首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. When potato Q-enzyme converts amylose into an amylopectin-like molecule, the action is by a random, endo-type transglycosylation of the substrate chains. 2. Inter-chain transfer takes place during the formation of the amylopectin branch linkage. This is seen in experiments in which radioactive label was transferred between substrates of disparate molecular weight. Intra-chain transfer, leading to the formation of a branch linkage, is not excluded by these experiments. 3. The minimum length of amylose chain that can act as an acceptor in the transglycosylation reaction, under the experimental conditions described, is greater than 40 glucose units. 4. The requirement of Q-enzyme for substrate chains at least 40 glucose units in length is interpreted as meaning that a stabilized secondary and tertiary structure must be established in the substrate before it can be utilized by Q-enzyme, and that the forces that provide such conformation are sufficiently strong only when the chains are longer than the minimum. Inter-chain transfer is seen as taking place by one of two mechanisms. The first involved the reaction of the enzyme with a chain that has a stabilized (helical?) conformation. An enzyme-donor chain intermediate is formed, that then reacts with an acceptor chain to complete the transglycosylation. The second mechanism envisages the substrate for the enzyme as being a complex formed between two chains (a double helix?). The enzyme encounters the complex and carries out an inter-chain transglycosylation reactions.  相似文献   

2.
3.
Q-Enzyme is responsible for the synthesis of the 1,6-branch linkages in amylopectin. Its action on a model amylodextrin containing a single branch linkage has been studied. It is concluded that the enzymic process whereby the branch linkages of amylopectin are synthesized is a random action of the branching enzyme on a complex—possibly a double helix—formed between two 1,4-α-glucan chains. This action pattern predicts a novel arrangement of the units chains in amylopectin.  相似文献   

4.
Two isoforms of starch branching enzyme (Q-enzyme), QEI and QEII, have been purified to honlogeneity from developing rice endosperm. QEI and QEII, with molecular weights of about 80 and 85 kDa, respectively, could be fully separated by anion-exchange or hydrophobic chromatography. The peptide maps obtained after V8 proteinase digestion were quite different between the two enzymes. Antibodies prepared against QEI showed no immunological cross-reaction with the QEII protein in Western blot experiments, and anti-QEII serum did not react with the QEI protein. The data indicate that QEI and QEII are distinct proteins encoded by different genes in rice plants.  相似文献   

5.
6.
7.
8.
The pattern of isoforms of starch branching enzyme II or Q-enzyme II in the tuberous root of sweet potato was distinct from those of other organs; altogether 7 isoforms of QEII were contained in the sweet potato plant. The QEIIf isoform, one of the two major QEII isoforms in the tuberous root, was purified to homogeneity by using a variety of HPLC columns. The purified QEIIf was a monomeric protein with a molecular mass of about 85 kDa. Western blot analysis showed that the polyclonal antibodies raised against the purified QEIIf was significantly reactive to the rice endosperm QEI, but not to the rice endosperm QEIIa. Furthermore, the sweet potato QEIIf reacted with the antiserum raised against the rice endosperm QEI, but not with that against the rice endosperm QEIIa. The results suggest that the sweet potato QEIIf is more similar to the rice endosperm QEI than to the rice endosperm QEIIa.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号