首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The aim of this study is to investigate the culture conditions of chicken feather degradation and keratinolytic enzyme production by the recently isolated Bacillus subtilis SLC and to evaluate the potential of the SLC strain to recycle feather waste discarded by the poultry industry. The SLC strain was isolated from the agroindustrial waste of a poultry farm in Brazil and was confirmed to belong to Bacillus subtilis by rDNA gene analysis. There was high keratinase production when the medium was at pH 8 (280 U ml−1). Activity was higher using the inoculum propagated for 72 h on 1% whole feathers supplemented with 0.1% yeast extract. In the enzymatic extract, the keratinases were active in the pH range from 2.0 to 12.0 with a maximum activity at pH 10.0 and temperature 60°C. For gelatinase the best pH was 5.0 and the best temperature was 37°C. All keratinases are serine peptidases. The crude enzymatic extract degraded keratin, gelatin, casein, and hemoglobin. Scanning electron microscopy showed Bacillus cells adhered onto feather surfaces after 98 h of culture and degraded feather filaments were observed. MALDI-TOF mass spectrometric analysis showed multiple peaks from 522 to 892 m/z indicating feather degradation. The presence of sulfide was detected on extracellular medium probably participating in the breakdown of sulfide bridges of the feather keratin. External addition of sulfide increased feather degradation.  相似文献   

2.
Keratinase are proteolytic enzymes which have gained much attention to convert keratinous wastes that cause huge environmental pollution problems. Ten microbial isolates were screened for their keratinase production. The most potent isolate produce 25.2?U/ml under static condition and was primarily identified by partial 16s rRNA gene sequence as Bacillus licheniformis ALW1. Optimization studies for the fermentation conditions increased the keratinase biosynthesis to 72.2?U/ml (2.9-fold). The crude extracellular keratinase was optimally active at pH 8.0 and temperature 65?°C with 0.7% soluble keratin as substrate. The produced B. licheniformis ALW1 keratinase exhibited a good stability over pH range from 7 to 9 and over a temperature range 50–60?°C for almost 90?min. The crude enzyme solution was able to degrade native feather up to 63% in redox free system.  相似文献   

3.
The gene kerA (1,047 bp) encoding the main keratinase from Bacillus licheniformis was cloned into two conventional vectors, pET30α and pET32α, and expressed in Escherichia coli. From SDS-PAGE analysis, the recombinant keratinases were 45 and 55 kDa. They had different optimal pH values (7.5 and 8.5) but the same optimum temperature of 50 °C. The recombinant keratinase produced in E. coli pET30α-kerA was more stable than that produced in E. coli pET32α-kerA, and retained approx. 70 % of its total enzyme activity after 30 min at 70 °C.  相似文献   

4.
The increasing demands of keratinases for biodegradation of recalcitrant keratinaceous waste like chicken feathers has lead to research on newer potential bacterial keratinases to produce high-value products with biological activities. The present study reports a novel keratinolytic bacterium Bacillus velezensis strain ZBE1 isolated from deep forest soil of Western Ghats of Karnataka, which possessed efficient feather keratin degradation capability and induced keratinase production. Production kinetics depicts maximum keratinase production (11.65 U/mL) on 4th day with protein concentration of 0.61 mg/mL. Effect of various physico-chemical factors such as, inoculum size, metal ions, carbon and nitrogen sources, pH and temperature influencing keratinase production were optimized and 3.74 folds enhancement was evidenced through response surface methodology. Silver (AgNP) and zinc oxide (ZnONP) nanoparticles with keratin hydrolysate produced from chicken feathers by the action of keratinase were synthesized and verified with UV–Visible spectroscopy that revealed biological activities like, antibacterial action against Bacillus cereus and Escherichia coli. AgNP and ZnONP also showed potential antioxidant activities through radical scavenging activities by ABTS and DPPH. AgNP and ZnONP revealed cytotoxic effect against MCF-7 breast cancer cell lines with IC50 of 5.47 µg/ml and 62.26 µg/ml respectively. Characterizations of nanoparticles were carried out by Fourier transform infrared spectroscopy, scanning electron microscopy with energy dispersive X-ray, X-ray diffraction, thermogravimetric analysis and atomic force microscopy analysis to elucidate the thermostability, structure and surface attributes. The study suggests the prospective applications of keratinase to trigger the production of bioactive value-added products and significant application in nanotechnology in biomedicine.  相似文献   

5.
A keratin-degrading bacterium of Bacillus licheniformis BBE11-1 was isolated and its ker gene encoding keratinase with native signal peptide was cloned and expressed in Bacillus subtilis WB600 under the strong P HpaII promoter of the pMA0911 vector. In the 3-L fermenter, the recombinant keratinase was secreted with 323 units/mL when non-induced after 24 h at 37 °C. And then, keratinase was concentrated and purified by hydrophobic interaction chromatography using HiTrap Phenyl-Sepharose Fast Flow. The recombinant keratinase had an optimal temperature and the pH at 40 °C and 10.5, respectively, and was stable at 10–50 °C and pH 7–11.5. We found this enzyme can retained 80 % activity after treated 5 h with 1 M H2O2, it was activated by Mg2+, Co2+ and could degraded broad substrates such as degraded feather, bovine serum albumin, casein, gelatin, the keratinase was considered to be a serine protease. Coordinate with Savinase, the keratinase could efficient prevent shrinkage and eliminate fibres of wool, which showed its potential in textile industries and detergent industries.  相似文献   

6.
Bacillus licheniformis PWD-1, the parent strain, and B. subtilis FDB-29, a recombinant strain. In both strains, keratinase was induced by proteinaceous media, and repressed by carbohydrates. A seed culture of B. licheniformis PWD-1 at early age, 6–10 h, is crucial to keratinase production during fermentation, but B. subtilis FDB-29 is insensitive to the seed culture age. During the batch fermentation by both strains, the pH changed from 7.0 to 8.5 while the keratinase activity and productivity stayed at high levels. Control of pH, therefore, is not necessary. The temperature for maximum keratinase production is 37°C for both strains, though B. licheniformis is thermophilic and grows best at 50°C. Optimal levels of dissolved oxygen are 10% and 20% for B. licheniformis and B. subtilis respectively. A scale-up procedure using constant temperature at 37°C was adopted for B. subtilis. On the other hand, a temperature-shift procedure by which an 8-h fermentation at 50°C for growth followed by a shift to 37°C for enzyme production was used for B. licheniformis to shorten the fermentation time and increase enzyme productivity. Production of keratinase by B. licheniformis increased by ten-fold following this new procedure. After respective optimization of fermentation conditions, keratinase production by B. licheniformis PWD-1 is approximately 40% higher than that by B. subtilis FDB-29. Received 16 July 1998/ Accepted in revised form 07 March 1999  相似文献   

7.
A new native feather-degrading bacterium has been isolated from the faeces of the agamid lizard Calotes versicolor, collected from the Beijing Zoo in China. The isolate, which has been identified as Bacillus sp. 50-3 based on morphological and biochemical and 16S rDNA tests, was shown to degrade native feather completely at 37°C and pH 7.0 within 36 h when using chicken feathers as the sole carbon and nitrogen source. Bacillus sp. 50-3 presented optimum growth at 37°C and pH 7.0 in feather meal medium. Under these conditions, the maximum keratinase activity (680 ± 25 U/ml) was also achieved. The keratinase of Bacillus sp. 50-3 was active over a broad range of pH values and temperatures toward azokeratin, and presented an optimum pH and temperature of 10.0 and 60°C, respectively. Furthermore, it was relatively heat-and alkali-stable. Inhibitor studies showed that it seemed to belong to the serine-metalloprotease type. Therefore, the enzyme from Bacillus sp. 50-3 is a novel, high alkaline keratinase, suggesting its potential use in biotechnological processes.  相似文献   

8.
This study is concerned with the co-production of alkaline proteases and thermostable α-amylase by some feather-degrading Bacillus strains: B. mojavensis A21, B. licheniformis NH1, B. subtilis A26, B. amyloliquefaciens An6 and B. pumilus A1. All strains produced both enzymes, except B. pumilus A1, which did not exhibit amylolytic activity. The best enzyme co-production was obtained by the NH1 strain when chicken feathers were used as nitrogen and carbon sources in the fermentation medium. The higher co-production of both enzymes by B. licheniformis NH1 strain was achieved in the presence of 7.5 g/l chicken feathers and 1 g/l yeast extract. Strong catabolic repression on protease and α-amylase production was observed with glucose. Addition of 0.5% glucose to the feather medium suppressed enzyme production by B. licheniformis NH1. The growth of B. licheniformis NH1 using chicken feathers as nitrogen and carbon sources resulted in its complete degradation after 24 h of incubation at 37°C. However, maximum protease and amylase activities were attained after 30 h and 48 h, respectively. Proteolytic activity profiles of NH1 enzymatic preparation grown on chicken feather or casein-based medium are different. As far as we know, this is the first contribution towards the co-production of α-amylase and proteases using keratinous waste. Strain NH1 shows potential use for biotechnological processes involving keratin hydrolysis and industrial α-amylase and proteases co-production. Thus, the utilization of chicken feathers may result in a cost-effective process suitable for large-scale production.  相似文献   

9.
The main keratinase (kerA) gene from the Bacillus licheniformis S90 was optimized by two codon optimization strategies and expressed in Pichia pastoris in order to improve the enzyme production compared to the preparations with the native kerA gene. The results showed that the corresponding mutations (synonymous codons) according to the codon bias in Pichia pastoris were successfully introduced into keratinase gene. The highest keratinase activity produced by P. pastoris pPICZαA-kerAwt, pPICZαA-kerAopti1 and pPICZαA-kerAopti2 was 195 U/ml, 324 U/ml and 293 U/ml respectively. In addition, there was no significant difference in biomass concentration, target gene copy numbers and relative mRNA expression levels of every positive strain. The molecular weight of keratinase secreted by recombinant P. pastori was approx. 39 kDa. It was optimally active at pH 7.5 and 50°C. The recombinant keratinase could efficiently degrade both α-keratin (keratin azure) and β-keratin (chicken feather meal). These properties make the P. pastoris pPICZαA-kerAopti1 a suitable candidate for industrial production of keratinases.  相似文献   

10.
Aims:  To isolate novel nonpathogenic fungus that completely degrades native chicken feather and characterize its keratinases. Methods and Results:  Feather‐degrading fungi were isolated from decaying feathers using a novel method based on simulating decaying process in the environment. The isolate F6 with high keratinolytic activity was identified as Trichoderma atroviride based on morphological traits and ITS1‐5·8S‐ITS2 sequence analysis. The purified dominant component of keratinase had a molecular mass of 21 kDa. The purified keratinase belonged to serine protease. Its isoelectric point, molecular weight, optimum pH, optimum temperature, and substrate specificity are different from those of other serine proteases of Trichoderma species. The optimum pH and temperature values of purified keratinase were consistent with those of crude keratinase. However, the differences between crude and purified enzymes such as thermostability, resistance to Ba2+, Mn2+, Hg2+, Zn2+, Cu2+, 1,10‐phenanthroline, 2,2′‐bipyridyl, and PMSF (phenylmethylsulfonyl fluoride) were observed. Conclusions:  The results suggested the purified keratinase is predominantly extracellular proteins when strain F6 was grown on keratinous substrates. The protease, in combination with other components, is effective in feather degradation. The strain F6 is more suitable for feather degradation than its purified keratinase. Significance and Impact of the Study:  The novel nonpathogenic T. atroviride F6 with high feather‐degrading activity showed potentials in biotechnological process of converting feathers into economically useful feather meal.  相似文献   

11.
Three keratinolytic Bacillus spp. isolated from the Brazilian Amazon basin were characterized. The strains P6, P7 and P11 were identified based on morphological and biochemical characteristics and 16S rDNA sequences. P6, P7 and P11 sequences shared more than 99% similarity with B. subtilis, B. amyloliquefaciens and B. velesensis. The keratinases produced by these bacteria were active on azokeratin and degradation of feather barbules was observed. The enzymes were inhibited by the serine protease inhibitor PMSF, and showed maximum activity at pH 9.0. Proteins like albumin, casein and gelatin were hydrolysed by these keratinases. Depilatory studies on bovine pelts revealed that all three strains were efficient in promoting de-hairing. Microscopic analysis showed that the epidermis was completely removed and the absence of hair in follicles was observed.  相似文献   

12.
Locally isolated bacterium Pseudomonas sp. LM19, a metallo-keratinase producer was used to hydrolyze the highly rigid keratin recalcitrant in this study. The production of crude keratinase by Pseudomonas sp. LM19 is influenced by both physical and nutritional parameters. The highest keratinase activity of 127?U/ml (2.15-fold) was observed in feather meal medium supplemented with fructose and peptone at a C/N ratio of 40. The optimum pH and temperature for keratinase production were found to be pH 8 and 30?°C, using 1% (w/v) feather as substrate. The degradation rate of the feathers was increased 2.4-fold at optimized physical and nutritional conditions. Feather degradation by Pseudomonas sp. LM19 led to the production of free amino acids such as arginine, glycine, leucine, and serine. The information on the production of keratinase by Pseudomonas sp. LM19 obtained from this study warrants further research for possible commercial application.  相似文献   

13.
Abstract

Bacillus subtilis K-5, an isolate from compost, utilized a wide range of keratinous wastes viz. diverse feather types, nails, hair, scales, etc. for growth and produced a thermostable alkaline protease (keratinase) with broad proteolytic activity. Optimization of cultural and environmental variables using a Plackett–Burman design and response surface methodology resulted in enhanced keratinase production (89%). Keratinase was partially purified (15-fold) by ammonium sulfate precipitation and carboxymethyl cellulose chromatography. The optimum pH and temperature for keratinase activity were 9.0 and 60°C, however, considerable activity and stability was observed over broad pH (5–10) and temperature range (50–90°C). B. subtilis K-5 keratinase exhibited excellent stability toward detergents (cetyl trimethylammonium bromide, Tween 80, and sodium dodecyl sulfate) and organic solvents (benzene, acetonitrile, phenylmethylsulfonyl fluoride); however, metal ions like Mn2+, Cu2+, Na+, Hg2+, K+, Ca2+, and Zn2+ inhibited the activity. B. subtilis K-5 protease showed remarkable potential for diverse applications like blood stain removal, gelatin hydrolysis from waste X-ray films and dehairing of animal hide.  相似文献   

14.
A feather-degrading culture was enriched with isolates from a poultry waste digestor and adapted to grow with feathers as its primary source of carbon, sulfur, and energy. Subsequently, a feather-hydrolytic, endospore-forming, motile, rod-shaped bacterium was isolated from the feather-degrading culture. The organism was Gram stain variable and catalase positive and demonstrated facultative growth at thermophilic temperatures. The optimum rate of growth in nutrient broth occurred at 45 to 50°C and at pH 7.5. Electron microscopy of the isolate showed internal crystals. The microorganism was identified as Bacillus licheniformis PWD-1. Growth on hammer-milled-feather medium of various substrate concentrations was determined by plate colony count. Maximum growth (approximately 109 cells per ml) at 50°C occurred 5 days postinoculation on 1% feather substrate. Feather hydrolysis was evidenced as free amino acids produced in the medium. The most efficient conditions for feather fermentation occurred during the incubation of 1 part feathers to 2 parts B. licheniformis PWD-1 culture (107 cells per ml) for 6 days at 50°C. These data indicate a potential biotechnique for degradation and utilization of feather keratin.  相似文献   

15.
Forty-seven strains representing 14 different Bacillus species isolated from clinical and food samples were grown in reconstituted infant milk formulae (IMF) and subsequently assessed for adherence to, invasion of, and cytotoxicity toward HEp-2 and Caco-2 cells. Cell-free supernatant fluids from 38 strains (81%) were shown to be cytotoxic, 43 strains (91%) adhered to the test cell lines, and 23 strains (49%) demonstrated various levels of invasion. Of the 21 Bacillus cereus strains examined, 5 (24%) were invasive. A larger percentage of clinically derived Bacillus species (20%) than of similar species tested from the food environment were invasive. Increased invasion occurred after growth of selected Bacillus species in reconstituted IMF containing glucose. While PCR primer studies revealed that many different Bacillus species contained DNA sequences encoding the hemolysin BL (HBL) enterotoxin complex and B. cereus enterotoxin T, not all of these isolates expressed these diarrheagenic genes after growth in reconstituted IMF. Of the 47 Bacillus isolates examined, 3 isolates of B. cereus and 1 isolate of B. subtilis produced the HBL enterotoxin after 18 h of growth in brain heart infusion broth. However, eight isolates belonging to the species B. cereus, B. licheniformis, B. circulans, and B. megaterium were found to produce this enterotoxin after growth in reconstituted IMF when assessed with the B. cereus enterotoxin (diarrheal type) reversed passive latex agglutination (RPLA) kit. It is concluded that several Bacillus species occurring occasionally in clinical specimens and food samples are of potential medical significance due to the expression of putative virulence factors.  相似文献   

16.
In this study, we evaluated the occurrence of antibacterial peptide (ABP)-producing Bacillus spp. in fermented foods. Among 78 isolated cultures, 25 potential ABP-producing stains were selected and differentiated genotypically and phenotypically. The 16S rRNA gene sequence homology, in combination with morphological, physiological and biochemical characteristics, was used for the identification of the isolates. The isolates exhibited inhibitory activity against both Gram-positive and Gram-negative food-borne pathogens. The antibacterial compounds produced by these cultures were proteinaceous in nature, with molecular weight falling in the range of 3?C6.5?kDa. The ABP present in the cell-free supernatant of B. subtilis Ec1 and B. licheniformis Me1 exhibited the highest titre of activity (3,400?AU/ml) and wide range of pH (4?C10) and temperature (40?C100?°C) stability. The strain Ec1 was found to be exhibiting some in vitro probiotic properties, such as acid and bile tolerance, bile salt hydrolase activity and hydrophobicity towards hydrocarbons. The viable counts of Listeria monocytogenes Scott A in pasteurized milk samples containing ABP of Ec1 were lower than those observed in controls without ABP. The ABP-coated packaging films exhibited antimicrobial activity against the pathogens, indicating the application of ABP from Bacillus spp. in antimicrobial packing materials. These observations increase the likelihood of potential use of the isolated Bacillus spp. or their ABP for application in food biopreservation and as probiotics.  相似文献   

17.
Based on previous screening for keratinolytic nonpathogenic fungi, Paecilomyces marquandii and Doratomyces microsporus were selected for production of potent keratinases. The enzymes were purified and their main biochemical characteristics were determined (molecular masses, optimal temperature and pH for keratinolytic activity, N-terminal amino acid sequences). Studies of substrate specificity revealed that skin constituents, such as the stratum corneum, and appendages such as nail but not hair, feather, and wool were efficiently hydrolyzed by the P. marquandii keratinase and about 40% less by the D. microsporus keratinase. Hydrolysis of keratin could be increased by the presence of reducing agents. The catalytic properties of the keratinases were studied and compared to those of some known commercial proteases. The profile of the oxidized insulin B-chain digestion revealed that both keratinases, like proteinase K but not subtilisin, trypsin, or elastase, possess broad cleavage specificity with a preference for aromatic and nonpolar amino acid residues at the P-1 position. Kinetic studies were performed on a synthetic substrate, succinyl-Ala-Ala-Pro-Phe-p-nitroanilide. The keratinase of P. marquandii exhibited the lowest Km among microbial keratinases reported in the literature, and its catalytic efficiency was high in comparison to that of D. microsporus keratinase and proteinase K. All three keratinolytic enzymes, the keratinases of P. marquandii and D. microsporus as well as proteinase K, were significantly more active on keratin than subtilisin, trypsin, elastase, chymotrypsin, or collagenase.  相似文献   

18.
Degradation of chicken feathers by Chrysosporium georgiae   总被引:1,自引:0,他引:1  
Using a baiting technique, Chrysosporium georgiae was isolated from chicken feathers. Twenty-eight different fungal isolates were evaluated for their ability to produce keratinase enzymes using a keratin–salt agar medium containing either white chicken feathers or a prepared feather keratin suspension (KS). The Chrysosporium species were able to use keratin and grow at different rates. Chrysosporium georgiae completely degraded the added keratin after 9 days of incubation. Degradation of feathers by C. georgiae was affected by several cultural factors. Highest keratinolytic activity occurred after 3 weeks of incubation at 6 and 8~pH at 30 °C. Chrysosporium georgiae was able to degrade white chicken feathers, whereas bovine and human hair and sheep wool were not degraded and did not support fungal growth. Addition of 1% glucose to the medium containing keratin improved fungal growth and increased enzyme production. Higher keratin degradation resulted in high SH accumulation and the utilization of the carbohydrate carbon in the medium resulted in high keto-acid accumulation but decreased ammonia accumulation. Supplementation of the keratin–salt medium with minerals such as NH4Cl and MgSO4 slightly increased mycelial growth, but decreased production of extracelluar keratinase. Keratinase enzymes were very poorly produced in the absence of keratin, indicating its inducible nature. Analysis of endocellular keratinases in the mycelial homogenate indicated higher activity of intracellular keratinase as compared to the extracellular enzyme in culture filtrates. Chrysosporium georgiae was the most superior for keratinase production among the Chrysosporium species tested in the presence or absence of glucose. It produced more of the intracellular enzymes than the exocellular ones. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
Keratinases are proteolytic enzymes capable of degrading insoluble keratins. The importance of these enzymes is being increasingly recognized in fields as diverse as animal feed production, textile processing, detergent formulation, leather manufacture, and medicine. To enhance the thermostability of Bacillus licheniformis BBE11-1 keratinase, the PoPMuSiC algorithm was applied to predict the folding free energy change (ΔΔG) of amino acid substitutions. Use of the algorithm in combination with molecular modification of homologous subtilisin allowed the introduction of four amino acid substitutions (N122Y, N217S, A193P, N160C) into the enzyme by site-directed mutagenesis, and the mutant genes were expressed in Bacillus subtilis WB600. The quadruple mutant displayed synergistic or additive effects with an 8.6-fold increase in the t 1/2 value at 60 °C. The N122Y substitution also led to an approximately 5.6-fold increase in catalytic efficiency compared to that of the wild-type keratinase. These results provide further insight into the thermostability of keratinase and suggest further potential industrial applications.  相似文献   

20.
The time/temperature profiles experienced by spores on the track from their natural sporulation environment to consumable food products may be highly diverse. Temperature has been documented as an important factor that may activate spores, i.e. potentiates spores to germinate. There is, however, limited knowledge about the relationship between the expected temperature history and the subsequent germination characteristics of bacterial spores. We show here that the germination rate of five different Bacillus spore populations, represented by strains of Bacillus cereus, Bacillus weihenstephanensis, Bacillus pumilus, Bacillus licheniformis and Bacillus subtilis could be increased following 1 week storage at moderately elevated temperatures, 30–33 °C, compared to spores stored at 3–8 °C. The results imply that spores contamination routes to foods, specifically the temperature history, could be highly relevant data in predictive modeling of food spoilage and safety. Activation at these moderately elevated temperatures may be a native form of spore activation in their natural habitats, knowledge that also could be useful in development of decontamination strategies for mildly heated foods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号