant effect on the initial rate and substrate conversion. To better understand the reaction performed in IL-containing system, several variables were examined. The optimum molar ratio of VB to ara-C, initial water activity, temperature and shaking rate were 25:1, 0.11, 40°C and 250rpm, respectively. Under these optimum reaction conditions, the initial rate, substrate conversion, and regioselectivity were 0.49mMmin?1, 99.4 and 99%, respectively. The product of the lipase-catalyzed reaction was characterized by 13C NMR and was shown to be 5′-O-benzoyl ara-C.  相似文献   

4.
Although caffeic acid phenethyl ester (CAPE), an active flavonoid, plays an important role in the antioxidant activity of honeybee propolis, the isolation of CAPE from honeybee propolis is time-consuming due to wide variety of impurities present. Therefore, biochemical method to synthesize CAPE was investigated in this study. Since ionic liquids (ILs) possess some unique characteristics as appreciated alternatives to conventional solvents for certain biotransformation, the effect of ILs as reaction media for enzymatic synthesis of CAPE was assessed. Several factors including substrate molar ratio, and reaction temperature affecting the conversion yield of lipase-catalyzed CAPE synthesis were also investigated. Reaction yields were significantly higher in hydrophobic ILs than in hydrophilic ILs (almost zero). Among nine hydrophobic ILs tested, the highest conversion of synthetic reaction was obtained in 1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide ([Emim][Tf(2)N]). A reaction temperature of 70 °C was found to give high conversion. In addition, optimal substrate molar ratio between phenethyl alcohol and caffeic acid (CA) was decreased significantly from 92:1 to 30:1 when ILs were used instead of isooctane.  相似文献   

5.
The production of monoglycerides by glycerolysis of olive oil catalyzed by lipases from Candida rugosa, Chromobacterium viscosum and Rhizopus sp. immobilized in a hydrophylic polyurethane foam was investigated. The effect of the amount of aqueous phase used for foam polymerization on the competing reactions of glycerolysis and hydrolysis was studied. The highest monoglyceride production was achieved with the C. rugosa lipase which was thus selected for subsequent studies.The extent to which hydrolysis and glycerolysis occur and the influence of the initial a w of the system on both reactions were also investigated. In glycerolytic reaction systems, initial rates of fatty acid release were always higher than in hydrolytic systems. At a w values lower than 0.43, hydrolysis was completely repressed, although glycerolysis still occurred. This suggests that hydrolysis of the ester bond in the glyceride, promoted by glycerol, is the first reaction step.In glycerolysis, initial rates of FFA and DG production increased exponentially with the initial a w of the system.The lowest total conversion (in terms of % TG consumed) at 48 hours was obtained at intermediate a w values; higher conversions at extreme a w indicated an increase in hydrolytic and glycerolytic rates, at high and low a w respectively.The yield of MG increased with decreasing a w . The highest yield of MG (70%, w/w) was obtained at the lowest a w used (0.23). The initial a w of the reaction system is an important parameter in glycerolysis.List of Symbols a w thermodynamic activity of water - C 120 lauric acid - C 140 myristic acid - C 181 oleic acid - DG dediglyceride (s) - FAME fatty acid methyl ester (s) - FFA free fatty acid (s) - FID fire ionization detector - Gly glycerol - n number of replicates - MG monoglyceride (s) - PCA principal component analysis - PU polyurethane - r correlation coefficient - TG triglyceride (s) - TO triolein - significance level The authors are grateful to Prof. L. Beirão da Costa and to Prof. L. Campos, Inst. Sup. de Agronomia (ISA), and to Prof. J.M.S. Cabral, Inst. Sup. Técnico, Lisbon, Portugal, for inspiring discussions and advice, and to Mrs. Marlene Dionísio, ISA, for invaluable help with some of the experimental work.  相似文献   

6.
Immobilized Candida antarctica lipase B (Novozym 435)-catalyzed enantioselective hydrolysis of D,L-phenylglycine methyl ester to enatiopure D-phenylglycine was successfully conducted in the systems with ionic liquids (ILs). Novozym 435 exhibited excellent activity and enantioselectivity in the system containing the IL BMIMxBF(4) compared to several typical organic solvents tested. It has been found that the cations and, particularly, the anions of ILs have a significant effect on the reaction, and the IL BMIMxBF(4), which shows to be the most suitable for the reaction, gave the highest initial rate and enantioselectivity among various ILs examined. The reaction became much less active and enantioselective in the systems with BMIMxHSO(4). Also, it was noticed that the enzymatic hydrolysis was strongly dependent on BMIMxBF(4) content in the co-solvent systems and the favorable content of the IL was 20% (v/v). Of the assayed four co-solvents and phosphate buffer, the lowest apparent K(m) and activation energy, and the highest V(max) of the reaction were achieved using 20% (v/v) BMIMxBF(4) co-solvent with phosphate buffer. Additionally, various influential variables were investigated. The optimum pH, substrate concentration, reaction temperature and shaking rate were 8.0, 80mM, 25-30 degrees Celsius and 150rpm, respectively, under which the initial rate, the residual substrate e.e. and the enantioselectivity were 2.46mM/min, 93.8% (at substrate conversion of 53.0%) and 38, respectively. When the hydrolysis was performed under reduced pressure, the initial rate (2.64mM/min) and the enantioselectivity (E=43) were boosted.  相似文献   

7.
The low solubility of l-methionine and low activity of enzyme are the major hurdles during l-methionine production by the enzymatic conversion approach. In this study, we investigated various ionic liquids (ILs) as additives for the enzyme-catalyzed production of l-methionine from O-acetyl L-homoserine and methyl mercaptan. Among the ILs evaluated, we found that tetraalkylammonium hydroxide ILs enhanced the solubility of l-methionine as well as the activity of the enzyme. Methionine solubility decreased with increasing alkyl chain length but increased with increasing IL concentration. l-methionine could be dissolved up to 232 g/L in 10% tetramethylammonium hydroxide solution. The enzyme O-acetylhomoserine aminocarboxypropyltransferase reached its maximum activity when the IL concentration was 2.5% (3 times higher than that without ILs) and significantly decreased with increasing IL concentration. The stability of the enzyme also decreased rapidly after 2 h of incubation regardless of the presence or absence of ILs. Nevertheless, 74 g/L of l-methionine could be produced in a reaction media containing 2.5% tetraethylammonium hydroxide compared to 35 g/L of l-methionine obtained in a reaction system without ILs.  相似文献   

8.
Aqueous two-phase systems (ATPS) are considered as efficient downstream processing techniques in the production and purification of enzymes, since they can be considered harmless to biomolecules due to their high water content and due to the possibility of maintaining a neutral pH value in the medium. A recent type of alternative ATPS is based on hydrophilic ionic liquids (ILs) and salting-out inducing salts. The aim of this work was to study the lipase (Candida antarctica lipase B - CaLB) partitioning in several ATPS composed of ionic liquids (ILs) and inorganic salts, and to identify the best IL for the enzyme purification. For that purpose a wide range of IL cations and anions, and some of their combinations were studied. For each system the enzyme partitioning between the two phases was measured and the purification factors and enzyme recoveries were determined. The results indicate that the lipase maximum purification and recovery were obtained for cations with a C(8) side alkyl chain, the [N(CN)(2)] anion and ILs belonging to the pyridinium family. However, the highest purification parameters were observed for 1-methyl-3-octylimidazolium chloride [C(8)mim]Cl, suggesting that the IL extraction capability does not result from a cumulative character of the individual characteristics of ILs. The results indicate that the IL based ATPS have an improved performance in the lipase purification and recovery.  相似文献   

9.
Penicillium expansum lipase (PEL) was used to catalyze biodiesel production from corn oil in [BMIm][PF6]1 (an ionic liquid, IL) and tert-butanol. Both systems were optimized in terms of MeOH/oil molar ratio, reaction temperature, enzyme loading, solvent volume, and water content. The high conversion obtained in the IL (86%) as compared to that in tert-butanol (52%) demonstrates that the IL is a superior solvent for PEL-catalyzed biodiesel production. Poor yields were obtained in a series of hydrophilic ILs. Addition of salt hydrates affected biodiesel production predominantly through the specific ion (Hofmeister) effect. The impact of methanol on both activity and stability of PEL in the IL and in hexane was investigated, in comparison to the results obtained by two commonly used lipases, Novozym 435 and Lipozyme TLIM. The results substantiate that while different lipases show different resistance to methanol in different reaction systems, PEL is tolerant to methanol in both systems.  相似文献   

10.
Monoglycerides (MG) and diglycerides (DG) are the most widely used emulsifiers in food and pharmaceutical industries. In this study, MG and DG were produced by inter-esterification of refined olive residue oil with glycerol (glycerolysis), in n-hexane, catalyzed by Candida rugosa lipase immobilized in different biocompatible hydrophilic polyurethane foams, A and B. These foams, with aquaphilicities of 3.7 and 2.8, were prepared with a toluene diisocyanate (“Hypol FHP 2002™”) and a diphenylmethane diisocyanate (“Hypol FHP X4300TM”) pre-polymer, respectively.Response surface methodology was used for modeling the reaction, as a function of the molar ratio glycerol/triglycerides (Gly/TG, 0.5–2.0) and the initial water activity (aw) of the biocatalyst (A, 0.24–0.91; B, 0.37–0.91). Experiments were carried out following a central composite rotatable design. With lipase in foam A, production of MG and DG could be described by first order polynomials. With foam B, MG and DG production could be fitted to concave and flat surfaces, described by a second and a first orders polynomials, respectively.The best productions of MG and DG were achieved with the lipase in the less hydrophilic foam, B: at 24 h reaction time, 32% (w/w) MG and 18% (w/w) DG were obtained, when the initial aw of the biocatalyst was 0.83, with a Gly/TG of 1.  相似文献   

11.
Chromobacterium viscosum lipase, solubilized in microemulsion droplets of glycerol containing small amounts of water and stabilized by a surfactant, could catalyze the glycerolysis of triolein. Kinetic analysis of the lipase-catalyzed reaction was possible in the reversed micellar system. Among surfactants and organic solvents tested, bis(2-ethylhexyl)sodiumsulfosuccinate (AOT) and isooctane were respectively most effective, for the glycerolysis of triolein in reversed micelles. Temperature effects, pH profile, Km,app, and Vmax,app were determined. Among various chemical compounds, Fe3+, Cu2+, and Hg2+ inhibited the lipase-catalyzed glycerolysis severely. However, the glycerolysis activity was partially restorable by adding histidine or glycine to the system containing these metal ions. The glycerolysis activity was dependent on water content and maximum activity was obtained at an R value of 1.21. Higher stability of the lipase was obtained in the reversed micellar system.  相似文献   

12.
Chromobacterium viscosum lipase, solubilized in microemulsion droplets of glycerol containing small amounts of water and stabilized by a surfactant, could catalyze the glycerolysis of triolein. Kinetic analysis of the lipase-catalyzed reaction was possible in the reversed micellar system. Among surfactants and organic solvents tested, bis(2-ethylhexyl)sodiumsulfosuccinate (AOT) and isooctane were respectively most effective, for the glycerolysis of triolein in reversed micelles. Temperature effects, pH profile, Km,app, and Vmax,app were determined. Among various chemical compounds, Fe3+, Cu2+, and Hg2+ inhibited the lipase-catalyzed glycerolysis severely. However, the glycerolysis activity was partially restorable by adding histidine or glycine to the system containing these metal ions. The glycerolysis activity was dependent on water content and maximum activity was obtained at an R value of 1.21. Higher stability of the lipase was obtained in the reversed micellar system.  相似文献   

13.
The effect of ions on enzyme activity and stability usually follows the Hofmeister series (or the kosmotropicity order): kosmotropic anions and chaotropic cations stabilize enzymes while chaotropic anions and kosmotropic cations destabilize them. The effect of ionic liquids (ILs) on the enzyme activity/stability/enantioselectivity is complicated especially when there is no or little water presence in the IL media. However, when aqueous solutions of hydrophilic ILs are employed as reaction media, the enzyme seems to follow the Hofmeister series since ILs dissociate into individual ions in water.  相似文献   

14.
Glyceryl diferulate (DFG) is a water-soluble ester of ferulic acid. A novel ionic liquid (IL) system for enzymatic transesterification of ethyl ferulate (EF) with glycerol to produce DFG was developed. Of three ILs with different anions (BF4 ?, PF6 ? and TF2N?) and cations (BDMIM, OMIM, HMIM, BMIM, and EMIM), EMIMTF2N proved the best using a commercial lipase. It had a significant protective effect against thermal inactivation of the enzyme. High EF conversion (~100 %) and DFG yield (45 %) were achieved using 45 mg enzyme/ml; temperature, 70 °C; reaction time, 12 h.  相似文献   

15.
The operational stability of the Candida rugosa lipase immobilized in a hydrophilic polyurethane foam was evaluated in consecutive batches for the glycerolysis of olive oil in n-hexane, aimed at the production of monoglycerides.Glycerol controlled the glycerolysis in the system under study, since it is both a substrate and a powerful water binder that reduces the water activity of the reaction medium and of the microenvironment. Two sets of experiments were carried out under different glycerol/triglyceride ratios. After 345 hours of consecutive 23 hours batches no lipase inactivation was observed.List of Symbols aw thermodynamic activity of water - DG diglyceride (s) - FAME fatty acid methyl ester (s) - FFA free fatty acid (s) - FID flame ionization detector Gly glycerol - MG monoglyceride (s) - TG triglyceride (s) - TLC thin layer chromatography The authors are grateful to Profs. P. Adlercreutz, Technical University of Lund, Sweden, and J.M.S. Cabral, Instituto Superior Técnico, Lisbon, Portugal, for inspiring discussions and advice, to Prof. Helena Pereira, Instituto Superior de Agronomia (ISA), Lisbon, Portugal, for the use of GC equipment and to Mrs. Marlene Dionísio, ISA, for invaluable help with some of the experimental work.  相似文献   

16.
The activities of four immobilized lipases for glycerolysis of a commercially available fish oil (TG500) rich in eicosapentaenoic residues (>58%, w/w) have been characterized in solvent-free systems. The effects of the mole ratio of TG500 to glycerol and temperature have been investigated. The highest conversion was obtained at 60°C with a Candida antarctica fraction B lipase (Chirazyme L-2) and a mole ratio of TG500 (based on fatty acid equivalents) to glycerol of 1.5 to 1.  相似文献   

17.
18.
Medium chain glycerides (MCGs) containing C8:0 and C10:0 fatty acids is very much important for medicinal and nutritional applications. Coconut and palm kernel fatty acid distillates (FADs) can be utilized to produce MCGs by a combination of lipase-catalyzed hydrolysis and esterification reactions. The neutral glycerides present in coconut and palm kernel FADs are hydrolyzed by Candida rugosa lipase. The hydrolysates were then subjected to steam distillation under vacuum (at 120–140 °C) to get fractions rich in medium chain fatty acids (MCFAs). The fractions, from coconut and palm kernel FADs (75.2 and 76.2% MCFAs, respectively), were esterified with Rhizomucor miehei (Lipozyme RM IM) lipase to produce MCGs. Products from coconut FAD contained 64.7–67.5% diacylglycerol (DG), followed by 18.8–22.9% monoacylglycerol (MG) and 9.8–9.3% triacylglycerol (TG). Similarly, products from palm kernel FAD contained 63.5–66.7% DG, 19.1–23.6% MG and 9.5–10.1% TG.  相似文献   

19.
Immobilized Candida antarctica lipase-catalyzed esterification of adipic acid and oleyl alcohol was investigated in a solvent-free system (SFS). Optimum conditions for adipate ester synthesis in a stirred-tank reactor were determined by the response surface methodology (RSM) approach with respect to important reaction parameters including time, temperature, agitation speed, and amount of enzyme. A high conversion yield was achieved using low enzyme amounts of 2.5% w/w at 60°C, reaction time of 438 min, and agitation speed of 500 rpm. The good correlation between predicted value (96.0%) and actual value (95.5%) implies that the model derived from RSM allows better understanding of the effect of important reaction parameters on the lipase-catalyzed synthesis of adipate ester in an organic solvent-free system. Higher volumetric productivity compared to a solvent-based system was also offered by SFS. The results demonstrate that the solvent-free system is efficient for enzymatic synthesis of adipate ester.  相似文献   

20.
《Process Biochemistry》2010,45(12):1899-1903
Biobutanol has currently attracted considerable attention as an alternative biofuel to the petroleum-derived fuel due to several advantages including high energy content, low water absorption and easy application to the existing gasoline infrastructure. However, its production has still faced many obstacles to overcome including lack of energy-efficient butanol separation process from fermentation broth. To solve this issue, the extraction behavior of butanol from aqueous media into a variety of imidazolium-based ionic liquids (ILs) was investigated by liquid–liquid extraction. To understand the effect of ILs properties, the solvent characteristics of ILs such as mutual solubility of feed solvent (water) and extraction solvent (IL), distribution coefficient of butanol between water and IL, selectivity, and extraction efficiency were correlated with hydrophobicity and polarity of ILs. The butanol distribution between ILs and water strongly depends on the hydrophobicity of anions of ILs followed by the hydrophobicity of cations of ILs. On the other hand, butanol extraction efficiency and selectivity depend on the polarity of ILs. Considering extraction efficiency and selectivity, [Tf2N]-based ILs among the tested ILs showed to be the best extract solvent for the recovery of butanol from aqueous media. Among the studied ILs, [Omim][Tf2N] showed the highest butanol distribution coefficient (1.939), selectivity (132) and extraction efficiency (74%) at 323.15 K, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号