首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hemolysin E (HlyE, ClyA, SheA) is a pore-forming protein toxin isolated from Escherichia coli. The three-dimensional structure of its water-soluble form is known, but that of the membrane-bound HlyE complex is not. We have used electron microscopy and image processing to show that the pores are predominantly octameric. Three-dimensional reconstructions of HlyE pores assembled in lipid/detergent micelles suggest a degree of conformational variability in the octameric complexes. The reconstructed pores were significantly longer than the maximum dimension of the water-soluble molecule, indicating that conformational changes occur on pore formation.  相似文献   

2.
Phosphoenolpyruvate carboxylase (PEPC) catalyzes the first step in the fixation of atmospheric CO(2) during C(4) photosynthesis. The crystal structure of C(4) form maize PEPC (ZmPEPC), the first structure of the plant PEPCs, has been determined at 3.0 A resolution. The structure includes a sulfate ion at the plausible binding site of an allosteric activator, glucose 6-phosphate. The crystal structure of E. coli PEPC (EcPEPC) complexed with Mn(2+), phosphoenolpyruvate analog (3,3-dichloro-2-dihydroxyphosphinoylmethyl-2-propenoate), and an allosteric inhibitor, aspartate, has also been determined at 2.35 A resolution. Dynamic movements were found in the ZmPEPC structure, compared with the EcPEPC structure, around two loops near the active site. On the basis of these molecular structures, the mechanisms for the carboxylation reaction and for the allosteric regulation of PEPC are proposed.  相似文献   

3.
Hemolysin E (HlyE) is a 34 kDa protein toxin, recently isolated from a pathogenic strain of Escherichia coli, which is believed to exert its toxic activity via formation of pores in the target cell membrane. With the goal of understanding the involvement of different segments of hemolysin E in the membrane interaction and assembly of the toxin, a conserved, amphipathic leucine zipper-like motif has been identified. In order to evaluate the possible structural and functional roles of this segment in HlyE, a 30-residue peptide (H-205) corresponding to the leucine zipper motif (amino acid 205-234) and two mutant peptides of the same size were synthesized and labeled by fluorescent probes at their N termini. The results show that the wild-type H-205 binds to both zwitterionic (PC/Chol) and negatively charged (PC/PG/Chol) phospholipid vesicles and also self-assemble therein. Detailed membrane-binding experiments revealed that this synthetic motif (H-205) formed large aggregates and inserted into the bilayer of only negatively charged lipid vesicles but not of zwitterionic membrane. Although both the mutants bound to zwitterionic and negatively charged lipid vesicles, neither of them inserted into the lipid bilayers nor assembled in any of these lipid vesicles. Furthermore, H-205 adopted a significant helical structure in membrane mimetic environments and induced the permeation of monovalent ions and release of entrapped calcein across the phospholipid vesicles more efficiently than the mutant peptides. The results presented here indicate that this H-205 (amino acid 205-234) segment may be an important structural element in hemolysin E, which could play a significant role in the binding and assembly of the toxin in the target cell membrane and its destabilization.  相似文献   

4.
The novel pore-forming toxin hemolysin E (HlyE, ClyA, or SheA) consists of a long four-helix bundle with a subdomain (beta tongue) that interacts with target membranes at one pole and an additional helix (alpha(G)) that, with the four long helices, forms a five-helix bundle (tail domain) at the other pole. Random amino acid substitutions that impair hemolytic activity were clustered mostly, but not exclusively, within the tail domain, specifically amino acids within, adjacent to, or interacting with alpha(G). Deletion of amino acids downstream of alpha(G) did not affect activity, but deletions encompassing alpha(G) yielded insoluble and inactive proteins. In the periplasm Cys-285 (alpha(G)) is linked to Cys-87 (alpha(B)) of the four-helix bundle via an intramolecular disulfide. Oxidized HlyE did not form spontaneously in vitro but could be generated by addition of Cu(II) or mimicked by treatment with Hg(II) salts to yield inactive proteins. Such treatments did not affect binding to target membranes nor assembly into non-covalently linked octameric complexes once associated with a membrane. However, gel filtration analyses suggested that immobilizing alpha(G) inhibits oligomerization in solution. Thus once associated with a membrane, immobilizing alpha(G) inhibits HlyE activity at a late stage of pore formation, whereas in solution it prevents aggregation and consequent inactivation.  相似文献   

5.
Yadav SP  Ahmad A  Pandey BK  Verma R  Ghosh JK 《Biochemistry》2008,47(7):2134-2142
To investigate as to whether a peptide derived from hemolysin E (HlyE) can inhibit the cytotoxic activity of this protein or not, several peptides were examined for their efficacy to inhibit the lytic activity of the protein against human red blood cells (hRBCs). It was found that a wild-type peptide, H-205, derived from an amphipathic leucine zipper motif, located in the amino acid region 205-234, inhibited the lytic activity of hemolysin E against hRBCs. To understand the basis of this inhibition, several functional and structural studies were performed. Western blotting analysis indicated that the preincubation of HlyE with H-205 did not inhibit its binding to hRBC. The results indicated that H-205 but not its mutant inhibited the hemolysin E-induced depolarization of hRBCs. Flow cytometric studies with annexin V-FITC staining of hRBCs after incubation with either protein or protein/peptide complex suggested that H-205 prevented the hemolysin E-induced damage of the membrane organization of hRBCs. Tryptophan fluorescence and circular dichroism studies showed that H-205 induced a conformational change in HlyE, which was accompanied by the enhancement of an appreciable helical structure. Fluorescence studies with rhodamine-labeled peptides showed that H-205 reversibly self-assembled in aqueous environment, which raised a possibility that the H-205 peptide could interact with its counterpart in the protein and thus disturb the proper conformation of HlyE, resulting in the inhibition of its cytotoxic activity. The peptides derived from the homologous segments of other members of this toxin family may also act as inhibitors of the corresponding toxin.  相似文献   

6.
We have determined the structure of Kid toxin protein from E. coli plasmid R1 involved in stable plasmid inheritance by postsegregational killing of plasmid-less daughter cells. Kid forms a two-component system with its antagonist, Kis antitoxin. Our 1.4 A crystal structure of Kid reveals a 2-fold symmetric dimer that closely resembles the DNA gyrase-inhibitory toxin protein CcdB from E. coli F plasmid despite the lack of any notable sequence similarity. Analysis of nontoxic mutants of Kid suggests a target interaction interface associated with toxicity that is in marked contrast to that proposed for CcdB. A possible region for interaction of Kid with the antitoxin is proposed that overlaps with the target binding site and may explain the mode of antitoxin action.  相似文献   

7.
The dihydrolipoamide succinyltransferase (E2o) component of the alpha-ketoglutarate dehydrogenase complex catalyzes the transfer of a succinyl group from the S-succinyldihydrolipoyl moiety to coenzyme A. E2o is normally a 24-mer, but is found as a trimer when E2o is expressed with a C-terminal [His]6 tag. The crystal structure of the trimeric form of the catalytic domain (CD) of the Escherichia coli E2o has been solved to 3.0 A resolution using the Molecular Replacement method. The refined model contains an intact trimer in the asymmetric unit and has an R-factor of 0.257 (Rfree = 0.286) for 18,699 reflections between 10.0 and 3.0 A resolution. The core of tE2oCD (residues 187-396) superimposes onto that of the cubic E2oCD with an RMS difference of 0.4 A for all main-chain atoms. The C-terminal end of tE2oCD (residues 397-404) rotates by an average of 37 degrees compared to cubic E2oCD, disrupting the normal twofold interface. Despite the alteration of quaternary structure, the active site of tE2oCD shows no significant differences from that of the cubic E2oCD, although several side chains in the active site are more ordered in the trimeric form of E2oCD. Analysis of the available sequence data suggests that the majority of E2 components have active sites that resemble that of E. coli E2oCD. The remaining E2 components can be divided into three groups based on active-site sequence similarity. Analysis of the surface properties of both crystal forms of E. coli E2oCD suggests key residues that may be involved in the protein-protein contacts that occur between the catalytic and lipoyl domains of E2o.  相似文献   

8.
Escherichia coli L-arabinose isomerase (ECAI; EC 5.3.1.4) catalyzes the isomerization of L-arabinose to L-ribulose in vivo. This enzyme is also of commercial interest as it catalyzes the conversion of D-galactose to D-tagatose in vitro. The crystal structure of ECAI was solved and refined at 2.6 A resolution. The subunit structure of ECAI is organised into three domains: an N-terminal, a central and a C-terminal domain. It forms a crystallographic trimeric architecture in the asymmetric unit. Packing within the crystal suggests the idea that ECAI can form a hexameric assembly. Previous electron microscopic and biochemical studies supports that ECAI is hexameric in solution. A comparison with other known structures reveals that ECAI adopts a protein fold most similar to E. coli fucose isomerase (ECFI) despite very low sequence identity 9.7%. The structural similarity between ECAI and ECFI with regard to number of domains, overall fold, biological assembly, and active site architecture strongly suggests that the enzymes have functional similarities. Further, the crystal structure of ECAI forms a basis for identifying molecular determinants responsible for isomerization of arabinose to ribulose in vivo and galactose to tagatose in vitro.  相似文献   

9.
Hemolysin E (HlyE), a pore-forming protein-toxin and a potential virulence factor of Escherichia coli, exhibits cytotoxic activity to mammalian cells. However, very little is known about how the different individual segments contribute in the toxic activity of the protein. Toward this end, the role of a 33-residue segment comprising the amino acid region 88 to 120, which contains the putative transmembrane domain in the tail region of HlyE has been addressed in the toxic activity of the protein-toxin by characterizing the related wild type and mutant peptides and the whole protein. Along with the 33-residue wild type peptide, H-88, two mutants of the same size were synthesized; in one mutant a conserved valine at 89th position was replaced by aspartic acid and in the other both glycine and valine at the 88th and 89th positions were substituted by aspartic acid residues. These mutations were also incorporated in the whole toxin HlyE. Results showed that only H-88 but not its mutants permeabilized both lipid vesicles and human red blood cells (hRBCs). Interestingly, while H-88 exhibited a moderate lytic activity to human red blood cells, the mutants were not active. Drastic reduction in the depolarization of hRBCs and hemolytic activity of the whole toxin HlyE was also observed as a result of the same double and single amino acid substitution in it. The results indicate an important role of the amino acid segment 88-120, containing the putative transmembrane domain of the tail region of the toxin in the toxic activity of hemolysin E.  相似文献   

10.
The crystal structure of beta-lactamase TEM1 from E. coli has been solved to 2.5 A resolution by X-ray diffraction methods and refined to a crystallographic R-factor of 22.7%. The structure was determined by multiple isomorphous replacement using four heavy atom derivatives. The solution from molecular replacement, using a polyalanine model constructed from the C alpha coordinates of S. Aureus PCl enzyme, provided a set of phases used for heavy atom derivatives analysis. The E. coli beta-lactamase TEM1 is made up of two domains whose topology is similar to that of the PCl enzyme. However, global superposition of the two proteins shows significant differences.  相似文献   

11.
Two closely related bacterial toxins, heat-labile enterotoxin (LT-I) and cholera toxin (CT), not only invoke a toxic activity that affects many victims worldwide but also contain a beneficial mucosal adjuvant activity that significantly enhances the potency of vaccines in general. For the purpose of vaccine design it is most interesting that the undesirable toxic activity of these toxins can be eliminated by the single-site mutation Ser63Lys in the A subunit while the mucosal adjuvant activity is still present. The crystal structure of the Ser63Lys mutant of LT-I is determined at 2.0 A resolution. Its structure appears to be essentially the same as the wild-type LT-I structure. The substitution Ser63Lys was designed, based on the wild-type LT-I crystal structure, to decrease toxicity by interfering with NAD binding and/or catalysis. In the mutant crystal structure, the newly introduced lysine side chain is indeed positioned such that it could potentially obstruct the productive binding mode of the substrate NAD while at the same time its positive charge could possibly interfere with the critical function of nearby charged groups in the active site of LT-I. The fact that the Ser63Lys mutant of LT-I does not disrupt the wild-type LT-I structure makes the non-toxic mutant potentially suitable, from a structural point of view, to be used as a vaccine to prevent enterotoxigenic E. coli infections. The structural similarity of mutant and wild-type toxin might also be the reason why the inactive Ser63Lys variant retains its adjuvant activity.  相似文献   

12.
In Escherichia coli, flavodoxin is the physiological electron donor for the reductive activation of the enzymes pyruvate formate-lyase, anaerobic ribonucleotide reductase, and B12-dependent methionine synthase. As a basis for studies of the interactions of flavodoxin with methionine synthase, crystal structures of orthorhombic and trigonal forms of oxidized recombinant flavodoxin from E. coli have been determined. The orthorhombic form (space group P2(1)2(1)2(1), a = 126.4, b = 41.10, c = 69.15 A, with two molecules per asymmetric unit) was solved initially by molecular replacement at a resolution of 3.0 A, using coordinates from the structure of the flavodoxin from Synechococcus PCC 7942 (Anacystis nidulans). Data extending to 1.8-A resolution were collected at 140 K and the structure was refined to an Rwork of 0.196 and an Rfree of 0.250 for reflections with I > 0. The final model contains 3,224 non-hydrogen atoms per asymmetric unit, including 62 flavin mononucleotide (FMN) atoms, 354 water molecules, four calcium ions, four sodium ions, two chloride ions, and two Bis-Tris buffer molecules. The structure of the protein in the trigonal form (space group P312, a = 78.83, c = 52.07 A) was solved by molecular replacement using the coordinates from the orthorhombic structure, and was refined with all data from 10.0 to 2.6 A (R = 0.191; Rfree = 0.249). The sequence Tyr 58-Tyr 59, in a bend near the FMN, has so far been found only in the flavodoxins from E. coli and Haemophilus influenzae, and may be important in interactions of flavodoxin with its partners in activation reactions. The tyrosine residues in this bend are influenced by intermolecular contacts and adopt different orientations in the two crystal forms. Structural comparisons with flavodoxins from Synechococcus PCC 7942 and Anaebaena PCC 7120 suggest other residues that may also be critical for recognition by methionine synthase.  相似文献   

13.
Lin YL  Elias Y  Huang RH 《Biochemistry》2005,44(31):10494-10500
Colicin E5 specifically cleaves four tRNAs in Escherichia coli that contain the modified nucleotide queuosine (Q) at the wobble position, thereby preventing protein synthesis and ultimately resulting in cell death. Here, the crystal structure of the catalytic domain of colicin E5 (E5-CRD) from E. coli was determined at 1.5 A resolution. Unexpectedly, E5-CRD adopts a core folding with a four-stranded beta-sheet packed against an alpha-helix, seen in the well-studied ribonuclease T1 despite a lack of sequence similarity. Beyond the core catalytic domain, an N-terminal helix, a C-terminal beta-strand and loop, and an extended internal loop constitute an RNA binding cleft. Mutational analysis identified five amino acids that were important for tRNA substrate binding and cleavage by E5-CRD. The structure, together with the mutational study, allows us to propose a model of colicin E5-tRNA interactions, suggesting the molecular basis of tRNA substrate recognition and the mechanism of tRNA cleavage by colicin E5.  相似文献   

14.
Pseudouridine synthases catalyze the isomerization of uridine to pseudouridine (Psi) in rRNA and tRNA. The pseudouridine synthase RluF from Escherichia coli (E.C. 4.2.1.70) modifies U2604 in 23S rRNA, and belongs to a large family of pseudouridine synthases present in all kingdoms of life. Here we report the domain architecture and crystal structure of the catalytic domain of E.coli RluF at 2.6A resolution. Limited proteolysis, mass spectrometry and N-terminal sequencing indicate that RluF has a distinct domain architecture, with the catalytic domain flanked at the N and C termini by additional domains connected to it by flexible linkers. The structure of the catalytic domain of RluF is similar to those of RsuA and TruB. RluF is a member of the RsuA sequence family of Psi-synthases, along with RluB and RluE. Structural comparison of RluF with its closest structural homologues, RsuA and TruB, suggests possible functional roles for the N-terminal and C-terminal domains of RluF.  相似文献   

15.
Highly ordered two-dimensional crystals of cholera toxin B-subunit pentamers have been grown by specific interaction with planar lipid films containing monosialoganglioside GM1. Electron diffractograms of frozen-hydrated crystals show diffraction peaks extending to beyond 4 A, while electron images diffract to 8 A. A two-dimensional projected structure of cholera toxin B-subunit-GM1 complex has been calculated at 9 A resolution by combining electron diffraction and image data. Crystals present an approximate pgg projection symmetry, with unit cell dimensions a = 119(+/- 1) A, b = 123(+/- 1) A, gamma = 90 degrees. Each pentameric assembly presents two concentric rings of electron scattering density, separated by an area of lower density. The outer and inner rings are centered at 25 A and and 11 A from the pentamer centre, respectively. The apparent projected density of the outer ring is larger than that of the inner ring. We propose that the outer and inner density rings correspond respectively to the peripheral beta-sheet arrangement and the central alpha-helix barrel, recently identified in the crystal structure of the heat-labile enterotoxin from Escherichia coli.  相似文献   

16.
Aldehyde dehydrogenases catalyze the oxidation of aldehyde substrates to the corresponding carboxylic acids. Lactaldehyde dehydrogenase from Escherichia coli (aldA gene product, P25553) is an NAD(+)-dependent enzyme implicated in the metabolism of l-fucose and l-rhamnose. During the heterologous expression and purification of taxadiene synthase from the Pacific yew, lactaldehyde dehydrogenase from E. coli was identified as a minor (相似文献   

17.
To find out the sequence requirement of the H-205 peptide, containing an amphipathic leucine zipper motif corresponding to the amino acid (a.a.) region 205-234 of hemolysin E (HlyE) to induce efficient permeation in zwitterionic lipid vesicles, the peptide was extended at the N-terminal after the addition of seven amino acids from the predicted transmembrane region in the head domain of the protein-toxin. The new peptide, H-198 (a.a. 198-234) and a scrambled mutant peptide of the same size were synthesized, fluorescently labeled and characterized functionally and structurally. The results showed that H-198 induced significantly higher permeation in the zwitterionic PC/Chol lipid vesicles than its shorter version, H-205. H-198 formed large aggregates in the PC/Chol vesicles unlike H-205 and also adopted more helical structure in the membrane mimetic environments compared to that of H-205. Fluorescence energy transfer experiments by flow cytometry indicated that only H-198 but not its mutant or H-205 oligomerized in the zwitterionic lipid vesicles, while in the negatively charged lipid vesicles both H-198 and H-205 formed oligomeric assembly. The results suggest a probable role of the hydrophobic residues of the head domain of HlyE in inducing permeability in the zwitterionic lipid vesicles by the peptide derived from the a.a. 198-234 of the toxin.  相似文献   

18.
Certain uropathogenic and neonatal meningitis-causing strains of Escherichia coli express a 114 kDa protein toxin called cytotoxic necrotizing factor 1 (CNF1). The toxin causes alteration of the host cell actin cytoskeleton and promotes bacterial invasion of blood-brain barrier endothelial cells. CNF1 belongs to a unique group of large cytotoxins that cause constitutive activation of Rho guanosine triphosphatases (GTPases), which are key regulators of the actin cytoskeleton. This group also includes E. coli cytotoxic necrotizing factor 2 (CNF2, 114 kDa) and dermonecrotic toxins (DNT, 159 kDa) of Bordetella spp. with related sequences occurring in Yersinia spp. Here we show that the catalytic region of CNF1 exhibits a novel protein fold as determined by its 1.83 A resolution crystal structure. The structure reveals that CNF1 has a Cys-His-main chain oxygen catalytic triad reminiscent of enzymes belonging to the catalytic triad superfamily. The position of the catalytic Cys residue at the base of a deep pocket restricts access to potential substrates and helps explain the high specificity of this and related toxins.  相似文献   

19.
The outer membrane (OM) of Gram-negative bacteria contains a large number of channel proteins that mediate the uptake of ions and nutrients necessary for growth and functioning of the cell. An important group of OM channel proteins are the porins, which mediate the non-specific, diffusion-based passage of small (<600 Da) polar molecules. All porins of Gram-negative bacteria that have been crystallized to date form stable trimers, with each monomer composed of a 16-stranded beta-barrel with a relatively narrow central pore. In contrast, the OmpG porin is unique, as it appears to function as a monomer. We have determined the X-ray crystal structure of OmpG from Escherichia coli to a resolution of 2.3 A. The structure shows a 14-stranded beta-barrel with a relatively simple architecture. Due to the absence of loops that fold back into the channel, OmpG has a large ( approximately 13 A) central pore that is considerably wider than those of other E. coli porins, and very similar in size to that of the toxin alpha-hemolysin. The architecture of the channel, together with previous biochemical and other data, suggests that OmpG may form a non-specific channel for the transport of larger oligosaccharides. The structure of OmpG provides the starting point for engineering studies aiming to generate selective channels and for the development of biosensors.  相似文献   

20.
RNase D (RND) is one of seven exoribonucleases identified in Escherichia coli. RNase D has homologs in many eubacteria and eukaryotes, and has been shown to contribute to the 3' maturation of several stable RNAs. Here, we report the 1.6 A resolution crystal structure of E. coli RNase D. The conserved DEDD residues of RNase D fold into an arrangement very similar to the Klenow fragment exonuclease domain. Besides the catalytic domain, RNase D also contains two structurally similar alpha-helical domains with no discernible sequence homology between them. These closely resemble the HRDC domain previously seen in RecQ-family helicases and several other proteins acting on nucleic acids. More interestingly, the DEDD catalytic domain and the two helical domains come together to form a ring-shaped structure. The ring-shaped architecture of E. coli RNase D and the HRDC domains likely play a major role in determining the substrate specificity of this exoribonuclease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号