首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transport regularity of the [32P]-oligo/polynucleotides and their polyalkylating derivatives into SH2 rat cells transformed with SA7 adenovirus DNA was investigated. Derivatives penetrate the SH2 cells and their distribution in the subcellular fractions are proportional to the concentration of reagent in the medium. The transport efficiency of the derivatives is inhibited sharply with cell concentration increase and practically does not depend on the action of cell metabolism inhibitors. The data obtained assumes the mechanism of the derivatives transport to be liquid endocytosis. Being distributed in the cell components the polyalkylating derivatives were accumulated by the cell nuclei up to 10(5)-10(7) molecules per nucleus. Transport efficiency is much greater in the anchored cells than in the suspended ones. Though essential dephosphorylation of the utilized substances is observed in the SH2 cells, part of them maintain native chain length and the 5'-phosphate group after 1 h incubation in nucleic acids obtained from the cell nuclei.  相似文献   

2.
Several lipophilic prodrugs of oligonucleotides (T12 and T20) bearing enzymolabile protecting groups and labeled with fluorescein were synthesized. Their cellular uptake was studied by three different approaches using fluorescence: fluorescence microscopy, flow cytometry and spectrofluorometry. The corresponding prooligonucleotides (pro-oligos) were rapidly and efficiently taken up by HeLa cells and were found homogeneously in the cytoplasm and in the nucleus. The uptake was proportional to their relative lipophilicity and likely proceeded through a passive diffusion mechanism. Uptake followed a dose-response curve. This prooligo approach led to a 2-log increase of uptake in comparison with a T20 phosphorothioate oligonucleotide. Finally, an intracellular concentration of pro-oligo was estimated between 4 and 6 microM for an external concentration of 1 microM and up to 27 microM for an incubation at 10 microM.  相似文献   

3.
Effect of anti-Ig on cytosolic Ca2+ in Daudi lymphoblastoid cells   总被引:2,自引:0,他引:2  
We examined the response in the free intracellular calcium concentration ([Ca2+]i) of Daudi (human lymphoblastoid) cells to antibodies against human immunoglobulins (anti-Ig), and the relationship of [Ca2+]i to anti-Ig-induced capping. At 80 microM intracellular quin-2 (a fluorescent probe for [Ca2+]i), anti-Ig (10 micrograms/ml) caused a rapid increase in [Ca2+]i from 100 to 600 nM; the signal returned to baseline with approximately 1 min. At 450 microM intracellular quin-2, [Ca2+]i rose to only approximately 250 microM, and the signal declined gradually, returning to base line after greater than 7 min. In subsequent experiments, the lower concentrations of quin-2 were employed. Plots of the amplitude of the [Ca2+]i transients and of the binding of 125I-anti-Ig to Daudi cells versus the concentrations of anti-Ig showed similar saturation kinetics, with half-saturation occurring at 2-3 micrograms/ml. Part of the calcium in the transient is derived from the extracellular medium, and part from the nonmitochondrial intracellular stores. Caffeine (4 mM) and 8-(diethylamino)octyl 3,4,5-trimethoxybenzoate HCl (0.5 mM) suppressed the release of calcium from internal stores and the entry of calcium from outside the cells, but permitted capping in more than half of the cells. Phorbol esters (1-2 nM) inhibited both capping and the anti-Ig-induced decrease in [Ca2+]i. None of these agents blocked the binding of anti-Ig to the cells. It appears that receptor capping is not dependent on the anti-Ig-induced transient increase in calcium concentration.  相似文献   

4.
The biochemical and metabolic effects of deoxycoformycin, a potent inhibitor of adenosine deaminase, were investigated using two human T lymphoblastoid cell lines. A dose-response analysis demonstrated that the concentration of deoxycoformycin at which there was 50% inhibition of growth was greater than 1 X 10(-3) M in lymphoblastoid cells. Uptake of deoxycoformycin was biphasic and occurred much more slowly than for natural nucleosides, and lower saturation levels were reached. The intracellular concentration of deoxycoformycin achieved was 0.4 to 0.5 microM when the extracellular concentration was 1 microM. At 10 microM extracellular concentration, the intracellular concentration was 3-4 microM. Although deoxycoformycin at very low concentrations (1 or 10 microM) did not have any detectable effects on the growth of these cells, the nucleoside was found to be metabolized, and was phosphorylated to give the mono-, di-, and triphosphate derivatives. The triphosphate derivative was incorporated into cellular DNA with little incorporation into cellular RNA. Metabolism of deoxycoformycin in several mutant lymphoblastoid cells deficient in adenosine kinase and/or deoxycytidine kinase was found to be unchanged from wild-type cells, indicating that these major nucleoside kinases do not play a significant role in the phosphorylation of deoxycoformycin. These results may account, at least in part, for the differences that are observed between the pharmacologic inhibition of adenosine deaminase, and the inherited deficiency of adenosine deaminase.  相似文献   

5.
The role of high-affinity specific transferrin receptors and low-affinity, non-saturable processes in the uptake of transferrin and iron by hepatocytes was investigated using fetal and adult rat hepatocytes in primary monolayer culture, rat transferrin, rat serum albumin and a rabbit anti-rat transferrin receptor antibody. The intracellular uptake of transferrin and iron occurred by saturable and non-saturable mechanisms. Treatment of the cells with the antibody almost completely eliminated the saturable uptake of iron but had little effect on the non-saturable process. Addition of albumin to the incubation medium reduced the endocytosis of transferrin by the cells but had no significant effect on the intracellular accumulation of iron. The maximum effect of rat serum albumin was observed at concentrations of 3 mg/ml and above. At a low incubation concentration of transferrin (0.5 microM), the presence of both rat albumin and the antibody decreased the rate of iron uptake by the cells to about 15% of the value found in their absence, but to only 40% when the diferric transferrin concentration was 5 microM. These results confirm that the uptake of transferrin-bound iron by both fetal and adult rat hepatocytes in culture occurs by a specific, receptor-mediated process and a low-affinity, non-saturable process. The low-affinity process increases in relative importance as the iron-transferrin concentration is raised.  相似文献   

6.
Incubation of cells with labelled hormone in the presence of the lysosomotropic agent chloroquine produces an enhanced intracellular accumulation of hormone and receptor. Using a pulse-chase paradigm in which cell surface receptors were labelled with 125I-EGF at 4 degrees C, it was found that when 100 microM chloroquine was present in the 37 degrees C chase medium intact hormone was accumulated in the medium. Without chloroquine, low molecular weight (mw) degradation products were found in the medium. The processes of receptor-mediated endocytosis and subcellular distribution of 125I-EGF-receptor complexes were unchanged by chloroquine. The source of the intact hormone accumulating in the medium was therefore an intracellular compartment(s). The 125I-EGF released from the cells could rebind to surface receptors and be re-internalized; rebinding was inhibited by unlabelled EGF or Concanavalin A in the incubation medium. The concentration of unlabelled EGF required to inhibit rebinding was more than three orders of magnitude greater than the amount of 125I-EGF whose rebinding was inhibited. Thus, the 125I-EGF released from intracellular sites was rebound preferentially over exogenous EGF. The possible pathways for secretion of intact 125I-EGF and mechanisms of its preferential rebinding are discussed.  相似文献   

7.
Cultured vascular endothelial cells loaded with the highly fluorescent Ca(++)-sensitive dye Fura-2 were exposed to the flow of a fluid containing various concentrations of ATP (0, 0.5, 1, 5 microM) in an apparatus designed on the basis of fluid dynamics, and simultaneous changes in intracellular free Ca++ concentration were monitored by photometric fluorescence microscopy. The flow rate of the perfusate was altered from 0 to 6.3 to 22.8 to 39.0 cm/sec, inducing shear stress on the cell surface of 0, 2.9, 10.4, and 17.9 dynes/cm2, respectively. Although no significant change in intracellular Ca++ level was observed at ATP levels below 100 nM, at an ATP level of 500 nM, the intracellular Ca++ level increased together with an increase in the flow rate of the perfusate. At this level of ATP, the intracellular Ca++ levels at flow rates of 0, 6.3, 22.8, and 39.0 cm/sec were 44.8 +/- 7.3, 60.3 +/- 10.7, 74.0 +/- 5.8 and 89.4 +/- 6.4 nM (mean +/- SD; n = 8), respectively. At ATP levels over 1 microM, the flow-rate dependency of Ca++ response became less clear than that observed at the ATP level of 500 nM. These Ca++ responses to changes in flow rate disappeared when extracellular Ca++ was chelated by adding 2 mM of EGTA to the perfusate. These results suggest that the vascular endothelial cell has a mechanism that elevates the intracellular Ca++ level in accord with the flow rate at appropriate ATP concentrations, and that changes in intracellular Ca++ level under this mechanism seem to be chiefly caused by the influx of extracellular Ca++ into cells.  相似文献   

8.
A study was carried out on the uptake of copper, zinc, or cadmium ions and their induction of metallothionein synthesis in Menkes' and normal lymphoblastoid cells. The main difference between Menkes' and normal cells in the uptake of these metal ions was an increased uptake of copper ions in Menkes' cells at a low concentration of CuCl2 (2.1 microM). The CuCl2 concentration necessary to induce metallothionein synthesis in Menkes' cells was 50 microM, whereas that in normal cells was about 200 microM. The levels of zinc or cadmium ions needed to induce metallothionein in Menkes' cells were similar to those in normal cells. At least four isomers of metallothionein were induced by copper, zinc, and cadmium ions in both types of cells. Metallothionein synthesis in Menkes' and normal cells was induced when the amounts of intracellular copper reached a threshold level of approximately 0.2 nmol/10(6) cells, and the rate of metallothionein synthesis in these cells was increased as a function of the amounts of intracellular copper (0.2-1.7 nmol/10(6) cells). These results indicate that the induction of metallothionein synthesis in lymphoblastoid cells is controlled by the level of intracellular copper, suggesting that the major defect in Menkes' cells is not due to the abnormal regulation of metallothionein synthesis but to an alteration of the copper metabolism in cells by which the levels of intracellular copper become larger than those in normal cells and just lower than the threshold level for induction of metallothionein synthesis.  相似文献   

9.
The increase of uridine phosphorylation during the first hour after epidermal growth factor (EGF) stimulation (1.25 nM) of Swiss 3T3 cells is completely blocked by 100 microM dansylcadaverine (DC). Lack of the effect of DC on uridine transport, uridine kinase activity in cell homogenate, intracellular ATP concentration and plasma membrane permeability for phosphorylated uridine derivatives makes it possible to propose the inhibition by DC (100 microM) of the activated state of uridine kinase. The rapidity of the inhibition of EGF effect and the lack of influence of DC (in tested concentration) upon the clustering of EGF-receptor complexes, rate of their internalization (Sorkin, 1985; Nikol'ski? et al., 1987) and pH value of intracellular compartments (Sorkin et al., 1985; Teslenko et al., 1986) may suggest an association of DC inhibitory action with blocking of some steps of the receptor mediated endocytosis. Accumulation of DC in cell membranes, rather than in intracellular compartments with acidic pH, is a necessary factor for its blocking effect. Possibilities of DC action through the influence on calmodulin-dependent proteins or EGF-induced cell protein phosphorylation are discussed.  相似文献   

10.
Fibroblasts take up trehalose during freezing and thawing, which facilitates cryosurvival of the cells. The aim of this study was to investigate if trehalose uptake via fluid‐phase endocytosis prefreeze increases cryosurvival. To determine endocytic trehalose uptake in attached as well as suspended fibroblasts, intracellular trehalose concentrations were determined during incubation at 37°C using an enzymatically based trehalose assay. In addition, freezing‐induced trehalose uptake of extracellularly added trehalose was determined. Cryosurvival rates were determined via trypan blue staining. Intracellular trehalose contents of attached as well as suspended cells were found to increase linearly with time, consistent with fluid‐phase endocytosis. Furthermore, the intracellular trehalose concentration increased with increasing extracellular trehalose concentration (0–100 mM) in a linear fashion. Prefreeze loading of cells with trehalose via fluid‐phase endocytosis only showed increased cryosurvival rates at extracellular trehalose concentrations lower than 50 mM in the cryopreservation medium. To obtain satisfactory cryosurvival rates after endocytic preloading, extracellular trehalose is needed to prevent efflux of trehalose during freezing and thawing and for freezing‐induced trehalose uptake. At trehalose concentrations greater than 100 mM, cryosurvival rates were similar or slightly higher if cells were not loaded with trehalose prefreeze. Cells that were grown in the presence of trehalose showed a tendency to aggregate after harvesting. It is concluded that it is particularly freezing‐induced trehalose uptake that facilitates cryosurvival when trehalose is used as the sole cryoprotectant for cryopreservation of fibroblasts. Preloading with trehalose does not increase cryosurvival rates if trehalose is also added as extracellular protectant. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:229–230, 2017  相似文献   

11.
Having identified an oligonucleotide (ON) receptor in the HepG2 cell line, we have re-examined here the kinetics of ON uptake, subcellular distribution and intracellular localisation in these cells, at concentrations relevant for the study of a receptor-dependent process. Kinetic parameters of ON endocytosis were comparable with those of the receptor-mediated endocytosis tracer, transferrin (uptake equilibrium, saturation with concentration, specific competition and rapid efflux) and were clearly distinct from those of fluid-phase endocytosis. By analytical subcellular fractionation, particulate ON showed a bimodal distribution after 2 h of uptake, with a low-density peak superimposed on the distribution of endosomes, and a high-density peak overlapping lysosomes. After an overnight chase, only the high-density peak remained, but it could be dissociated from lysosomes, based on its refractoriness to displacement upon chloroquine-induced swelling. After 2 h of uptake at 300 nM ON-Alexa, a punctate pattern was resolved, by confocal microscopy, from those of transferrin, of a fluid-phase tracer, and of vital staining of lysosomes by LysoTracker. At 3 µM ON-Alexa, its pattern largely overlapped with the fluid-phase tracer and LysoTracker. Taken together, these data suggest that ON may be internalised at low concentrations by receptor-mediated endocytosis into unique endosomes, then to dense structures that are distinct from lysosomes. The nature of these two compartments and their significance for ON effect deserve further investigation.  相似文献   

12.
Polyamine uptake by bovine adrenocortical cells   总被引:1,自引:0,他引:1  
Bovine adrenocortical cells of fasciculo-reticulata origin in primary culture actively accumulate polyamines from the extracellular medium in an energy-dependent process. At low extracellular concentration (e.g., 1 microM putrescine), the transport system resulted in a several-hundred-fold concentration of polyamine in the cellular compartment within 1-2 h of incubation. Putrescine uptake appeared to be the sum of a sodium-dependent, saturable process, with an apparent Km of about 10 microM and of a non-saturable, sodium-independent component. By contrast, spermine was taken up by the cells mostly in a sodium-independent manner. Cross-competition experiments suggested that both polyamines were at least partly transported by the same system. Using specific corresponding probes, it was shown that the polyamine uptake was independent of the amino acid transport systems of the A, L and N types known in a number of cell systems. Adrenocortical cell polyamine content is known to be modulated by adrenocorticotropin through induction of ornithine decarboxylase activity. The existence of a specific uptake system in these cells opens the possibility of a more rapid pathway for the regulation of cellular polyamine levels. It remains to be examined whether this polyamine transport system is under hormonal control, and whether this can support the suggestion that polyamines may represent a form of intracellular messengers in the mechanism of hormone action.  相似文献   

13.
Cross-linked dimers of ribonuclease, added at a concentration of 0.05 mg/ml to the culture medium of hepatoma (HTC) cells, were previously shown to inhibit intracellular degradation of peroxidase taken up by endocytosis. Intracellular localization showed that endocytosed peroxidase does not reach lysosomes in dimer-treated cells. The present study shows that preloading of lysosomes with fluorescent anti-peroxidase IgG, obtained by exposing HTC cells for 48 h to 0.1 mg of antibody/ml, restores intracellular degradation of endocytosed peroxidase. Moreover, accumulation of peroxidase into lysosomes, which no longer occurs in dimer-treated cells, occurs again under these conditions. We conclude that inhibition of transfer of peroxidase from phagosomes to lysosomes is most likely to be the alteration resulting from the exposure of the cells to ribonuclease dimer, rather than inhibition of fusion between phagosomes and lysosomes. The dimer of another basic protein, lysozyme added at a concentration of 0.2 mg/ml to the culture medium, is shown to induce the same type of effects as does the dimer of ribonuclease; the half-life of endocytosed peroxidase increased from 5 to 15 h after 2 h exposure of HTC cells to dimerized lysozyme. The effect of both dimers on intracellular protein processing can be reversed by addition of 100 mm-galactose to the culture medium, up to 5 h after pretreatment of the cells. The dimers of ribonuclease A or of lysozyme have thus probably the same mechanism of action. Evidence that the two dimers share the same binding sites on the cells is presented.  相似文献   

14.
Upon exposure of primary monolayer cultures of hepatocytes and H35 hepatoma cells, methptrexate (MTX) is taken up by carrier-mediated mechanisms and converted to γ-glutamyl derivatives with one to four residues being added. Under conditions that result in 90% or greater conversion, the primary metabolite in both cell types is MTX with three additional glutamates (4-NH2-10-CH3PteGlu4). When the time-dependent synthesis of MTX polyglutamates (4-NH2-10-CH3PteGlu2 and higher) at extracellular concentrations of 10 and 100 μm methotrexate is measured, both cell types exhibit linear synthesis for 4 to 6 hr, at which time an apparent steady state intracellular concentration of approximately 40 μm is reached. The concentration of MTX polyglutamate synthesized is not due a restriction in MTX since the hepatocytes and H35 cells accumulated 400 and 138 μm intracellular methotrexate, respectively, after 24 h in the presence of 100 μm extracellular MTX. Examination of MTX polyglutamate formation following a 24-h incubation showed concentration dependence with respect to intra- and extracellular MTX. Saturation was reached at a medium concentration of approximately 2 μm with both cell types which corresponded to 10 to 12 μm intracellular MTX. Placement of cells at steady state in medium lacking MTX results in the rapid equilibration of all free intracellular MTX with the medium. The MTX polyglutamates leave the cell by a slow loss of intact polyglutamates and also by intracellular cleavage to MTX followed by efflux. The longer-chain-length γ-glutamyl derivatives (Glu4–5) are more avidly retained by the cells than the shorter ones (Glu2–3).  相似文献   

15.
Survival of V-79 Chinese hamster cells was assessed by colony growth assay after hypothermic exposure in the presence of iron chelators. At 5 degrees C, maximum protection from hypothermic damage was achieved with a 50 microM concentration of the intracellular ferric iron chelator Desferal. A 3-hr prehypothermic incubation with 50 microM Desferal followed by replacement with chelator-free medium at 5 degrees C also provided some protection. This was not observed when the extracellular chelator DETA-PAC (50 microM) was used prior to cold storage. Treating 5 degrees C-stored cells with Desferal just prior to rewarming was ineffective, but treating cells with Desferal during hypothermia exposure after a significant period of unprotected cold exposure ultimately increased the surviving fraction. Submaximal protection during hypothermia was achieved to various degrees with extracellular chelators at 5 degrees C, including 50 microM DETAPAC and 110 microM EDTA. EGTA (110 microM) had little effect. The sensitization of cells at 5 degrees C with 200 microM FeCl3 could be reduced or eliminated with Desferal in accordance with a 1:1 binding ratio. At 10 degrees C, 50 microM Desferal, 50 microM DETAPAC, and 110 microM EDTA were as or less effective in protecting cells than at 5 degrees C. An Arrhenius plot of cell inactivation rates shows a break at 7-8 degrees C, corresponding to maximum survival for control cells and cells in 50 microM Desferal; however, the amount of protection offered by the chelator increases with decreasing temperature below about 19 degrees C, and sensitization increases above that point. It has not previously been shown that iron chelators protect against cellular hypothermia damage which is uncomplicated by previous or simultaneous ischemia. This may be relevant to the low-temperature storage of transplant organs, in which iron of intracellular origin and in the perfusate may be active and damaging.  相似文献   

16.
The cholesteryl oleate-POPC dispersions (1:3, mol/mol, mean particle size 110+/-20 nm) were taken up by the human hepatoma line Hep G2 cells via endocytosis. Internalization of the cholesteryl oleate-POPC dispersions by Hep G2 cells was dependent on the incubation time and dispersion concentration. At the cholesteryl oleate concentration 100 microM, its total uptake and internalization were found to be 1.5 nmol and 0.8 nmol per 1 mg of cell protein/24 h, respectively. Intracellular cleavage of the cholesteryl oleate incorporated in dispersions resulted in accumulation of free cholesterol capable of being released into the medium and metabolized to water-soluble polar products, presumably bile acids; oleic acid released is, apparently, involved in biosynthesis of triacylglycerides. The low-density lipoprotein receptor is not involved in internalization of lipid dispersions, and the presence of the cholesteryl oleate-POPC dispersions has no effect on the receptor-dependent internalization of cholesteryl esters of the low-density lipoproteins. The obtained data allow us to consider nonspecific internalization of cholesteryl esters by hepatocytes as a substantial part of the nonpolar lipid clearance.  相似文献   

17.
The mevalonate pathway is tightly linked to cell proliferation. The aim of the present study is to determine the relationship between the inhibition of this pathway by lovastatin and the cell cycle. HL-60 and MOLT-4 human cell lines were cultured in a cholesterol-free medium and treated with increasing concentrations of lovastatin, and their effects on cell proliferation and the cell cycle were analyzed. Lovastatin was much more efficient in inhibiting cholesterol biosynthesis than protein prenylation. As a result of this, lovastatin blocked cell proliferation at any concentration used, but its effects on cell cycle distribution varied. At relatively low lovastatin concentrations (less than 10 microM), cells accumulated preferentially in G(2) phase, an effect which was both prevented and reversed by low-density lipoprotein cholesterol. At higher concentrations (50 microM), the cell cycle was also arrested at G(1) phase. In cells treated with lovastatin, those arrested at G(1) progressed through S upon mevalonate provision, whereas cholesterol supply allowed cells arrested at G(2) to traverse M phase. These results demonstrate the distinct roles of mevalonate, or its non-sterol derivatives, and cholesterol in cell cycle progression, both being required for normal cell cycling.  相似文献   

18.
H Sugiya  S Furuyama 《FEBS letters》1991,286(1-2):113-116
In fura-2-loaded parotid acinar cells, 50-200 microM sphingosine induced an increase in cytosolic Ca2+ ([Ca2+]i). When extracellular Ca2+ was chelated by EGTA, 50 microM sphingosine failed to increase [Ca2+]i, but 100 or 200 microM sphingosine induced a slight and transient increase in [Ca2+]i. The addition of LaCl3 to the medium resulted in the same effect as chelation of extracellular Ca2+. When cells were incubated in low Ca2+ medium containing sphingosine, and extracellular Ca2+ was subsequently added, a rapid increase in [Ca2+]i depending on the concentration of sphingosine was shown. In low Ca2+ medium, a slight increase in [Ca2+]i induced by high concentrations of sphingosine was not shown after the transient increase in [Ca2+]i elicited by methacholine. Inhibitors of protein kinase C, H-7 and K252a, did not mimic the effect of sphingosine on [Ca2+]i. These results suggest that sphingosine stimulates Ca(2+)-influx and further stimulates the release of Ca2+ from agonist-sensitive intracellular pools by a mechanism that is independent of protein kinase C.  相似文献   

19.
The mechanism of pantothenate transport across the plasma membrane was investigated with initial velocity studies of [14C]pantothenate uptake and efflux in rat liver parenchymal cells maintained in primary culture. At 116 mM sodium, double-reciprocal plots of the initial velocity of uptake versus [pantothenate] were linear from 0.3 to 36.5 microM pantothenate and gave an apparent Km,pant of 11 +/- 2 microM. The rate of pantothenate uptake at 0 [sodium] was about 14% of the rate at 116 mM sodium, and the reciprocal of the apparent Km,pant was a linear function of [sodium]. Vmax obtained by extrapolation to infinite [pantothenate] was independent of [sodium]. Ouabain, gramicidin D, cyanide, azide, and 2,4-dinitrophenol inhibited uptake, but preloading cells with pantothenate did not. Pantothenate derivatives or carboxylic acids were only weak inhibitors of uptake. Efflux was measured in cells preloaded with [14C]pantothenate. The apparent Km for efflux was 85 +/- 29 microM, and the rate of efflux was unaffected by addition of pantothenate, sodium, ouabain, gramicidin D, or 2,4-dinitrophenol to the external medium. These features are consistent with a mechanism for pantothenate transport in which sodium and pantothenate are cotransported in a 1:1 ratio on a carrier highly specific for pantothenate; sodium decreases the apparent Km for pantothenate, and a sodium-carrier complex forms only on the intracellular side of the membrane.  相似文献   

20.
1. Cultured Chinese hamster ovary cells (CHO) and their ornithine decarboxylase deficient mutant cells (C55.7) were found to excrete small amounts of N8-acetylspermidine and free polyamines, putrescine and spermidine into the culture medium. 2. The concentration of N8-acetylspermidine in the control cells was 2-3% of that of spermidine. In the medium, however, the amount of N8-acetylspermidine was about 2-fold that of spermidine and 2- to 3-fold higher than the intracellular amount. N1-acetylspermidine or acetylated spermine were never detected in the cells or in the media. 3. Confluent CHO cells treated with 2 mM difluoromethylornithine stopped the excretion when the intracellular spermidine concentration had decreased to 20% of control while there was no decrease in spermine concentration. At low cell density, neither polyamine depleted CHO cells nor the C55.7 cells excreted any polyamines into the culture media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号