首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gall size and rates of ethylene production by various hosts infected with Meloidogyne javanica and by excised tomato root cultures infected with M. javanica or M. hapla were measured. Infection with M. javanica increased the rate of ethylene production in dicotyledonous plants (cabbage, pea, carrot, cucumber, carnation, and tomato), but not in infected monocotyledonous plants (corn, wheat, and onion). Nematode infection induced large galls on roots of dicotyledonous, but not monocotyledonous, plants. Excised tomato roots in culture infected with M. javanica produced ethylene at high rates and formed large galls, whereas roots infected with M. hapla produced ethylene at low rates and induced smaller galls.  相似文献   

2.
This study was to determine whether Arthrobotrys flagrans, A. oligospora, and Meria coniospora would control the root-knot nematode Meloidogyne hapla on alfalfa and tomato. Alfalfa seeds were coated with a fungus-rye powder in 2% cellulose and were planted in infested soil. Three-week-old seedlings from seed treated with M. coniospora had 60% and 58% fewer galls in two experiments than did seedlings from untreated seeds. Numbers of J2 in the soil were not reduced. Plant growth did not improve. When seed of tomato were coated with M. coniospora and planted in M. hapla-infested soil, roots had 34% fewer galls and 47% fewer J2 in the soil at 28 days. After 56 days there was no reduction in J2 numbers. Plant growth did not improve. When roots of tomato transplants were dusted with M. coniospora fungus-rye powder or sprayed with a spore suspension before planting in M. hapla-infested soil, 42% and 35%, respectively, fewer galls developed in 28 days on treated roots than on roots not treated with fungus. The numbers of J2 extracted from roots or recovered from soil were not reduced, however, and plant growth did not improve.  相似文献   

3.
A soil temperature of 20 C was equally suitable for the invasion and development of M. hapla and M. javanica. However, M. javanica predominated in a mixed species infection at this temperature. Predominance increased with increasing mixed-species inoculum levels. Invasion by M. hapla was more density-dependent than M. javanica. M. hapla produced a greater incidence of terminal galls and lateral roots.  相似文献   

4.
Root-infecting nematodes are commonly found on white clover in New Zealand pasture where they reduce yield, nitrogen fixation, and persistence. The dominant root-knot nematode on white clover in New Zealand is confirmed in this study as Meloidogyne trifoliophila by isozyme phenotype comparison with the type population from Tennessee. Results from a host differential test differed in the host ranges of M. trifoliophila and M. hapla from New Zealand locations, with M. trifoliophila failing to reproduce on the standard host plants of the test. The size and character of white clover root galls differ between species as M. trifoliophila galls are large, elongate, and smooth compared to the M. hapla galls, which are small, round, inconspicuous, and generally have adventitious, lateral roots. Culture and identification of root-knot nematode populations from sites in the North Island of New Zealand showed that M. trifoliophila is more widespread and abundant than M. hapla. Similar differential resistant and susceptible galling responses among half-sib families of white clover from a breeding program indicated that all M. trifoliophila populations tested were of the same pathotype. This resistant material was not effective in reducing reproduction of M. hapla. Meloidogyne trifoliophila did not develop to maturity on six grasses tested, but galls were formed on some species.  相似文献   

5.
Meloidogyne hapla-resistant plants grown from cuttings and inoculated with M. hapla larvae were free of galls. However, 35 to 48% of the seedling intercross progeny of resistant genotypes that were inoculated in the germinated seed stage were galled. There was an inverse relationship between the age of plants grown from seed and the percentage of plants galled by M. hapla; the older the plants at inoculation, the greater the percentage of gall-free plants. The per cent of galled plants was significantly reduced when galled roots were removed and plants reinoculated. Reproduction of M. hapla on galled progeny of resistant plants was significantly less than that on susceptible plants. There were no differences in nematode reproduction on galled progeny of resistant plants, regardless of age at time of inoculation. An in,ease in inoculum levels from 100 to 10,000 M. hapla larvae did not affect resistance or susceptility. There was a direct correlation between galling of inoculated seedlings of resistant progeny and temperature; inoculated 8-week-old cuttings of resistant plants were galled only at 32 C.  相似文献   

6.
The complex interactions that occur in systems with more than one type of symbiosis were studied using one isolate of Bradyrhizobium sp. and the ectomycorrhizal fungus Pisolithus tinctorius (Pers.) Coker and Couch inoculated on to the roots of Acacia holosericea A. Cunn. ex G. Don in vitro. After a single inoculation with Bradyrhizobium sp., bacteria typically entered the roots by forming infection threads in the root hair cells via the curling point of the root hair and/ or after intercellular penetration. Sheath formation and intercellular penetration were observed on Acacia roots after a single inoculation with Pisolithus tinctorius but no radial elongation of epidermal cells. Simultaneous inoculation with both microorganisms resulted in nodules and ectomycorrhiza on the root system, occasionally on the same lateral root. On lateral roots bearing nodules and ectomycorrhiza, the nodulation site was characterized by the presence of a nodule meristem and the absence of an infection thread; sheath formation and Hartig net development occurred regularly in the region of the roots adjacent to nodules. Prior inoculation with Bradyrhizobium sp. did not inhibit ectomycorrhizal colonization in root segments adjacent to nodules in which nodule meristems and infection threads were clearly present. Conversely, in ectomycorrhizae inoculated by bacteria, the nodule meristem and the infection thread were typically absent. These results show that simultaneous inoculation with both microorganisms inhibits infection thread development, thus conferring an advantage on fungal hyphae in the competition for infection sites. This suggests that fungal hyphae can modify directly and/or indirectly the recognition factors leading to nodule meristem initiation and infection thread development.  相似文献   

7.
The interactions of Meloidogyne javanica, Rotylenchulus reniformis, and Rhizobium sp. on cowpea seedlings were investigated. Upon simultaneous inoculation with the two nematode species, M. javanica invaded first but did not affect root invasion by R. reniformis. M. javanica populations increased less in competition with R. reniformis than when present alone. Preinvasion by R. renilormis significantly suppressed the number of M. javanica in the roots. Inoculation of M. javanica and/or R. reniformis with rhizobia did not affect nodulation. Nodule formation was hindered only when R. reniformis infection preceded rhizobial inoculation. Nitrogen nodules were formed on M. javanica galls. Nodules and M. javanica galls served as infection sites for both nematodes. Although R. reniIormis on the roots reduced the space for M. javanica infection, M. javanica is more competitive than R. reniformis and ultimately predominates as a result of its higher reproductive potential and shorter time spent in the soil before infection.  相似文献   

8.
Salvia miltiorrhiza Bunge (Lamiaceae) hairy root cultures were inoculated (at 0.02 and 0.2% v/v) and co-cultured with Bacillus cereus bacteria. The root biomass growth was inhibited significantly by the bacteria inoculated to the root culture on the first day (day 0) but not by the bacteria inoculated on days 14 or 21 (in a 28-day overall period). On the other hand, the growth of the bacteria in the hairy root culture was also strongly inhibited by the hairy roots, partially because of the antibacterial activity of the secondary compounds produced by the roots. Most interestingly, the tanshinone production was promoted by the inoculation of bacteria at any of these days but more significantly by an earlier bacteria inoculation. With 0.2% bacteria inoculated on day 0, for example, the total tanshinone content of roots was increased by more than 12-fold (from 0.20 to 2.67 mg g−1 dry weight), and the volumetric tanshinone yield increased by more than sixfold (from 1.40 to 10.4 mg l−1). The tanshinone production was also stimulated by bacterial water extract and bacterial culture supernatant but less significantly than by the inoculation of live bacteria. The results suggest that the stimulation of tanshinone production by live bacteria in the root cultures may be attributed to the elicitor compounds originating from the bacteria, and the hairy root–bacteria coculture may be an effective strategy for improving secondary metabolite production in plant tissue cultures.  相似文献   

9.
The effect of infection by Meloidogyne javanica and Heterodera trifolii on number, size, structure and efficiency of nodules formed by Rhizobiurn trifolii on white clover roots was investigated. Introduction of nematodes one week before, simultaneously, or one week following inoculation with Rhizobium bacteria did not hinder nodule formation. Nodule size did not differ between nematode-infected and nematode-free plants. Formation of nodules on M. javanica galls and gall formation on the nodules have been reported. The structure of nodular tissues was not disturbed by nematode infection, even though giant cells were formed inside the vascular bundles. The nitrogen-fixation efficiency of nematode-infected nodules was not impaired; however, earlier disintegration of nodules as a result of M. javanica infection ultimately deprived the plants of nitrogenous materials. The drastic reduction of the total-N in H. trifolii-infected plants reflected stunting of the entire plant due to nematode infection. Both nematodes invaded the entire root system, uniformly showing preference for nodules.  相似文献   

10.
The effect of the placement of inoculum of Fusarium oxysporum at two soil depths, and the sequences of inoculations with Meloidogyne arenaria and Fusarium oxysporum on root growth and development of root disease in Trifolium subterraneum L. (subterranean clover) were investigated. The timing of infection and the proximity of root tips of the host root system to infection by M. arenaria and F. oxysporum appeared to be the major determining factors of root growth and of disease development in plants exposed to the pathogens. Immediate contact of roots with F. oxysporum (where the fungus was placed at seed level of 10 mm depth) appeared to result in more severe effects on roots in the presence of the nematode than later infection by the fungus placed at 30 mm depth. The production of galls by the nematode and early infection by F. oxysporum at 10 mm depth resulted in a severe inhibition of root growth, particularly of the lateral roots. But no such growth inhibition was evident when F. oxysporum and M. arenaria were introduced together at the lower depth of 30 mm. The lowest density of M. arenaria inoculum was sufficient to cause severe root rot if F. oxysporum was present at the host seed level. With the fungus at 30 mm depth, however, the expression of root rot appeared to be influenced by the inoculum level of the nematode. In sequential inoculation with F. oxysporum or M. arenaria, the organism added 2 weeks later had little or no effect on root development. The first organism (M. arenaria or F. oxysporum) to infect the germinated seedlings was the main cause of root growth inhibition. The organism that came into contact with the roots 2 weeks later had little or no effect on the roots. Concurrent infection by F. oxysporum and M. arenaria resulted in less M. arenaria gall production on the tap root system than those added with the nematode alone or in advance of the fungus.  相似文献   

11.
Increased culturing of a tomato population of Heterodera schachtii (UT1C) on tomato for 480 days (eight inoculation periods of 60 days each) significantly increased virulence to ''Stone Improved'' tomato. A synergistic relationship existed between Meloidogyne hapla and H. schaehtii on tomato. A combination of H. schachtii (UTIC) and M. hapla significantly reduced tomato root weights by 65, 64, and 61% below root weights of untreated controls, and single inoculations of M. hapla and H. schachtii, respectively. This corresponded to root reductions of 42, 44, and 46% from a combination of H. schachtii (UT1B) and M. hapla. Antagonism existed between H. schachtii and M. hapla with regard to infection courts and feeding sites. The root-knot galling index dropped from 6.0 with a single inoculation of M. hapla to 4.3 and 3.3 with combined inoculations of M. hapla plus UT1B and M. hapla plus UTIC cyst nematode populations. The pathological virulence of H. schachtii to sugarbeet was not lost by extended culturing on tomato; there were no differences in penetration, maturation, and reproduction between sugarbeet populations continually cultured on sugarbeet and the population continually cultured on tomato.  相似文献   

12.
The effects of Glomus mosseae and Paecilomyces lilacinus on Meloidogyne javanica of tomato were tested in a greenhouse experiment. Chicken layer manure was used as a carrier substrate for the inoculum of P. lilacinus. The following parameters were used: gall index, average number of galls per root system, plant height, shoot and root weights. Inoculation of tomato plants with G. mosseae did not markedly increase the growth of infected plants with M. javanica. Inoculation of plants with G. mosseae and P. lilacinus together or separately resulted in similar shoots and plant heights. The highest root development was achieved when mycorrhizal plants were inoculated with P. lilacinus to control root-knot nematode. Inoculation of tomato plants with G. mosseae suppressed gall index and the average number of galls per root system by 52% and 66%, respectively, compared with seedlings inoculated with M. javanica alone. Biological control with both G. mosseae and P. lilacinus together or separately in the presence of layer manure completely inhibited root infection with M. javanica. Mycorrhizal colonization was not affected by the layer manure treatment or by root inoculation with P. lilacinus. Addition of layer manure had a beneficial effect on plant growth and reduced M. javanica infection.  相似文献   

13.
The interactive effects of vesicular-arbuscular mycorrhizal (VAM) fungi and root-knot nematode (Meloidogyne hapla) were studied on nematode-susceptible cultivars of tomato (cv. Scoresby) and white clover (cv. Huia) at four levels of applied phosphate. The relative merits of simultaneous inoculation with mycorrhizal fungi and nematodes and of inoculation with mycorrhizal fungi prior to nematode inoculation were evaluated. Mycorrhizal plants were more resistant than non-mycorrhizal plants to root-knot nematode at all phosphate levels and growth benefits were generally greater in plants preinfected with mycorrhizal fungi. Nematode numbers increased with increasing levels of applied phosphate. In mycorrhizal root systems, nematode numbers increased in the lower phosphate soils; at higher phosphate levels nematode numbers were either unaffected or reduced. The numbers of juveniles and adults per gram of root were always lower in mycorrhizal treatments. Mycorrhizal root length remained unaffected by nematode inoculation. Mycorrhizal inoculation thus increased the plants' resistance to infection by M. hapla. This was probably due to some alteration in the physiology of the root system but was not entirely a result of better host nutrition and improved phosphorus uptake by mycorrhizal plants.  相似文献   

14.
An Agrobacterium vitis-specific DNA fragment (pAVS3) was generated from PCR polymorphic bands amplified by primer URP 2R. A. vitis specificity of this fragment was confirmed by Southern hybridization with genomic DNA from different Agrobacterium species. Sequence-characterized amplified region (SCAR) markers were developed for A. vitis specific detection, using 24-mer oligonucleotide primers designed from the flanking ends of the 670 bp insert in pAVS3. The SCAR primers amplified target sequences only from A. vitis strains and not from other Agrobacterium species or other bacterial genera. First round PCR detected bacterial cells between 5×102 and 1×103 cfu/ml and the detection sensitivity was increased to as few as 2 cfu/ml by nested PCR. This PCR protocol can be used to confirm the potential presence of infectious A. vitis strains in soil and furthermore, can identify A. vitis strains from naturally infected crown galls.  相似文献   

15.
Factors affecting the resistance of cold-stored carrots to Botrytis cinerea   总被引:2,自引:0,他引:2  
The secondary phloem parenchyma of cold-stored turgid roots of carrot (Daucus carota) is capable of localizing mycelial infection by Botrytis cinerea, producing a dark resistant lesion. The percentage of roots exhibiting this reaction declined with increasing time in cold-store: when freshly harvested and wound-inoculated in October 1974, 99%of roots resisted invasion, whereas only 5% of those stored until March 1975 did so. The surface dimensions of resistant lesions did not increase between 33 and 55 days after inoculation. However, the surface dimensions and mean weights of lesions (arising from inoculations performed at different times over the course of the storage season) were both larger with increasing time in storage of roots prior to inoculation. The ability of the root tissue to localize infection was reduced if the roots lost 5–10% or more of their fresh weight before inoculation, resulting progressively in susceptibility. Compared with roots wound-inoculated using mycelial disks, there was an overall reduction in infection when carrots were wound-inoculated using conidia or when conidia or mycelial disks were inoculated onto the apparently undamaged surface of roots.  相似文献   

16.
Root invasion, root galling, and fecundity of Meloidogyne javanica, M. arenaria, and M. incognita on tobacco was compared in greenhouse and controlled environment experiments. Significantly more M. javanica than M. arenaria or M. incognita larvae were found in tobacco roots at 2, 4, and 6 d after inoculation. Eight days after inoculation there were significantly more M. arenaria and M. javanica than M. incognita larvae. Ten days after inoculation no significant differences were found among the three Meloidogyne species inside the roots. Galls induced by a single larva or several larvae of M. javanica were significantly larger than galls induced by M. incognita: M. arenaria galls were intermediate in size. Only slight differences in numbers of egg masses or numbers of eggs produced by the three Meloidogyne species were observed up to 35 d after inoculation.  相似文献   

17.
The cotton root-knot nematode, Meloidogyne incognita acrita, reproduced on the roots of grain sorghum, causing syncytia in the cortex or stele of lateral roots. Giant cells developed either singly with few nuclei or in groups with many nuclei. Giant cells that developed in groups appeared the same as those which developed singly. The pericycle and endodermis were interrupted at the site of nematode invasion. Large areas of these tissues were absent for one-third of the circumference of the stele and extended 1.5 mm longitudinally along the root. In the area where pericycle and endodernris were absent, the parenchyma of the cortex extended to the vascular elements, and abnormal xylem surrounding giant cells extended into the region of the cortex. Root-knot galls appeared on sorghum roots as elongate swellings, discrete knots, or swellings with root proliferation. Galls were not observed on brace roots.  相似文献   

18.
Reproduction of Meloidogyne javanica was compared on several Agrobacterium rhizogenes-transformed root cultures under monoxenic conditions. M. javanica reproduced on all transformed roots tested; however, more females and eggs were obtained on potato and South Australian Early Dwarf Red tomato than on bindweed, Tropic tomato, lima bean, or carrot. Roots that grew at moderate rates into the agar and produced many secondary roots supported the highest reproduction. Numbers of females produced in cultures of transformed potato roots increased with increasing nematode inoculum levels, whether inoculum was dispersed eggs or juveniles. Females appeared smaller, produced fewer eggs, and were found in coalesced galls at the higher inoculum levels. The ratio between the final and initial population decreased sharply as the juvenile inoculum increased. The second-stage juvenile was preferred to dispersed eggs or egg masses for inoculation of tissue culture systems because quantity and viability of inoculum were easily assessed. Meloidogyne javanica reared on transformed root cultures were able to complete their life cycles on new transformed root cultures or greenhouse tomato plants.  相似文献   

19.
Metabolism and Plant Hormone Action During Clubroot Disease   总被引:2,自引:0,他引:2  
Infection of Brassicaceae with the obligate biotrophic pathogen Plasmodiophora brassicae results in the development of root galls (clubroots). During the transformation of a healthy root to a root gall a plethora of changes in primary and secondary metabolism occur. The upper part of an infected plant is retarded in growth due to redirection of assimilates from the shoot to the root. In addition, changes in the levels of plant growth regulators, especially auxins and cytokinins, contribute to the hypertrophy of infected roots. Also, defense reactions are manipulated after inoculation of suitable host plants with P. brassicae. This review summarizes our current knowledge on the changes in these parameters. A model is presented for how primary metabolism and secondary metabolism, including plant hormones, interact to induce clubroot formation.  相似文献   

20.
Invasion of tomato (Lycopersicon esculentum L.) roots by combined and sequential inoculations of Meloidogyne hapla and a tomato population of Heterodera schachtii was affected more by soil temperature than by nematode competition. Maximum invasion of tomato roots, by M. hapla and H. schachtii occurred at 30 and 26 C, respectively. Female development and nematode reproduction (eggs per plant) of M. hapla was adversely affected by H. schachtii in combined inoculations of the two nematode species. Inhibition of M. hapla development and reproduction on tomato roots from combined nematode inoculations was more pronounced as soil temperature was increased over a range of 18-30 C and with prior inoculation of tomato with H. schachtii. M. hapla minimally affected H. schachtii female development, but there was significant reduction in the buildup of H. schachtii when M. hapla inoculation preceded that of H. schachtii by 20 days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号