首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Measurements were made of36Cl influx into squid giant axons whose internal solutes were controlled by means of internal dialysis. When the intracellular chloride concentration was 50mm and the internal concentration of adenosine 5-triphosphate (ATP) was 4mm, the average chloride influx was 11.6 pmoles/cm2×sec. When the axons were dialyzed with an ATP-free solution, the average influx fell to 5.1 pmoles/cm2×sec. The effect was fully reversible upon the return of ATP to the dialysis fluid. Chloride-36 influx in the presence and absence of ATP was found to be inversely related to the internal chloride concentration.  相似文献   

2.
Magnesium efflux in dialyzed squid axons   总被引:2,自引:2,他引:2       下载免费PDF全文
The efflux of Mg++ from squid axons subject to internal solute control by dialysis is a function of ionized [Mg], [Na], [ATP], and [Na]o. The efflux of Mg++ from an axon with physiological concentrations of ATP, Na, and Mg inside into seawater is of the order of 2-4 pmol/cm2s but this efflux is strongly inhibited by increases in [Na]i, by decreases in [ATP]i, or by decreases in [Na]o. The efflux of Mg++ is largely independent of [Mg]i when ATP is at physiological levels, but in the absence of ATP reaches half the value of Mg efflux in be presence of ATP when [Mg]i is about 4 mM and [Na] 40 mM. Half-maximum responses to ATP occur at about 350 micronM ATP into seawater with Na either present or absent. The Mg efflux mechanism has many similarities to the Ca efflux system in squid axons especially with respect to the effects of ATP, Nao, and Na on the flux. The concentrations of free Mg and Ca in axoplasm differ, however, by a factor of 10(5) while the observed fluxes differ by a factor of 10(2).  相似文献   

3.
Calcium influx in internally dialyzed squid giant axons   总被引:5,自引:4,他引:5       下载免费PDF全文
A method has been developed to measure Ca influx in internally dialyzed squid axons. This was achieved by controlling the dialyzed segment of the axon exposed to the external radioactive medium. The capacity of EGTA to buffer all the Ca entering the fiber was explored by changing the free EGTA at constant [Ca++]i. At a free [EGTA]i greater than 200 microM, the measured resting Ca influx and the expected increment in Ca entry during electrical stimulation were independent of the axoplasmic free [EGTA]. To avoid Ca uptake by the mitochondrial system, cyanide, oligomycin, and FCCP were included in the perfusate. Axons dialyzed with a standard medium containing: [ATP] = 2 mM, [Ca++]i = 0.06 microM, [Ca++]o = 10 mM, [Na+]i = 70 mM, and [Na+]o = 465 mM, gave a mean Ca influx of 0.14 +/- 0.012 pmol.cm-2.s-1 (n = 12. Removal of ATP drops the Ca influx to 0.085 +/- 0.007 pmol.cm-2.s-1 (n = 12). Ca influx increased to 0.35 pmol.cm-2,s-1 when Nao was removed. The increment was completely abolished by removing Nai+ and (or) ATP from the dialysis medium. At nominal zero [Ca++]i, no Nai-dependent Ca influx was observed. In the presence of ATP and Nai [Ca++]i activates the Ca influx along a sigmoid curve without saturation up to 1 microM [Ca++]i. Removal of Nai+ always reduced the Ca influx to a value similar to that observed in the absence of [Ca++]i (0.087 +/- 0.008 pmol.cm-2.s-1; n = 11). Under the above standard conditions, 50-60% of the total Ca influx was found to be insensitive to Nai+, Cai++, and ATP, sensitive to membrane potential, and partially inhibited by external Co++.  相似文献   

4.
5.
6.
The Ca efflux mechanism located in the axolemma of the tropical squid Doritheutis plei is shown to be affected by the concentration of intracellular Mg (Mgi). The removal of all of the Mg from, the experimental preparation causes an increase in Ca efflux. This effect seems to be more pronounced at low levels of internal ionized calcium and high levels of internal Na.  相似文献   

7.
Potassium fluxes in dialyzed squid axons   总被引:5,自引:6,他引:5       下载免费PDF全文
Measurements have been made of K influx in squid giant axons under internal solute control by dialysis. With [ATP]i = 1 µM, [Na]i = 0, K influx was 6 ± 0.6 pmole/cm2 sec; an increase to [ATP]i = 4 mM gave an influx of 8 ± 0.5 pmole/cm2 sec, while [ATP]i 4, [Na]i 80 gave a K influx of 19 ± 0.7 pmole/cm2 sec (all measurements at ∼16°C). Strophanthidin (10 µM) in seawater quantitatively abolished the ATP-dependent increase in K influx. The concentration dependence of ATP-dependent K influx on [ATP]i, [Na]i, and [K]o was measured; an [ATP]i of 30 µM gave a K influx about half that at physiological concentrations (2–3 mM). About 7 mM [Na]i yielded half the K influx found at 80 mM [Na]i. The ATP-dependent K influx responded linearly to [K]o from 1–20 mM and was independent of whether Na, Li, or choline was the principal cation of seawater. Substances tested as possible energy sources for the K pump were acetyl phosphate, phosphoarginine, PEP, and d-ATP. None was effective except d-ATP and this substance gave 70% of the maximal flux only when phosphoarginine or PEP was also present.  相似文献   

8.
The influx and efflux of calcium (as 45Ca) and influx of sodium (as 24Na) were studied in internally dialyzed squid giant axons. The axons were poisoned with cyanide and ATP was omitted from the dialysis fluid. The internal ionized Ca2+ concentration ([Ca2+]i) was controlled with Ca-EGTA buffers. With [Ca2+]i greater than 0.5 muM, 45Ca efflux was largely dependent upon external Na and Ca. The Nao-dependent Ca efflux into Ca-free media appeared to saturate as [Ca2+]i was increased to 160 muM; the half-saturation concentration was about 8 muM Ca2+. In two experiments 24Na influx was measured; when [Ca2+]i was decreased from 160 muM to less than 0.5 muM, Na influx declined by about 5 pmoles/cm2 sec. The Nao-dependent Ca efflux averaged 1.6 pmoles/cm2 sec in axons with a [Ca2+]i of 160 muM, and was negligible in axons with a [Ca2+]i of less than 0.5 muM. Taken together, the Na influx and Ca efflux data may indicate that the fluxes are coupled with a stoichiometry of about 3 Na+-to-1 Ca2+. Ca efflux into Na-free media required the presence of both Ca and an alkali metal ion (but not Cs) in the external medium. Ca influx from Li-containing media was greatly reduced when [Ca2+]i was decreased from 160 to 0.23 muM, or when external Li was replaced by choline. These data provide evidence for a Ca-Ca exchange mechanism which is activated by certain alkali metal ions. The observations are consistent with a mobile carrier mechanism which can exchange Ca2+ ions from the axoplasm for either 3 Na+ ions, or one Ca2+ and an alkali metal ion (but not Cs) from the external medium. This mechanism may utilize energy from the Na electrochemical gradient to help extrude Ca against an electrochemical gradient.  相似文献   

9.
Summary The influx of magnesium from seawater into squid giant axons has been measured under conditions where internal solute control in the axon was maintained by dialysis. Mg influx is smallest (1 pmol/cm2 sec) when both Na and ATP have been removed from the axoplasm by dialysis. The addition of 3mm ATP to the dialysis fluid gives a Mg influx of 2.5 pmol/cm2 sec while the addition of [Na] i and [ATP] i gives 3 pmol/cm2 sec as a value for Mg influx; this corresponds well with fluxes measured in intact squid giant axons.The Mg content of squid axons is 6 mmol/kg axoplasm; this is unaffected by soaking axons in Li or Na seawater for periods of up to 100 min.  相似文献   

10.
Intracellular potassium activity, (aK)i, and axoplasmic K+ concentration, [K+]i, were measured by means of K+-selective microelectrodes and atomic absorption spectroscopy, respectively, in squid giant axons dialyzed with K+-free dialysis solution and bathed in K+-free artificial sea water. (aK)i measurements indicated that axoplasmic free K+ could be depleted by dialysis, whereas [K+]i measurements on axoplasm extruded from these axons suggest substantial retention of K+ (15.5 +/- 1.7 mmol/kg axoplasm K+; n = 9). In comparison, [K+]i in axoplasm extruded from freshly dissected axons was 330 +/- 16 mmol/kg axoplasm (n = 6). These data suggest that approximately 5% of the axoplasmic K+ ions are not easily removed by dialysis and that these ions are either bound to macromolecular sites or sequestered into membrane-enclosed organelles.  相似文献   

11.
Sodium fluxes in internally dialyzed squid axons   总被引:7,自引:10,他引:7       下载免费PDF全文
The effects which alterations in the concentrations of internal sodium and high energy phosphate compounds had on the sodium influx and efflux of internally dialyzed squid axons were examined. Nine naturally occurring high energy phosphate compounds were ineffective in supporting significant sodium extrusion. These compounds were: AcP, PEP, G-3-P, ADP, AMP, GTP, CTP, PA, and UTP.1 the compound d-ATP supported 25–50% of the normal sodium extrusion, while ATP supported 80–100%. The relation between internal ATP and sodium efflux was nonlinear, rising most steeply in the range 1 to 10 µM and more gradually in the range 10 to 10,000 µM. There was no evidence of saturation of efflux even at internal ATP concentrations of 10,000 µM. The relation between internal sodium and sodium efflux was linear in the range 2 to 240 mM. The presence of external strophanthidin (10 µM) changed the sodium efflux to about 8–12 pmoles/cm2 sec regardless of the initial level of efflux; this changed level was not altered by subsequent dialysis with large concentrations of ATP. Sodium influx was reduced about 50 % by removal of either ATP or Na and about 70 % by removing both ATP and Na from inside the axon.  相似文献   

12.
Sodium extrusion by internally dialyzed squid axons   总被引:6,自引:19,他引:6  
A method has been developed which allows a length of electrically excitable squid axon to be internally dialyzed against a continuously flowing solution of defined composition. Tests showed that diffusional exchange of small molecules in the axoplasm surrounding the dialysis tube occurred with a half-time of 2–5 min, and that protein does not cross the wall of the dialysis tube. The composition of the dialysis medium was (mM): K isethionate 151, K aspartate 151, taurine 275, MgCI2 4–10, NaCl 80, KCN 2, EDTA 0.1, ATP 5–10, and phosphoarginine 0–10. The following measurements were made: resting Na influx 57 pmole/cm2sec (n = 8); resting potassium efflux 59 pmole/ cm2sec (n = 4); stimulated Na efflux 3.1 pmole/cm2imp (n = 9); stimulated K efflux 2.9 pmole/cm2imp (n = 3); resting Na efflux 48 pmole/cm2sec (n = 18); Q 10 Na efflux 2.2 (n = 5). Removal of ATP and phosphoarginine from the dialysis medium (n = 4) or external application of strophanthidin (n = 1) reversibly reduced Na efflux to 10–13 pmole/cm2sec. A general conclusion from the study is that dialyzed squid axons have relatively normal passive permeability properties and that a substantial fraction of the Na efflux is under metabolic control although the Na extrusion mechanism may not be working perfectly.  相似文献   

13.
Ca efflux in dialyzed squid axons was measured with 45Ca as a function of internal ionized Ca in the range 0.005-10 muM. Internal Ca stores were depleted by treatment with CN and dialysis with media free of high energy compounds. The [Ca]iota was stabilized with millimolar concentrations of EDTA, EGTA, or DTPA. Nonspecific leak of chelated Ca was measured with [14C]-EDTA and found to be 0.02 pmol/cm2s/mM EDTA. Correction of the measured Ca efflux for this leak of chelated calcium was made when appropriate. Ca efflux was roughly linear with internal free Ca in the range 0.005-0.1 muM. Above 0.1 muM, efflux was less than proportional to concentration but did not saturate at the highest concentration studied. Ca efflux was reduced about 50% by replacement of external Na with Li at Caiota approximately 1 muM, but was insensitive to such replacement for Ca less than 0.1 muM. Ca efflux was insensitive to internal Mg in the range 0-4 mM, indicating that the Ca pump favors Ca over Mg by a factor of about 10(6). Ca efflux was reduced about 60% by increasing internal Na from 1 to 80 mM. This effect could represent weak interference of a Ca carrier by Na or a loss of driving force because of a reduction in ENa - Em occasioned by an increase in Naiota. A few measurements were made of Ca influx in intact and in dialyzed fibers. In both cases, Ca influx increased when external Na was replaced by Li.  相似文献   

14.
Studies of calcium influx into squid giant axons with aequorin   总被引:1,自引:0,他引:1  
Calcium-influx associated with the action potential was studied in squid giant axons using an EDTA-free preparation of aequorin as a probe. Associated with an individual action potential there was a transient increase in aequorin luminescence and the time course of this increase was examined on a kinetic basis. The luminescent response associated with a train of action potentials was compared with that expected on the basis of superposition of individual responses. The analyses of luminescence curves produced by long trains of action potentials were complicated by failure of superposition. A long pulse of inward current was found to produce a very large enhancement of luminescence.  相似文献   

15.
Squid giant axons were internally dialyzed with a medium free of metabolic substrates but containing 45Ca buffered with EGTA to concentrations of free Ca++ in the range 0.01-230 muM. At (Ca)i of 1.0 muM OR GREATER, Ca efflux was in the range of 1-3 pmol/cm2 s, was dependent on (Na)o and (Ca)o, and was sensitive to membrane potential. At lower (Ca)i, the sensitivity of Ca efflux to membrane potential was greater. Hyperpolarization of the membrane increased, and depolarization decreased Ca efflux over the range of potentials studied (-20 to -100 mV). The maximum sensitivity of Ca efflux to membrane potential was of the order of an e-fold increase in Ca efflux for a 25- mV increase in Em; this sensitivity of Ca efflux to membrane potential was lost if (Na)o was removed and was greatly reduced when (Ca)i was increased to 230 muM.  相似文献   

16.
A combination of the voltage-clamp and the intracellular dialysis techniques has been used to study the membrane potential dependence of the Nao-dependent Ca efflux in squid giant axons. In order to improve axon survival, experiments were carried out using internal solutions prepared with large impermeant organic anions and cations, which did not affect the operation of the Na/Ca exchange mechanism. In axons dialyzed with solutions prepared without internal Na, the Nao-dependent Ca efflux had a small sensitivity to membrane potential changes. For a 25-mV membrane displacement in the hyperpolarizing direction, the basal Ca efflux increased by only 7.4% (n = 13). When the dialysis medium contained Na (from 20 to 55 mM), the efflux increased 32.3% (n = 25) for the same membrane potential change. The K1/2 for this effect is approximately 5 mM Na, and saturation appears to occur at a Na concentration above 20 mM. Adding ATP to the dialysis medium increased the magnitude of the Nao-dependent Ca efflux without changing its voltage sensitivity. Wide changes in the intracellular ionized Ca concentration (from 0.1 to 230 microM) did not modify the voltage sensitivity of the exchange system. Elimination of the reversal of Na/Ca exchange (Nai-dependent Ca influx) by removing Cao did not modify the voltage sensitivity of the Nao-dependent Ca efflux. When the axon membrane potential was submitted to prolonged changes, the corresponding changes in the Ca efflux were not sustained, but declined exponentially to intermediate values. This effect may indicate a slow inactivation process in the Na/Ca exchange mechanism. Voltage-clamp pulse experiments revealed: (a) the absence of a fast inactivation process in the Na/Ca exchange, and (b) that the activation of the carrier for hyperpolarizing pulses occurs as rapidly as 1 ms.  相似文献   

17.
(1) Vanadate (VO3?) fully inhibits the ATP-dependent uncoupled Ca efflux (Ca pump) in dialyzed squid axons. (2) Vanadate inhibits with high affinity. The mean apparent affinity (K12) obtained was 7 μM. (3) Inhibition by vanadate is dependent on Cao. External Ca lead to a release of the inhibitory effect. (K12 ≈ 3 mM). This antagonic effect can be reverted by increasing the vanadate concentration. Internal K+ increases the affinity of the intracellular vanadate binding site. External K+ has no effect on the inhibition. (4) Vanadate has no effect on the Nao-dependent Ca efflux component (forward Na-Ca exchange) in the absence of ATP. In axons containing ATP vanadate modified this component.  相似文献   

18.
19.
20.
Ionized magnesium concentration in axoplasm of dialyzed squid axons.   总被引:8,自引:0,他引:8  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号