首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A search for control mechanisms governing protein metabolism in neurons from Aplysia californica has uncovered two examples of altered patterns of newly synthesized proteins: (1) The pattern of newly synthesized proteins in the R2 neuron is altered when protein synthesis occurs at elevated temperatures (22–30°C as compared with 13–15°C). (2) The processing of newly synthesized 12,000 dalton (12k) material to 6–9,000 dalton (6–9k) size in the R15 neuron (Strumwasser, F. and Wilson, D. F. [1976], J. Gen. Physiol., in press) can be blocked by certain ion replacements. If acetate replaces chloride in the incubation medium during the synthesis of 12k material, an early step in the processing, prior to the actual breakdown of 12k material, is blocked. Experiments with RNA-synthesis inhibitors indicate that none of the mRNAs which code for abundantly synthesized protein species in the R2 or R15 neurons have short (less than 4 hr) half-lives. This result has implications for an earlier report of regulation of protein synthesis in the R15 neuron.  相似文献   

2.
Application of an ethylene glycol lysis technique to extract water-soluble, low molecular weight polypeptides in Aplysia neurons, was used in conjunction with microgradient gel electrophoresis and micro-isoelectric focusing, to identify unique polypeptides in specific, identified neurons. The polypeptides found in neurons R15, R3-13, R14, and the bag cells were particularly abundant, consistent with the previously suggested neurosecretory role for these cells. Water extraction of the strongly basic polypeptides (pI 10.7) in R3-13 and R14 required an acidic lysis medium.  相似文献   

3.
4.
5.
The right upper quadrant (RUQ) cells (R3-R13) of Aplysia regenerating in dissociated cell culture form unusually large growth cones. The movement of these growth cones was observed by time-lapse phase microscopy and their ultrastructure was examined by transmission electron microscopy. Their behavior and ultrastructure have features that are typical of growth cones in vitro. Additionally, they contain neurosecretory granules similar to those found in these cells in vivo. Because RUQ growth cones are large, they can be isolated by manual dissection. RUQ cells were grown in the presence of [35S]methionine and the labeled proteins transported to the growth cones were analyzed by SDS-PAGE. These proteins were compared to those in RUQ cell bodies, RUQ neurites, and to those in the neurites and cell bodies of other identified neurons grown in vitro. Most proteins synthesized by RUQ cells in vitro are transported to their growth cones, including several glycoproteins and the precursor to the R3-R14 neuropeptide. Neuropeptides are also synthesized by a number of other Aplysia neurons growing in vitro. We examined R2, LPL1, R15, and left upper quadrant neurons and found that their precursor peptides, like those of R3-R14, are readily recognized as major cell-specific radiolabeled bands on SDS gels. The presence in regenerating growth cones of neuropeptides, neurosecretory granules, and glycoproteins known to be rapidly transported toward synapses in vivo supports the emerging view that the growth cone in vitro contains not only a motility apparatus but also a macromolecular assembly capable of forming an active synapse immediately upon or shortly after contacting targets.  相似文献   

6.
The biosynthetic capabilities of individual neurons of the abdominal ganglion of the marine mollusc Aplysia californica have been analyzed after intrasomatic injection of 3H-monosaccharides. Glycopeptides prepared from the metabolically labeled cells were fractionated using serial lectin affinity and gel filtration chromatography. The fractionation procedure yielded eight populations of glycopeptides, and comparison of two different neurons (R2 and R14) showed that the quantity of the individual species produced is cell-dependent. Structural analysis indicated that the glycoconjugates produced by the Aplysia neuron constitute both O- and N-linked structures as well as an unusual class of oligosaccharide whose linkage to protein is unknown. The O-linked units are small and consist only of N-acetylglucosamine or N-acetylgalactosamine attached to protein. High-mannose-type asparagine-linked units are produced by the neurons, and some of these appear to be processed to biantennary complex-type units that bind to lentil lectin-agarose. Overall, although the Aplysia neurons produce oligosaccharides of a nature similar to that produced by higher eucaryotes, the N- and O-linked structures produced by the neurons do not achieve the complexity of the comparable structures produced by mammalian cells. The results provide a basis for further studies aimed at understanding the role of glycoconjugates in the development of the nervous system.  相似文献   

7.
The biosynthesis and processing of low molecular weight protein (presumed neurosecretory protein) in cells R15, R14 and L11 of Aplysia californica was studied at high resolution by polyacrylamide slab gel electrophoresis in sodium dodecylsulfate. The number of low molecular weight proteins detected in each cell ranges from 3 in R14 and L11 to 5 to 6 in R15. In each of the cells studied, the low molecular weight protein consists of a primary precursor of ca. 12,000 daltons, and its proteolytic processing products. In each cell, the smallest protein, or in the case of R14, one of the two smallest proteins, accumulates to a significant extent, suggesting that it might correspond to a final processed neurohormone. In cell R15, the biosynthesis of the primary precursor and its subsequent processing to smaller peptides is largely unaffected by removal of extracellular calcium, by replacement of calcium with cobalt or by inhibition of spontaneous bursting via stimulation of the brachial nerve.  相似文献   

8.
9.
10.
Two long-lasting discharges of action potentials were recorded from a buccal cell of the pond snail, respectively, before and after superfusing the preparation with low-calcium solution. The corresponding sequences of interspike intervals were then analysed by the nonlinear prediction methods. The results yield evidence of a small but clear nonlinearity only in the second of analysed tachograms. This finding is evaluated and discussed.  相似文献   

11.
12.
The axonal transport of 3H-amino acids was studied in the axons of identified neurons R3--R14 in the parietovisceral ganglion (PVG) of the mollusc Aplysia. The PVG was incubated (3--24 hr) in media containing physiological concentrations of single 3H-amino acids while the isolated nerve was superfused with plain or chemically altered media. The nerve was then sliced into sequential segments for biochemical analyses or fixed for autoradiography. 3H-glucine was transported at 70 mm/day in 6X greater quantities than other amino acids which were transported at less than 40 mm/day. In the 3H-glycine experiments, greater than 80% of the label transported into the nerve remained as free glycine, comigrating with glycine in thin-layer chromatographs. In autoradiographs of sections 4 mm from the ganglion-nerve barrier, greater than 50% of the silver grains were over R3--R14 axons which occupy less than 10% of the nerve cross-sectional area. EM autoradiographs confirmed that grains were within R3--R14 and not in surrounding glia. The selective transport of glycine was inhibited by Hg2+, by vinblastine and Nocodazole, and by low Ca2+ media. Autoradiographs of vinblastine-treated nerves showed a drastic reduction in label over R3--R14 and other axons. Label was also transported retrogradely; this transport rate was similar to the orthograde rate, but 5--10 times less label moved retrogradely. Autoradiographs showed that the retrograde label was localized to R3--R14 axons. This report clearly demonstrates the rapid, selective, and bidirectional transport of a free amino acid and provides further evidence that glycine may be used as a neurochemical messenter by neurons R3--R14.  相似文献   

13.
The gill withdrawal reflex (GWR) to direct gill stimulation was studied in sexually mature Aplysia and in those older by at least two months. The GWR threshold in old Aplysia was five- to sevenfold higher than that in mature animals. In the habituation paradigm, the GWR amplitude decremented rapidly to zero in old animals whereas in mature animals it persisted for at least ten trials. The GWR could not be dishabituated in old animals. The GWR is an age-dependent behavior in that parieto-visceral ganglion suppression of the GWR appears to increase with age. Also the electrophysiological properties of two neurons in the parieto-visceral ganglion were compared in the two age groups: L7 a neuron which dishabituates the GWR in mature and not in old animals; and R2 which manifests cytological changes with age. In old animals L7′s input resistance was lower, the time constant was increased, and the size of the psp evoked by gill stimulation was smaller than those of mature L7s. Similar membrane changes with age were measured in R2. Soma size of L7 was approximately the same in the two age groups as was that of R2. The physiological parameters of neurons of known function continue to change during postmetamorphic life of Aplysia.  相似文献   

14.
The biosynthesis and processing of low molecular weight protein (presumed neurosecretory protein) in cells R15, R14 and L11 of Aplysia californica was studied at high resolution by polyacrylamide slab gel electrophoresis in sodium dodecylsulfate. The number of low molecular weight proteins detected in each cell ranges from 3 in R14 and L11 to 5 or 6 in R15. In each of the cells studied, the low molecular weight protein consists of a primary precursor of ca. 12,000 daltons, and its proteolytic processing products. In each cell, the smallest protein, or in the case of R14, one of the two smallest proteins, accumulates to a significant extent, suggesting that it might correspond to a final processed neurohormone. In cell R15, the biosynthesis of the primary precursor and its subsequent processing to smaller peptides is largely unaffected by removal of extracellular calcium, by replacement of calcium with cobalt or by inhibition of spontaneous bursting via stimulation of the brachial nerve.  相似文献   

15.
Two membrane-associated dyes (WW375 and NK2367) which change their absorption of light when the membrane potential changes have been studied using several preparations from Aplysia. Action potentials are easily observed in nerve trunks (from a number of axons), in bag cell clusters, in some of the larger single cells of the parietovisceral ganglion, and in the optic nerve. Physiological effects of the dyes on the circadian rhythm of activity in the eye are described.  相似文献   

16.
17.
It has previously been shown that cephalic, segmental, and caudal ganglia from the medicinal leech show differences in their protein composition. Here we studied whether the neuronal reorganization that occurs in cultured segmental ganglia from the medicinal leech is accompanied by detectable changes in the protein expression pattern. Using silver-stained two-dimensional gels we showed that after 5 and 12 days in culture changes in the protein patterns can be detected in isolated ganglia. The changes observed in the two-dimensional gels occurred concomitantly with a sprouting of serotoninergic neurites and a decreased transmitter content of dopaminergic neurites as shown by using the glyoxylic acid condensation reaction. In addition, we present evidence that Retzius cells, which can be identified by their characteristic morphology and action potential waveform, exhibit biochemically unique properties with respect to their protein expression pattern.  相似文献   

18.
Pedal peptide (Pep) is a modulatory neuropeptide that is predominantly synthesized in a group of neurons on the dorsal surfaces of the pedal ganglia of Aplysia. Following the determination that Pep is the major peptide selectively present in these neurons in situ, primary cell culture of single Pep-neurons was used to study the release of this neuropeptide. Individual Pep-neurons were grown in culture where they extended many branched neurites with large varicosities. Immunocytology revealed that these newly grown varicosities were intensely Pep immunoreactive. Cultured Pep-neurons, grown in a medium containing radiolabeled methionine, synthesized labeled Pep and transported it into their regenerated neurites. Finally, these neurons released radiolabeled Pep in a calcium- and stimulation-dependent fashion. These results, taken together with previous findings, strongly support the proposition that Pep is a transmitter in Aplysia.  相似文献   

19.
  1. We have studied the neural circuitry mediating ingestion and rejection in Aplysia using a reduced preparation that produces ingestion-like and rejection-like motor patterns in response to physiological stimuli.
  2. We have characterized 3 buccal ganglion motor neurons that produce specific movements of the radula and buccal mass. B8a and B8b act to close the radula. B10 acts to close the jaws and retract the radula.
  3. The patterns of activity in these neurons can be used to distinguish the ingestion-like and rejection-like motor patterns. B8a, B8b and B10 are active together during the ingestion-like pattern. Activity in B8a and B8b ends prior to the onset of activity in B10 during the rejection-like pattern.
  4. Our data suggest that these neurons undergo similar patterns of activity in vivo. During both feeding-like patterns, the activity and peripheral actions of B8a, B8b, and B10 are consistent with radula movements observed during ingestion and rejection. In addition, the extracellular activity produced by these neurons is consistent with neural activity observed in vivo during ingestion and rejection.
  5. Our data suggest that the different activity patterns observed in these motor neurons contribute to the different radula movements that distinguish ingestion from rejection.
  相似文献   

20.
Behavioral correlates of activity in identified hypocretin/orexin neurons   总被引:21,自引:0,他引:21  
Micropipette recording with juxtacellular Neurobiotin ejection, linked micropipette-microwire recording, and antidromic and orthodromic activation from the ventral tegmental area and locus coeruleus were used to identify hypocretin (Hcrt) cells in anesthetized rats and develop criteria for identification of these cells in unanesthetized, unrestrained animals. We found that Hcrt cells have broad action potentials with elongated later positive deflections that distinguish them from adjacent antidromically identified cells. They are relatively inactive in quiet waking but are transiently activated during sensory stimulation. Hcrt cells are silent in slow wave sleep and tonic periods of REM sleep, with occasional burst discharge in phasic REM. Hcrt cells discharge in active waking and have moderate and approximately equal levels of activity during grooming and eating and maximal activity during exploratory behavior. Our findings suggest that these cells are activated during emotional and sensorimotor conditions similar to those that trigger cataplexy in narcoleptic animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号