首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The arctic-alpine Saxifraga oppositifolia has recently been suggested to have survived the last glaciation in high-arctic refugia, based on a finding of more genetic (RFLP) variation in Svalbard compared with more southern areas. To elucidate the migration history of this allogamous species, we analysed 18 populations from Norway, Svalbard and Novaya Zemlya using random amplified polymorphic DNAs (RAPDs). There was no more RAPD variation in the high Arctic than further south. In an analysis of molecular variance (AMOV A), most of the RAPD variation was found within populations (64%). There was less intrapopulational variation in Svalbard (65%) than in northern Norway (78%) and southern Norway (86%), suggesting that there is more inbreeding towards the north, probably because of lower pollinator activity. Twenty-eight per cent of the RAPD variation was found among populations within these geographical regions, and only 9% was found among the regions. In PCO and UPGMA analyses, plants and populations of different geographical origins were to a large extent intermingled. There was, however, a distinct, south-north clinal geographical structuring of the RAPD variation both in the PCO analysis and in a spatial autocorrelation (Mantel) analysis. These results suggest that there has been extensive gene flow among more or less continuously distributed populations of S. oppositifolia during the Weichselian, and that the extant Nordic populations were established after massive, centripetal immigration from these genetically variable, periglacial populations. The postglacial period may not have been sufficiently long for the subsequently isolated populations of this long-lived, allogamous perennial to diverge. Given the high levels of migration inferred from this study, genetic differentiation of glacial survivor populations, if any existed, would most likely have been swamped in the postglacial period. Thus, our molecular data support recent conclusions based on palaeobotanical and biogeographical data that the glacial survival hypothesis is superfluous.  相似文献   

2.
Biogeographers claimed for more than a century that arctic plants survived glaciations in ice-free refugia within the limits of the North European ice sheets. Molecular studies have, however, provided overwhelming support for postglacial immigration into northern Europe, even from the west across the Atlantic. For the first time we can here present molecular evidence strongly favouring in situ glacial persistence of two species, the rare arctic-alpine pioneer species Sagina caespitosa and Arenaria humifusa. Both belong to the 'west-arctic element' of amphi-Atlantic disjuncts, having their few and only European occurrences well within the limits of the last glaciation. Sequencing of non-coding regions of chloroplast DNA revealed only limited variation. However, two very distinct and partly diverse genetic groups, one East and one West Atlantic, were detected in each species based on amplified fragment length polymorphisms (AFLPs), excluding postglacial dispersal from North America as explanation for their European occurrences. Patterns of genetic diversity and distinctiveness indicate that glacial populations existed in East Greenland and/or Svalbard (A. humifusa) and in southern Scandinavia (S. caespitosa). Despite their presumed lack of long-distance dispersal adaptations, intermixed populations in several regions indicate postglacial contact zones. Both species are declining in Nordic countries, probably due to climate change-induced habitat loss. Little or no current connectivity between their highly fragmented and partly distinct populations call for conservation of several populations in each geographic region.  相似文献   

3.
A recent circumpolar survey of chloroplast DNA (cpDNA) haplotypes identified Pleistocene glacial refugia for the Arctic-Alpine Saxifraga oppositifolia in the Arctic and, potentially, at more southern latitudes. However, evidence for glacial refugia within the ice sheet covering northern Europe during the last glacial period was not detected either with cpDNA or in another study of S. oppositifolia that surveyed random amplified polymorphic DNA (RAPD) variation. If any genotypes survived in such refugia, they must have been swamped by massive postglacial immigration of periglacial genotypes. The present study tested whether it is possible to reconstruct the Pleistocene history of S. oppositifolia in the European Alps using molecular methods. Restriction fragment length polymorphism (RFLP) analysis of cpDNA of S. oppositifolia, partly sampled from potential nunatak areas, detected two common European haplotypes throughout the Alps, while three populations harboured two additional, rare haplotypes. RAPD analysis confirmed the results of former studies on S. oppositifolia; high within, but low among population genetic variation and no particular geographical patterning. Some Alpine populations were not perfectly nested in this common gene pool and contained private RAPD markers, high molecular variance or rare cpDNA haplotypes, indicating that the species could possibly have survived on ice-free mountain tops (nunataks) in some parts of the Alps during the last glaciation. However, the overall lack of a geographical genetic pattern suggests that there was massive immigration of cpDNA and RAPD genotypes by seed and pollen flow during postglacial times. Thus, the glacial history of S. oppositifolia in the Alps appears to resemble closely that suggested previously for the species in northern Europe.  相似文献   

4.
Many arctic-alpine organisms have vast present-day ranges across Eurasia, but their history of refugial isolation, differentiation and postglacial expansion is poorly understood. The mountain avens, Dryas octopetala sensu lato, is a long-lived, wind-dispersed, diploid shrub forming one of the most important components of Eurasian tundras and heaths in terms of biomass. We address differentiation and migration history of the species with emphasis on the western and northern Eurasian parts of its distribution area, also including some East Greenlandic and North American populations (partly referred to as the closely related D. integrifolia M. Vahl). We analysed 459 plants from 52 populations for 155 amplified fragment length polymorphisms (AFLP) markers. The Eurasian plants were separated into two main groups, probably reflecting isolation and expansion from two major glacial refugia, situated south and east of the North European ice sheets, respectively. Virtually all of northwestern Europe as well as East Greenland have been colonized by the Southern lineage, whereas northwest Russia, the Tatra Mountains and the arctic archipelago of Svalbard have been colonized by the Eastern lineage. The data indicate a contact zone between the two lineages in northern Scandinavia and possibly in the Tatra Mountains. The two single populations analysed from the Caucasus and Altai Mountains were most closely related to the Eastern lineage but were strongly divergent from the remaining eastern populations, suggesting survival in separate refugia at least during the last glaciation. The North American populations grouped with those from East Greenland, irrespective of their taxonomic affiliation, but this may be caused by independent hybridization with D. integrifolia and therefore not reflect the true relationship between populations from these areas.  相似文献   

5.
Chloroplast DNA variation in the Arctic plant species Dryas integrifolia (Rosaceae) was analysed in relation to both the present-day geographical distribution of populations and to Pleistocene fossil records of this species. The phylogeographical structure was weak but the analysis of haplotype diversity revealed several groups of haplotypes having present-day geographical ranges that overlap locations postulated from geographical and fossil evidence to have been glacial refugia. Based on this information we infer that two important refugial sources of Arctic recolonization by this species were Beringia and the High Arctic. Two other putative refugia, located southeast of the ice sheet and along coastal regions of the eastern Arctic may have served as sources for recolonization of smaller portions of the Arctic. The genetic substructure in the species is mostly due to variation among populations regardless of the ecogeographical region in which they are found. Spatial autocorrelation at the regional scale was also detected. High levels of diversity both within populations and ecogeographical regions are probably indicative of population establishment from several sources possibly combined with recent gene flow.  相似文献   

6.
Gaps in the large-scale distribution of the tephritid fly Urophora cardui in Europe have been explained as the results of an ongoing re-immigration from Pleistocene refugia due to a very low dispersal capacity. Following evidence of a much greater dispersal capacity of U. cardui than previously assumed, the pattern of genetic differentiation of 41 populations from 16 European regions was studied using allozyme electrophoresis. In these analyses 18 enzyme systems were scored consistently providing 27 alleles. Allozyme variation indicated high gene flow and low levels of genetic differentiation within and between sampling regions as well as in recently colonized areas. No geographical pattern of heterozygosity or allozyme differentiation could be found matching the previously suggested recent immigration pattern. An observed south-north gradient in allozyme frequencies was interpreted as a geographical cline due to environmental factors. The results corroborate evidence from more recent studies that U. cardui is a highly mobile species which is likely to have repeatedly colonized some suboptimal European regions since the Pleistocene after retreats during 'little ice ages'. Patterns resulting from postglacial immigration processes are likely to have been long wiped out through high exchange rates.  相似文献   

7.
Cryptic northern refugia beyond the ice limit of the Pleistocene glaciations may have had significant influence on the current pattern of biodiversity in Arctic regions. In order to evaluate whether northern glacial refugia existed in the Canadian Arctic, we examined mitochondrial DNA phylogeography in the northernmost species of rodents, the collared lemming (Dicrostonyx groenlandicus) sampled across its range of distribution in the North American Arctic and Greenland. The division of the collared lemming into the Canadian Arctic and eastern Beringia phylogroups does not support postglacial colonization of the North American Arctic from a single eastern Beringia refugium. Rather, the phylogeographical structure and sparse fossil records indicate that, during the last glaciation, some biologically significant refugia and important sources of postglacial colonization were located to the northwest of the main ice sheet in the Canadian Arctic.  相似文献   

8.
Quaternary glaciations have played a major role in shaping the genetic diversity and distribution of plant species. Strong palaeoecological and genetic evidence supports a postglacial recolonization of most plant species to northern Europe from southern, eastern and even western glacial refugia. Although highly controversial, the existence of small in situ glacial refugia in northern Europe has recently gained molecular support. We used genomic analyses to examine the phylogeography of a species that is critical in this debate. Carex scirpoidea Michx subsp. scirpoidea is a dioecious, amphi‐Atlantic arctic–alpine sedge that is widely distributed in North America, but absent from most of Eurasia, apart from three extremely disjunct populations in Norway, all well within the limits of the Weichselian ice sheet. Range‐wide population sampling and variation at 5,307 single nucleotide polymorphisms show that the three Norwegian populations comprise unique evolutionary lineages divergent from Greenland with high between‐population divergence. The Norwegian populations have low within‐population genetic diversity consistent with having experienced genetic bottlenecks in glacial refugia, and host private alleles that probably accumulated in long‐term isolated populations. Demographic analyses support a single, pre‐Weichselian colonization into Norway from East Greenland, and subsequent divergence of the three populations in separate refugia. Other refugial areas are identified in North‐east Greenland, Minnesota/Michigan, Colorado and Alaska. Admixed populations in British Columbia and West Greenland indicate postglacial contact. Taken together, evidence from this study strongly indicates in situ glacial survival in Scandinavia.  相似文献   

9.
The polymerase chain reaction (PCR)-based amplified fragment length polymorphism (AFLP) technique was applied to elucidate the glacial history of the alpine cushion plant Saponaria pumila in the European Alps. Special emphasis was given to a dense sampling of populations. Our data support a survival of S. pumila during the last ice age in at least three refugia, which are characterized by unique marker sets. Patterns of genetic diversity and divergence can be explained by survival in peripheral refugia and additional in situ survival within the ice sheet on peripheral nunataks. A nunatak survival in interior parts of the Alps needs not be postulated to explain our results. The level of genetic diversity is dramatically different between populations (Shannon's diversity index: 0.87-19.86). Some peripheral populations are characterized by a high number of rare fragments indicating long isolation, but not necessarily by a high level of genetic diversity. Parts of the present distributional area were recolonized via recent long-distance dispersal, leading to severely bottlenecked populations lacking private or rare fragments. The combination of our data with palaeogeological and palaeoclimatological evidence allows us to confine Pleistocene refugia to certain regions and to draw a detailed scenario of the glacial and postglacial history of S. pumila.  相似文献   

10.
Genetic variation in seven relict populations of Saxifraga cernua from three regions of the Alps was investigated using RAPD (random amplified polymorphic DNA) markers. No variation, either within the populations or within the regions, could be demonstrated. Nevertheless, each alpine region was characterized by a unique RAPD phenotype. Absence of genetic variation in these relict populations is attributed to population bottlenecks and founder effects during or following the ice ages. Contrasting hypotheses about the history of these populations, either as survivors of the glacial period or as products of postglacial immigration, are discussed in the light of the data presented.  相似文献   

11.
Genetic diversity is low in natural populations of red pine, Pinus resinosa, a species that has a vast range across north-eastern North America. In this study, we examined 10 chloroplast microsatellite or simple sequence repeats (cpSSR) loci in 136 individuals from 10 widespread populations. Substantial variation for the cpSSR loci was observed in the study populations. The contrast with red pine's lack of variation for other types of loci is likely to be due to the higher mutation rates typical of SSR loci. The amount of variation is lower than that generally found for cpSSR loci in other pine species. In addition, the variation exhibits a striking geographical pattern. Most of the genetic diversity is among populations, with little within populations, indicating substantial isolation of and genetic drift within many populations in the southern half of the species distribution. The greatest diversity now occurs in the north-eastern part of New England, which is especially intriguing because this entire area was glaciated. Thus the centre of diversity cannot be the origin of postglacial populations, rather it is likely caused by admixture, most probably because of influences from two separate refugia. Furthermore, the pattern indicates that the spread of red pine since the last glaciation is rather more complex than usually described, and it likely includes more than one refugia, complex migration routes, and postglacial-retreat isolation and genetic drift among shrinking populations in regions of the present southern range.  相似文献   

12.
Cerastium arcticum is an autogamous pioneer species with a distribution limited to the North Atlantic region. It has been suggested that such species must have survived in ice-free refugia on both sides of the Atlantic throughout the last, or even several, of the Pleistocene glaciations, because they lack special adaptations for long-distance dispersal. To address the possibility for recent trans-Atlantic dispersal of C. arcticum, we analyzed random amplified polymorphic DNA (RAPD) and sequence characterized amplified region (SCAR) differentiation among 26 populations of this high-polyploid species. Three SCAR markers were obtained that verified the main patterns identified in the RAPD analysis. Eighty-four multilocus RAPD phenotypes were observed in the 126 plants analyzed, based on 35 polymorphic markers. Multivariate analyses and analyses of molecular variance (AMOVAs) identified two highly divergent groups of populations: one arctic group (western and eastern Greenland, and the archipelagos of Svalbard and Franz Josef Land) and one nonarctic group (southern and northern Norway, and Iceland), indicating that C. arcticum is composed of two lineages with different evolutionary histories. However, there was little geographic structuring within each lineage, in spite of the fact that both lineages are disjunctly distributed across the Atlantic. Occurrence of very similar, in some cases even identical RAPD multilocus phenotypes on both sides of the Atlantic in this autogamous allopolyploid is most probably caused by postglacial dispersal. The present geographic distribution of C. arcticum may thus have been established after trans-Atlantic expansion from two Weichselian refugia, one for each evolutionary lineage. Unexpectedly, the level of intrapopulational variation increased towards the north. This may reflect that interpopulational migration is most extensive in the treeless arctic environment, where the species has a more continuous distribution than in the more southerly areas.  相似文献   

13.
The Pleistocene climatic fluctuations had a huge impact on all life forms, and various hypotheses regarding the survival of organisms during glacial periods have been postulated. In the European Alps, evidence has been found in support of refugia outside the ice shield (massifs de refuge) acting as sources for postglacial recolonization of inner‐Alpine areas. In contrast, evidence for survival on nunataks, ice‐free areas above the glacier, remains scarce. Here, we combine multivariate genetic analyses with ecological niche models (ENMs) through multiple timescales to elucidate the history of Alpine Megabunus harvestmen throughout the ice ages, a genus that comprises eight high‐altitude endemics. ENMs suggest two types of refugia throughout the last glacial maximum, inner‐Alpine survival on nunataks for four species and peripheral refugia for further four species. In some geographic regions, the patterns of genetic variation are consistent with long‐distance dispersal out of massifs de refuge, repeatedly coupled with geographic parthenogenesis. In other regions, long‐term persistence in nunataks may dominate the patterns of genetic divergence. Overall, our results suggest that glacial cycles contributed to allopatric diversification in Alpine Megabunus, both within and at the margins of the ice shield. These findings exemplify the power of ENM projections coupled with genetic analyses to identify hypotheses about the position and the number of glacial refugia and thus to evaluate the role of Pleistocene glaciations in driving species‐specific responses of recolonization or persistence that may have contributed to observed patterns of biodiversity.  相似文献   

14.
We used the widely distributed freshwater fish, perch (Perca fluviatilis), to investigate the postglacial colonization routes of freshwater fishes in Europe. Genetic variability within and among drainages was assessed using mitochondrial DNA (mtDNA) D-loop sequencing and RAPD markers from 55 populations all over Europe as well as one Siberian population. High level of structuring for both markers was observed among drainages and regions, while little differentiation was seen within drainages and regions. Phylogeographic relationships among European perch were determined from the distribution of 35 mtDNA haplotypes detected in the samples. In addition to a distinct southern European group, which includes a Greek and a southern Danubian population, three major groups of perch are observed: the western European drainages, the eastern European drainages including the Siberian population, and Norwegian populations from northern Norway, and western side of Oslofjord. Our data suggest that present perch populations in western and northern Europe were colonized from three main refugia, located in southeastern, northeastern and western Europe. In support of this, nested cladistic analysis of mtDNA clade and nested clade distances suggested historical range expansion as the main factor determining geographical distribution of haplotypes. The Baltic Sea has been colonized from all three refugia, and northeastern Europe harbours descendants from both eastern European refugia. In the upper part of the Danube lineages from the western European and the southern European refugia meet. The southern European refugium probably did not contribute to the recolonization of other western and northern European drainages after the last glaciation. However, phylogenetic analyses suggest that the southern European mtDNA lineage is the most ancient, and therefore likely to be the founder of all present perch lineages. The colonization routes used by perch probably also apply to other freshwater species with similar distribution patterns.  相似文献   

15.
Restriction fragment length polymorphism analysis of mitochondrial DNA (mtDNA) was used to reconstruct postglacial dispersal routes of arctic charr Salvelinus alpinus in North America. Twelve of 35 restriction enzymes detected polymorphisms among representative populations, revealing two distinct lineages with an estimated nucleotide divergence of 1.32%. Subsequent screening of 869 fish from 54 populations with four diagnostic restriction enzymes showed that these lineages have largely allopatric distributions, suggesting their dispersal from separate northern and eastern glacial refugia. In addition, geographical and genetic structure among eastern populations suggested the existence of a second eastern refuge. Among the three lineages, the most divergent (Arctic) lineage occurred from Alaska east to northern Labrador. Quebec, New Brunswick, and New England were colonized by a second (Laurentian) lineage, and Labrador by a third group. Contact between refugial groups was only detected in two Labrador populations. The Arctic lineage was highly differentiated from eastern North American and European haplotypes, and probably diverged during the early Pleistocene. By contrast, the Laurentian and Labrador groups were similar to Old World charr, suggesting a shared ancestry during the mid-Pleistocene. In addition, the close relationship between Labrador and Laurentian charr indicates their probable divergence during the Wisconsinan glaciation.  相似文献   

16.
A phylogeographic analysis of mitochondrial DNA variation was performed in order to test the hypothesis that north-eastern North America has been postglacially recolonized by two races of rainbow smelt Osmerus mordax . This was accomplished by documenting the geographical distribution of two major mtDNA phylogenetic clades among 1290 smelt from 49 lacustrine and anadromous populations covering most of the species' native range. The data set was built by combining previously published results with those generated in this study. The two mtDNA clades showed a geographical dichotomy, independent of life-history types, whereby the more eastern populations were either fixed or largely dominated by one clade and western populations for the other. Such geographical pattern implying a phylogenetic discontinuity provided strong evidence for the persistence of smelt in two distinct glacial refugia as well as their differential postglacial dispersal. The most likely refugium for the so-called Atlantic race was the Atlantic coastal plains, whereas that of the so-called Acadian race was the exundated Grand Banks area. Patterns of postglacial dispersal interpreted from palaeogeographic events suggested that the Atlantic race recolonized northern regions about 5000 years prior the Acadian race. Both races came into contact in the St Lawrence River estuary. While gene flow has been possible, the sympatric occurrence in the estuary of anadromous populations alternatively dominated by one mtDNA clade or the other indicated that reproductive isolation mechanisms between the two races developed within this contact zone. This represents the first evidence of secondary intergradation among distinct races of aquatic organisms in an estuarine environment.  相似文献   

17.
Current understanding of the postglacial colonization of Nearctic and Palearctic species relies heavily on inferences drawn from the phylogeographic analysis of contemporary generic variants. Modern postglacial populations are supposed to be representative of their Pleistocene ancestors, and their current distribution is assumed to reflect the different colonization success and dispersal patterns of refugial lineages. Yet, testing of phylogeographic models against ancestral genomes from glacial refugia has rarely been possible. Here we compare ND1 mitochondrial DNA variation in late Pleistocene (16,000-40,000 years before present), historical and contemporary Atlantic salmon (Salmo salar) populations from northern Spain and other regions of western Europe. Our study demonstrates the presence of Atlantic salmon in the Iberian glacial refugium during the last 40,000 years and points to the Iberian Peninsula as the likely source of the most common haplotype within the Atlantic lineage in Europe. However, our findings also suggest that there may have been significant changes in the genetic structure of the Iberian refugial stock since the last ice age, and question whether modern populations in refugial areas are representative of ice age populations. A common haplotype that persisted in the Iberian Peninsula during the Pleistocene last glacial maximum is now extremely rare or absent from European rivers, highlighting the need for caution when making phylogeographic inferences about the origin and distribution of modern genetic types.  相似文献   

18.
North-western North America has been repeatedly glaciated over most of the past two million years, with the most recent glaciation occurring between 60 000 and 10 000 years ago. Intraspecific genetic variation in many species has been shaped by where they survived glaciation and what postglacial recolonization routes were used. In this study, molecular techniques were used to investigate biogeographical, taxonomic and conservation issues in rainbow trout, Oncorhynchus mykiss. Mitochondrial DNA (mtDNA) variation was assessed using a restriction fragment length polymorphism (RFLP) analysis, focusing mainly on the previously understudied northern extent of the species' range. Two phylogenetically distinct mitochondrial lineages were found that differed from each other by up to 1.8% in sequence. Although the geographical distributions of the two clades overlap extensively, diversity and distributional analyses strongly suggest that trout survived glaciation in both coastal and inland refugia followed by postglacial gene flow and secondary contact. Postglacial dispersal into British Columbia most likely occurred from the Queen Charlotte Islands and the Columbia River. Although trout most likely also survived glaciation along the coast of Washington, Oregon and California, as well as near the Bering Strait, evidence suggests that dispersal into British Columbia from these areas was limited. Sequence analysis of mitochondrial haplotypes revealed higher diversity in California than in the northern part of the species' range, indicating an ancient presence of the species in the south. Phylogeographic divergence probably predates adaptive variation in the species as suggested by evidence for parallel evolution of life history types across the range of O. mykiss.  相似文献   

19.
Phylogeographic and taxonomic relationships among 54 North Atlantic populations of the snowbed grass genusPhippsia were investigated based on isozymes and genetically based morphological variation. The results support recognition of two distinct species,P. algida andP. concinna, the latter with at least two subspecies. Both of these self-fertilizing arctic pioneer species were genetic allotetraploids almost without intrapopulational variation. The two species showed strikingly different phylogeographies in the North Atlantic region in spite of their similarity in morphology, habitat ecology, mating system, and dispersal ecology, and in spite of their present cooccurrence in many geographic areas, sometimes even in the same snowbeds. The same electrophoretic multilocus phenotype was observed in all populations ofP. algida, and although this species showed considerable morphological variation, the variation was unstructured geographically. Thus,P. algida showed a pattern similar to other arctic species investigated in the North Atlantic region; it has probably dispersed postglacially across the sea barriers among Greenland, Svalbard, Iceland, and Scandinavia. In contrast,P. concinna was virtually fixed for different multilocus phenotypes in the three main geographic areas analyzed (S Norway, Svalbard, Greenland), corresponding to fairly distinct divergence in morphology. This pattern suggests absence of postglacial among-area dispersal ofP. concinna in spite of all of its similarities with its congener; it may have immigrated to the North Atlantic from different source areas and/or survived the last glaciationin situ.  相似文献   

20.
A survey of allozyme diversity within and between populations of Silene acaulis from Spitsbergen, Norway, Iceland and Scotland, showed that populations from the high Arctic (Spitsbergen, > 76°N) contained high levels of diversity and were genetically similar to populations from more southern locations. Indirect measures of gene flow (Nm), calculated from Wrigh's F indicated that there had been extensive gene flow between Spitsbergen and some Norwegian populations. A restriction site analysis of chloroplast DNA (cpDNA) in S. acaulis revealed that all populations contained a single identical cpDNA haplotype, except one population from Norway which also contained a second haplotype. In contrast, five different cpDNA haplotypes were distinguished in a more limited survey of cpDNA variation in Saxifraga oppositifolia, with all five haplotypes present in one of two Spitsbergen populations surveyed. The contrasting cpDNA results for the two species suggest that whereas high-Arctic populations of Silene acaulis have most likely been derived from immigrants which arrived from the south after the last glacial period, high-Arctic populations of Saxifraga oppositifolia may be derived, in part, from ancient northern stocks which survived the last glaciation in high-Arctic refugia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号