首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of ouabain, a known inhibitor of lymphoproliferation, were studied in relation to the cytotoxic effector function of human peripheral blood mononuclear leukocytes (MNL) against chicken red blood cell (CRC) targets. MNL effectors lysed 51Cr-labeled CRC targets in the presence of PHA (mitogen-induced cellular cytotoxicity—MICC) or rabbit anti-CRC antibody (antibody-dependent cellular cytotoxicity—ADCC) in the absence of ouabain. The addition of ouabain to the cytotoxic reaction caused profound diminution of MICC with greater than 90% suppression of killing at ouabain concentrations of 5 × 10?4M; ADCC was much more resistant to the effects of ouabain with only 60 to 70% inhibition of killing at similar ouabain concentrations (P < 0.01). Similar ouabain inhibition of MICC occurred whether the effector cell populations were unseparated MNL, depleted of monocytes, enriched for T cells, or depleted of T cells, suggesting a generalized activity by ouabain against all effector cells active in MICC. Ouabain inhibition of MICC could be overcome by increasing PHA concentrations, indicating that ouabain inhibition was not due to irreversible toxic effects on effector cells. Increasing the concentration of anti-CRC antibody resulted in increased killing in this ADCC system and, paradoxically, ADCC cultures with the highest antibody concentrations were more completely inhibited by ouabain. This enhanced inhibitory effect of ouabain on ADCC cultures with the highest antibody concentrations was not observed when the effector cell population was first depleted of phagocytic cells, suggesting a preferential inhibitory action by ouabain against monocyte effectors in ADCC. Thus, the differential inhibitory effects of ouabain on MICC and ADCC against CRC targets may be in part explained by the differing ouabain sensitivities of the various effector cell subpopulations involved in these cell-mediated cytotoxic events.  相似文献   

2.
The nature of the cell types capable of mediating mitogen-induced cellular cytotoxicity (MICC) and antibody-dependent cellular cytotoxicity (ADCC) was investigated utilizing effector cells from athymic nude and euthymic heterozygous control littermate mice as well as Sephadex anti-Fab immunoabsorbent column purified spleen cell populations from normal (CS7BL/6) mice. Chicken erythrocytes (CRBC) and the mouse lymphoma, EL-4, were used as target cells in both cytotoxicity assays. MICC utilizing CRBC targets was mediated by several effector cell types whereas MICC utilizing EL-4 lymphoma targets was T-cell dependent. ADCC against both CRBC and EL-4 lymphoma targets occurred independently of the presence of T-cells. In addition, effector cell populations incapable of mediating MICC against EL-4 lymphoma targets were capable of mediating ADCC against the same EL-4 targets. Thus, utilizing the appropriate target cells, EL-4 but not CRBC, a sharp distinction can be made between the effectors for ADCC and MICC: ADCC is T-cell independent while MICC is dependent on the presence of mature thymus-derived cells. Furthermore these studies demonstrate that the nature of the target cell employed in MICC and ADCC reactions plays a critical role in defining the types of effector cells capable of mediating these cytotoxicity reactions.  相似文献   

3.
We have previously shown that ouabain inhibits mitogen-induced cellular cytotoxicity (MICC) and antibody-dependent cellular cytotoxicity (ADCC) against chicken red cell (CRC) targets. We now report that ouabain increases spontaneous killing of CRC targets in the absence of mitogen or antibody. Spontaneous cytotoxicity by fresh mononuclear leukocytes (MNL) was enhanced by ouabain in a dose-dependent fashion and was maximal at a ouabain concentration of 5 × 10?5M. Removal of phagocytic cells from the MNL effector cell population abrogated ouabain-induced spontaneous cytotoxicity, suggesting that the effector cell activated by ouabain was a monocyte. Ouabain-induced spontaneous cytotoxicity was relatively inefficient compared to MICC or ADCC and was only demonstrated consistently at effector:target cell ratios higher than those routinely employed for MICC and ADCC. Very low concentrations of ouabain (5 × 10?9M) also enhanced spontaneous cytotoxicity of MNL precultured for 7 days, when added at either Day 0 or Day 6 of preculture. The cell effecting spontaneous cytotoxicity after 7 days of culture has been previously shown to be a monocyte. Thus, ouabain has opposing effects on cell-mediated cytotoxic functions: it inhibits MICC and ADCC against CRC targets, but stimulates spontaneous, monocyte-mediated cytotoxicity against the same targets.  相似文献   

4.
The question of whether cells bearing complement receptors (CR) mediate cytotoxicity in vitro against allogeneic Chang liver cell targets was investigated by assessing peripheral blood mononuclear cells (PBMC) from normal humans for cell surface characteristics and cytotoxic capacity before and after depletion of CR+ cells capable of forming rosettes with sheep erythrocytes coated with 19S antibody and mouse complement (EAC) and depletion of Fc receptor-bearing cells capable of forming rosettes with human O+ erythrocytes coated with Ripley antibody (EA-Ripley). PBMC depleted of CR+ cells by density centrifugation contained markedly reduced proportions of phagocytes and sIg + cells and increased proportions of both sIg ?, FcR+ cells as well as cells forming rosettes with sheep erythrocytes (E). PBMC depleted of CR+ cells mediated cytotoxicity to an extent equal to or greater than that mediated by unfractionated PBMC in assays of spontaneous cell-mediated cytotoxicity (SCMC), antibody-dependent cellular cytotoxicity (ADCC), and mitogen-induced cellular cytotoxicity (MICC). Cells harvested from the EAC-rosette enriched pellet mediated cytotoxicity 5- to 10-fold less than unfractionated PBMC; however, the cytotoxic activity of the pellet could not be attributed to CR + effector cells since similar cytotoxic activity was present in cell pellets obtained by density centrifugation of PBMC which had been incubated with E coated with 19S antibody or E alone. PBMC depleted of EA-Ripley rosette-forming cells contained decreased proportions of sIg?, FcR+ cells and increased proportions of CR+ cells; PBMC so depleted contained virtually no SCMC and ADCC effector cell activity. These findings indicate that at least the majority of effector cells which mediate SCMC, ADCC, and MICC do not bear CR.  相似文献   

5.
Subpopulations of human peripheral blood lymphocytes were prepared by rosetting techniques employing neuraminidase-treated sheep erythrocytes (SRBCn), sheep erythrocytes coated with IgM and murine complement (EAC′), and bovine erythrocytes coated with IgG and IgM. The isolated subpopulations were tested in assays of natural cytotoxicity (NC), antibody-dependent cellular cytotoxicity (ADCC), and mitogen-induced cellular cytotoxicity (MICC). B cells (SRBCn?, EAC′+) did not mediate cytotoxicity. L cells (SRBCn?, EAC′?) mediated NC and ADCC but not MICC. T cells (SRBCn+) mediated NC, ADCC, and MICC. Separation of T cells into Fc-IgG (Tγ) and Fc-IgM (Tμ) subsets revealed that Tγ cells mediated NC, ADCC, and MICC while Tμ cells mediated only MICC. Thus MICC but not NC or ADCC was solely T-cell mediated. Tγ and L cells were functionally distinguishable in that Tγ cells but not L cells mediated MICC. Tγ cells and Tμ cells differed with regard to NC and ADCC effector function while both subsets mediated MICC.  相似文献   

6.
Normal human peripheral blood lymphocytes (PBL) express several in vitro cytotoxic functions, among which are natural killer (NK), antibody-dependent cellular cytotoxicity (ADCC), and lectin-dependent cellular cytotoxicity (LDCC). The relationship of these various cytotoxic functions and the identity of cells involved has been a subject of controversy. Recently it was reported that NK and K for ADCC can be mediated by the same cell, suggesting that they constitute in large part a single subpopulation with multiple cytotoxic functions. The ability of this NK/K effector cell to mediate LDCC was examined here using the two target conjugate assay. The effector cells were Ficoll-Hypaque PBL or LGL-enriched fractions. The targets used were K562 or MOLT for NK, RAJI coated with antibody for ADCC, and RAJI coated with PHA or Con A or modified by NaIO4 for LDCC. In the two-target conjugate assay, one of the targets is fluorescein labeled for identification. The results show that (a) LDCC copurifies with NK/K and is enriched in the LGL fraction, as measured in both the 51Cr-release assay and the single-cell assay for cytotoxicity; (b) single effector cells simultaneously bind to NK or ADCC and LDCC targets, revealing that single cells bear binding receptors for all targets; and (c) single lymphocytes were not able to kill both bound NK/K and LDCC targets. However, significant two-target killing was obtained when both targets were NK targets, ADCC targets, LDCC targets, or one NK and one ADCC target. These results demonstrate that the NK and LDCC effector cells are distinct subpopulations copurified in the LGL fraction. In addition, the results show that lectin is unable to trigger globally an NK effector cell to mediate cytotoxicity against a bound NK insensitive target. Thus, although both NK and LDCC effector cells are present in the LGL fraction and can bind to both types of targets, the trigger of the lethal hit event is the function of specialized effector cells.  相似文献   

7.
The effect of Parotis virus on the in vitro cytotoxicity of human lymphocytes against NK-resistant mouse mastocytoma cells was studied. In the 51Cr-release assay, treatment of lymphocytes with virus induced a rapid cytotoxicity in the absence of anti-P8 15 antibody (virus-dependent cellular Cytotoxicity, VDCC) and strongly enhanced antibody-dependent cytotoxicity (ADCC). At the effector cell level, virus treatment was found to increase the frequency of target-binding cells (TBC) as well as the proportion thereof mediating VDCC and/ or ADCC, indicating recruitment of active effector cells. The recruited cells were heterogeneous but contained a major fraction bearing the T-cell-associated antigen T3. Virus was found to decrease rather than to increase the recycling capacity of the cytotoxic lymphocytes, suggesting that VDCC induction and ADCC enhancement were due to a virus-mediated improvement of effector cell-target cell interactions. VDCC and ADCC enhancement may be of protective importance in early phases of virus infection as well as for the production of nonspecific tissue injuries associated with viral disease.  相似文献   

8.
The mechanism of lymphocyte-mediated cytotoxicity to cells infected with measles virus was investigated. Cytotoxicity was measured in a direct assay, immediately after the isolation of lymphocytes from human peripheral blood; mononuclear leukocytes, infected with measles virus in vitro, served as autologous target cells. Virus-specific cytotoxicity required the presence of both IgG antibodies against measles virus and of effector lymphocytes. The effector lymphocytes had Fc receptors and were mainly present in a fraction of non-T lymphocytes. Monocytes were not cytotoxic but rather inhibitory. These results indicate that lysis of virus-infected cells in this direct assay is due to antibody-dependent cellular cytotoxicity (ADCC), caused by K cells. Control experiments showed that the virus-infected target cells were sensitive to incubation with human serum or IgG, resulting in a nonspecific increase of 51Cr release; however, this did not affect the results of K-cell cytotoxicity. Maximal virus-specific lysis by ADCC did not reach the level obtained by complement-dependent cytotoxicity. Possible explanations for this difference are discussed.  相似文献   

9.
Phytohemagglutinin (PHA) induced cell cytotoxicity was studied in man using chromated chicken red blood cells (CRBC) as target cells. A phagocytic, adherent monocyte was found to be necessary for lysis of target cells. Results using E rosette depletion showed that this procedure markedly increased mitogen-induced cellular cytotoxicity (MICC). Carbonyl iron treatment of peripheral blood cell suspensions to remove phagocytic cells abolished MICC, as did removal of adherent cells by glass wool columns. Complement mediated lysis of B cells did not substantially reduce MICC. However, pretreatment of cells with silica or hydrocortisone did reduce MICC. The mechanism of mitogen-induced lysis appears to require direct cell contact between effector cells and target cells.  相似文献   

10.
The ability of mitogens to induce cytotoxic effector reactions in vitro has been studied to investigate basic mechanisms of cell mediated cytotoxicity. The type of mitogen, the source of effector cells, and the nature of the target cell are all critical variables in determining the characteristics of the cytotoxic event in this system. Spleen cells and bone marrow cells from congenitally athymic nude mice as well as from their heterozygous control littermates were capable of mediating lysis of RBC targets in the presence of either PHA or Con A. Removal of macrophages from these effector populations by adherence columns, density gradient centrifugation, and carrageenan treatment failed to abrogate this cytotoxic capacity. However, purified macrophages themselves also were capable of mediating mitogen induced killing of RBC targets, although the kinetics of this cytotoxicity were substantially different from that induced by lymphocytes. In contrast to these observations, the capacity of mitogen stimulated cells to kill metabolically active complex targets like the P815 mastocytoma or cultured L cells appears to be exclusively a T lymphocyte dependent function. In addition, blastogenic transformation of the effector cells with the T cell mitogens PHA and Con A, but not with the B cell mitogen LPS, leads to enhanced killing of these complex targets. These data suggest that mitogen or lectin induced cellular cytotoxicity can detect at least three different active effector cell types (B cells, T cells, and macrophages) acting via at least four different mechanisms.  相似文献   

11.
Spontaneous lymphocyte-mediated cytotoxicity (SLMC) and antibody-dependent cellular cytotoxicity (ADCC) was assessed in 13 patients with immunodeficiency diseases—immunodeficiency-thymoma syndrome (1), Bruton type agammaglobulinemia (3), and common variable hypogammaglobulinemia (9). SLMC and ADCC function were intact (and possibly enhanced) in the patient with immunodeficiency thymoma. Both ADCC and SLMC were detectable in the three patients with X-linked agammaglobulinemia, one of whom had lower than expected SLMC. In all of the immunodeficient patients, the relative inability of B lymphocytes to produce immunoglobulin in vivo or in vitro did not consistently affect the ability of (presumably) other lymphocytes to mediate SLMC and ADCC, although in three of the CVH patients this was lower than normal. In every case, removal of Fc receptor-bearing cells from the patients' lymphocyte preparations severely depleted SLMC (and ADCC when tested), but cytotoxicity was either unchanged or enhanced by depletion of E rosette forming T cells. The effects of Fc receptor-positive cell depletion, T-cell depletion, culture serum variation, or the addition of antibody-coated erythrocytes to the assay were similar on both SLMC and ADCC effector cells (“NK” and “K” cells), and whether patients' or normal lymphocytes were tested. The possible significance of the results with respect to surveillance against cancer is discussed.  相似文献   

12.
Cytotoxic effector lymphocytes were induced by in vitro immunization of lymph node and spleen cells from CS7B16(H2b) and Balb/c(H2d) mice to syngeneic or allogeneic methylcholanthrene-induced fibrosarcoma (MCAF) cell lines. The T cell-dependent cytotoxicity was specific to target cell lines to which the lymphocytes were immunized in vitro. Normal fibroblasts as stimulator cells did not induce lymphocytotoxicity to syngeneic MCAF cells or to normal syngeneic fibroblasts. The results indicate that the in vitro-immunized lymphocytes recognize individual specific tumor-associated antigens of the MCAF cells. In experiments in which the lymphocytes were immunized in vitro to allogeneic MCAF cells, cytotoxic reactions to alloantigens, but not to tumor-associated antigens, were detected. Incubation with phytohemagglutinin (PHA) during the sensitization period modified the specificity of the cell-mediated lysis of MCAF cells: Allogeneic as well as syngeneic target cells were destroyed by these effector cells. PHA induced a nonspecific cytotoxic effect which increased the specific lysis of target cells. The cytotoxicity of the in vitro-immunized lymphocytes was inhibited by incubation with membrane protein preparations from the syngeneic MCAF cell lines. In contrast to the specificity of the cytotoxic effect to the different syngeneic cell lines, the membrane extract of one individual syngeneic MCAF cell line was able to inhibit the lymphocytotoxicity to all other syngeneic cell lines. Membrane protein preparations from allogeneic MCAF cells or from normal syngeneic fibroblasts were not inhibitory. The in vitro-immunized cytotoxic lymphocytes did not impair the tumor growth in vivo as could be demonstrated by passive transfer of the lymphocytes in a Winn assay.  相似文献   

13.
The effector cell population in man responsible for mitogen induced cellular cytotoxicity (MICC) of chicken erythrocytes was investigated using several separation techniques, including free flow electrophoresis. Electrophoresis produced substantial monocyte enrichment in some fractions with substantial depletion in others. MICC activity was seen to correlate with monocyte content in these fractions. Furthermore, removal of phagocytic cells with carbonyl iron and removal of adherent cells on plastic petri dishes depleted preparations of MICC activity. Thus it is suggested that under conditions described in this paper, the effector cell of the MICC assay in man appears to be a monocyte. This MICC effector cell was shown to be different from the effector cell in the natural killing (NK cells) of RPMI 6410 cells.  相似文献   

14.
The in vitro effect of histamine and its antagonists, cimetidine and clemastine fumarate, on natural killer (NK) and antibody-dependent cellular Cytotoxicity (ADCC) activities of human lymphocytes was investigated. The histamine 1 (H1) antagonist, clemastine fumarate, and the histamine 2 (H2) antagonist, cimetidine, but not histamine alone, inhibited the NK and ADCC activities of lymphocytes when added directly to the mixture of effector and target cells in a 51Cr-release assay. This inhibition was proportional to the concentration of drugs added and was observed at various effector to target ratios against several targets. H1 and H2 antagonists also inhibited NK activities of T cells as well as Percoll-separated, NK-enriched effector cells. The inhibition was significantly reversed by histamine. In target binding assays, clemastine fumarate and cimetidine also decreased the target binding capacity of effector lymphocytes. Further, PBL precultured with histamine (10?3–10?4M) for 24 hr showed a significant decrease in their NK and ADCC activities. In coculture experiments, PBL precultured with histamine suppressed the NK activity of normal autologous effector lymphocytes. PBL precultured with histamine showed an increased number of OKT8+ cells, as estimated using monoclonal antibodies. The suppression of Cytotoxicity was not due to either direct toxicity, steric hindrance, crowding, or cell death, but by functionally viable suppressor cells. An immunoregulatory role for histamine in NK and ADCC reactions is proposed.  相似文献   

15.
Surface immunoglobulin (sIg)-positive and sIg-negative subpopulations of macrophage-depleted murine splenic lymphocytes were obtained by Sephadex anti-Fab immunoabsorbent fractionation. These lymphocyte subpopulations were analyzed for the presence of Thy 1 and Ia alloantigens and also for Fc receptors by fluorescence microscopy. Concurrently, these lymphocyte subpopulations were studied for effector cell activity in antibody-dependent cellular cytotoxicity (ADCC). Effector cells mediating ADCC were contained in the sIg-negative lymphocyte subpopulation and sIg-positive lymphocytes did not mediate cytotoxicity. The majority of sIg-positive lymphocytes were found to bear Ia antigens and Fc receptors, and these cell surface structures were associated in that treatment of these cells with anti-Ia sera inhibited binding of complexed immunoglobulin to Fc receptors. In contrast, most sIg-negative, Thy 1-negative lymphocytes lacked Ia Antigens, and the Fc receptors detected on such cells were not blocked by anti-Ia sera. In addition, a small subpopulation of sIg-negative, Ia antigen-positive, Fc receptor-positive lymphocytes was found. Elimination of this subpopulation of Ia antigen-positive cells from sIg-negative lymphocytes, by treatment with anti-Ia serum and complement, did not diminish ADCC effector cell activity in the resultant cell population when compared with untreated sIg-negative lymphocytes. Thus, in murine spleen, nonphagocytic mononuclear cells that lack both sIg and Ia antigens were shown to mediate ADCC.  相似文献   

16.
The incubation of human peripheral blood lymphocytes (PBL) with the natural killer (NK)-sensitive MOLT-4 cell line results in PBL-target cell conjugate formation by certain lymphocyte subpopulations. Following velocity sedimentation, the PBL depleted of these conjugate-forming subpopulations are markedly diminished in the ability to mediate either antibody-dependent cellular cytotoxicity (ADCC) or NK activity. The immediate testing of highly pure PBL subpopulations isolated from the NK target conjugates does not reveal the expected recovery of augmented ADCC or NK levels. Following in vitro incubation, however, the PBL NK target-binding subpopulations do manifest augmented levels of both NK and ADCC, whereas the depleted PBL continue to display diminished NK and ADCC levels. In addition, the degree of augmented NK and ADCC levels recovered by the NK target-binding PBL subpopulations appears dependent on both the time and the temperature of in vitro incubation. Moreover, the ADCC recovery patterns are identical to those observed for NK activity regardless of the time and temperature of in vitro incubation. These results directly demonstrate that the PBL subpopulations isolated from certain NK target cells are functionally enriched in the ability to mediate from ADCC and NK activity.  相似文献   

17.
The binding and ultrastructural features of antibody dependent cellular cytotoxicity (ADCC) mediated by human peripheral blood lymphocytes were studied in herpes simplex virus type I (HSV-1) infected Chang liver (CL) cells plus human anti-HSV-1 serum, and in uninfected CL cells plus guinea pig anti-CL antiserum. Non-cytolytic controls included target cells treated with normal serum in place of sensitized targets and heat shocked lymphocytes instead of normal lymphocytes. By transmission electron microscopy, target cell membranes were either broadly indented by effector cells or locally invaginated by means of effector cell filopodia. In neither case did the indentation appear to break the plasma membrane of the target. Control preparations showed only non-indented areas of simple membrane contact. By scanning electron microscopy, the effector lymphocytes in both the active ADCC and normal serum control preparations had a sparse distribution of short microvilli over their surfaces. The majority of heat shock control lymphocytes appeared normal, but 12-20% demonstrated surface patches devoid of microvilli. The hypothesis that ADCC may involve a three-step process is discussed.  相似文献   

18.
Pactamycin, an irreversible inhibitor of protein synthesis, was employed to investigate the requirement for protein synthesis during in vitro cell-mediated cytotoxic reactions. The cellular reactions examined included direct cell-mediated cytolysis (DCMC) of EL-4 tumor cells by alloimmune lymphocytes, antibody-dependent cell-mediated cytolysis of HEp-2 tumor cells (ADCC-T), and antibody-dependent cell-mediated cytolysis of chicken erythrocytes (CRBC) (ADCC-E). Pretreatment of alloimmune lymphocytes with pactamycin (PAC) did not alter the DCMC reactivity osf the effector cells even though protein synthesis was inhibited by >90%. Similarly, inhibition of protein synthesis followed by 6 hr of in vitro incubation prior to the assay did not significantly reduce reactivity. Pretreatment of normal lymphocytes failed to inhibit cytotoxic reactivity when employed in an ADCC assay against HEp-2 cells, but produced partial inhibition of ADCC reactivity against CRBC. Incubation following PAC treatment had no effect on ADCC-T, but abrogated all ADCC-E activity within 3 hr. The data presented indicates that the effector cells mediating ADCC-E and those mediating both ADCC-T and DCMC differ markedly in their requirements for continued protein synthesis.  相似文献   

19.
A thymic lymphoblastoid cell line derived from a New Zealand Black mouse produces murine leukemia virus (MuLV) and was used as a target in model systems for the in vitro study of antibody-dependent cellular cytotoxicity (ADCC). Several human lymphoblastoid cell lines were investigated as potential effector cells. The most promising (Raji cells) bound to antibody-coated target cells but caused only modest levels of ADCC at 25:1 effector-to-target cell ratio with substantial lysis in the absence of antiserum. Human peripheral lymphocytes were active as effector cells in ADCC at a 5:1 ratio and produced no lysis in the absence of antibody. These cells were used to demonstrate that high dilutions of rabbit antisera to MuLV antigens p30, p15, p12, and p10 were capable of mediating lysis of MuLV-producing target cells but not of a virus-negative murine cell line. A murine antiserum to Thy 1.2 and three caprine antisera to MuLV antigens that were active in complement-mediated cytotoxicity functioned poorly in inducing ADCC; however, rabbit antisera to similar antigens were 16- to 512-fold more efficient in cell-mediated than in complement lysis. The inefficiency of goat antisera was not due to shedding of cell surface antigens or generation of blocking factors but rather to lack of lytic interaction of antibody-coated targets with the effector cells.  相似文献   

20.
The effect of Parotis virus on antibody-dependent cellular cytotoxicity in vitro (ADCC) of human lymphocytes was investigated in a 51Cr-release assay and, at the effector cell level, in an ADCC plaque assay. Target cells were bovine or chicken erythrocytes, which are not susceptible to natural cytotoxicity (NK) of human lymphocytes. They were not killed when incubated with virus-treated lymphocytes in the absence of antibodies. Treatment of the lymphocytes or the target cells with small amounts of virus, however, resulted in a very significant enhancement of ADCC. The same results were obtained with live or UV-inactivated virus, suggesting that enhancement was a passive phenomenon not requiring infection. Enhancement was already significant after 3 hr of incubation, indicating that it was independent of endogenously released interferon. Enhancement of ADCC by virus was due to effector cell recruitment rather than due to the increase of the cytotoxic potential of the individual K cell. The highest frequency of effector cells was present in Percoll fractions enriched in large granular lymphocytes (LGL). Virus treatment resulted in recruitment of effector cells carrying T cell markers such as the T3 antigen (OKT3+), receptors for sheep erythrocytes, or Fc receptors for IgM. In contrast, the absolute number of K cells carrying the HNK-1 marker (Leu-7) or receptors for C3 fragments was not changed by the virus. It is concluded that Parotis virus enhances ADCC by improving effector cell-target cell contacts, resulting in recruitment of effector cells with T cell characteristics. Recruitment is accompanied by a significant reduction of the antibody concentration needed for ADCC induction. This virus-mediated enhancement of ADCC may be of importance for protection of the host in the early phases of a virus infection in which the amounts of anti-viral IgG antibodies capable of inducing cellular cytotoxicity may yet be very small.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号