首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Tropische Pilze     
Tropical fungi Mycological fieldwork in the tropics is a fascinating activity, because fungi are heterotrophic living beings and acquire nutrients in manyfold ways, often in association with algae, plants, or animals. Numerous fungi live in mutualistic symbiosis with plants or algae (lichens), as parasites of plants, or live on dead plant material. Other fungi kill insects or other animals and use their bodies as substrate to develop fruiting bodies, while a few fungal species live in mutualistic symbiosis with insects. These and further groups of fungi are presented based on examples from Panama. Sometimes, supposed fungal structures turn out to be cases of mimesis – plants or animals copy fungal patterns in order to take cover.  相似文献   

2.
Evidence is presented for the earliest known occurrences of non-vascular land plants and of higher, septate fungi. Macerates of carbonaceous silstone lenses from the lower Massanutten Sandstone, early Silurian (Llandoverian) of Virginia, have yielded a diverse assemblage of microfossil elements. Parallel aligned, banded tubes with annular to spiral ribbing and rounded to papilliform ends, membranous cellular sheets, cuticles, trilete spores, small spore tetrads, and septate higher filamentous fungi were recovered from the macerates. The banded tubes are probably a significant analogue with supportive or conductive cell types, but are not considered tracheidal. The heterogeneous plant assemblage may represent a thalloid, non-vascular land plant, in part, with a tubular-filamentous (nematophytic) organization associated with a membranous cellular layer and cuticular covering. While no spores were established as nematophytic, the presence of trilete spores adds to the indirect evidence of multiple evolutionary convergence toward land-plant characters. This assemblage is interpreted as of land-plant origin, based on the inferred fluvial depositional model of the fossiliferous rocks. A glacio-eustatic sea-level drop in the late Ordovician is suggested as a stimulus to the advent of land plants in the early Silurian.  相似文献   

3.
Arbuscular mycorrhizas (AMs) are widespread symbiotic associations that are commonly described as the result of co-evolution events between fungi and plants where both partners benefit from the reciprocal nutrient exchange. Here, we review data from fossil records, characterizations of AM fungi in basal plants and live cell imaging of angiosperm colonization processes from an evolutionary-developmental perspective. The uniformity of plant cell responses to AM colonization in haploid gametophytes and diploid sporophytes, in non-root organs, and throughout many seed plant clades highlights the ancient origin of the interaction and suggests the existence of common molecular and cellular processes. The possibility that pre-existing mechanisms involved in plant cell division were recruited by plants to accommodate AM fungi is discussed.  相似文献   

4.
Filamentous fungi produce a diverse array of secondary metabolites--small molecules that are not necessary for normal growth or development. Secondary metabolites have a tremendous impact on society; some are exploited for their antibiotic and pharmaceutical activities, others are involved in disease interactions with plants or animals. The availability of fungal genome sequences has led to an enhanced effort at identifying biosynthetic genes for these molecules. Genes that regulate production of secondary metabolites have been identified and a link between secondary metabolism, light and sexual/asexual reproduction established. However, the role of secondary metabolites in the fungi that produce them remains a mystery. Many of these fungi live saprophytically in the soil and such molecules may provide protection against other inhabitants in this ecological niche.  相似文献   

5.
真菌群体感应现象的研究进展   总被引:1,自引:0,他引:1  
群体感应是细菌中普遍存在的细胞与细胞间的通讯系统,即细菌可通过向环境释放可扩散的信号分子来感知细胞群体密度并调控自身的某些生理行为。近年来研究发现,真菌中也存在类似于细菌群体感应信号分子的信息素,并参与调节真菌诸如菌相转化、致病性及次级代谢产物产生等生理行为。主要综述了目前真菌中群体感应系统的研究进展。  相似文献   

6.
Streptomyces bacteria are ubiquitous in soil, conferring the characteristic earthy smell, and they have an important ecological role in the turnover of organic material. More recently, a new picture has begun to emerge in which streptomycetes are not in all cases simply free-living soil bacteria but have also evolved to live in symbiosis with plants, fungi and animals. Furthermore, much of the chemical diversity of secondary metabolites produced by Streptomyces species has most likely evolved as a direct result of their interactions with other organisms. Here we review what is currently known about the role of streptomycetes as symbionts with fungi, plants and animals. These interactions can be parasitic, as is the case for scab-causing streptomycetes, which infect plants, and the Streptomyces species Streptomyces somaliensis and Streptomyces sudanensis that infect humans. However, in most cases they are beneficial and growth promoting, as is the case with many insects, plants and marine animals that use streptomycete-produced antibiotics to protect themselves against infection. This is an exciting and newly emerging field of research that will become increasingly important as the search for new antibiotics switches to unusual and under-explored environments.  相似文献   

7.
Succession of fungi on dead and live wood in brackish water in Brunei   总被引:1,自引:0,他引:1  
We observed the sequence of fungi appearing on submerged wood of Hibiscus tiliaceus that initially was either dead or alive. Branches that were dead, but still attached to the tree, and live branches were cut from H. tiliaceus in the riparian vegetation in a brackish habitat on the Tutong River, Brunei. Branch segments were connected to the riverbank using monofilament line. Samples were examined for fungi before the branches were placed in the river and after the branches had been submerged 3 or 6 mo. Fifty taxa were found on the samples. Before being placed in the water different fungal assemblages were found on live as compared to deadwood. Branches that were alive when cut supported a distinctly different fungal assemblage after 3 mo in the water. Dead branches after 3 mo and both dead and initially live samples after 6 mo had been colonized by a fungal assemblage that is typical at this site. It is unknown whether the differences in colonization of dead and initially live wood can be attributed to differences in the substratum (i.e., the presence or absence of bark), inhibitory substances in more recently live wood or to assembly rules resulting from the different fungi that already were present in dead and live branches.  相似文献   

8.
Based on SEM examinations of about 5000 species of seed plants, this is a survey of their epidermal surface characters with an aim to application in taxonomy. Surface characters may be grouped into four categories: (1) Cellular arrangement or cellular pattern. (2) Shape of cells (the "primary sculpture" of a surface). (3) Relief of outer cell walls (the "secondary sculpture" superimposed on the primary sculpture), caused mainly by cuticular striations and superficially visible wall inclusions and wall thickenings. (4) Epicuticular secretions (the "tertiary sculpture" superimposed on the secondary sculpture), i.e. mainly waxes and related substances.
The systematic applicability is discussed for each of these structural groups. Epidermal characters are only slightly influenced by environmental conditions. Their high structural diversity provides most valuable criteria for the classification between species and family level. There is also some evidence for their systematic applicability above the family level.
The possible evolutionary–ecological significance of surface sculpturing is discussed briefly. There is evidence that these features may be seen primarily under the aspects of reduced ability of plants to contaminate and as temperature control mechanisms of the surfaces.  相似文献   

9.
A modulating role for antioxidants in desiccation tolerance   总被引:3,自引:0,他引:3  
Most organisms depend on the availability of water. However, some life-forms, among them plants and fungi, but very few animals, can survive in the desiccated state. Here we discuss biochemical mechanisms that confer tolerance to desiccation in photosynthetic and non-photosynthetic organisms. We first consider damage caused by water removal and point out that free radicals are a major cause of death in intolerant tissue. Free radicals impair metabolism and necessitate protection and repair during desiccation and rehydration, respectively. As a consequence, desiccation tolerance and prolonged longevity in the desiccated state depend on the ability to scavenge free radicals, using antioxidants such as glutathione, ascorbate, tocopherols and free radical-processing enzymes. Some 'classic' antioxidants may be absent in lower plants and fungi. On the other hand, lichens and seeds often contain secondary phenolic products with antioxidant properties. The major intracellular antioxidant consistently found in all life forms is glutathione, making it essential to survive desiccation. We finally discuss the role of glutathione to act as a signal that initiates programmed cell death. The failure of the antioxidant system during long-term desiccation appears to trigger programmed cell death, causing ageing and eventual death of the organism. In turn, this suggests that a potent antioxidant machinery is one of the underlying mechanisms of desiccation tolerance.  相似文献   

10.
Comparative analysis of polyphenol oxidase from plant and fungal species   总被引:1,自引:0,他引:1  
Polyphenol oxidase from plants and fungi is a metalloenzyme containing a type-3 copper center and is homologous to oxygen-carrying hemocyanin of molluscs. Molluscan hemocyanin consists of two domains, an N-terminal domain containing the copper center and a smaller C-terminal domain, connected by an alpha-helical linker. It is presumed that the same is true of polyphenol oxidase from plants and fungi although the structure of a polyphenol oxidase containing the C-terminal domain has not been determined. We show that a number of important structural features are conserved in the N-terminal domains of polyphenol oxidases from various plants and fungi, including a tyrosine motif which can be considered a landmark indicating the beginning of the linker region connecting the N- and C-terminal domains. Our sequence alignments and secondary structure predictions indicate that the C-terminal domains of polyphenol oxidases are likely to be similar in tertiary structure to that of hemocyanin. Detailed bioinformatics analyses of the linker regions predict that this section of the polypeptide chain is intrinsically disordered (lacking fixed tertiary structure) and contains a site of proteolytic processing as well as a potential phosphorylation site.  相似文献   

11.
Toxic metal ions in photoautotrophic organisms   总被引:1,自引:1,他引:0  
We summarize the contemporary understanding of the effects of metal stress on various photosynthetic processes in photoautotrophic organisms and of the defence strategies employed by these organisms to avoid such stress. Cadmium is in the centre of interest of this review, as a non-essential element and important environmental pollutant, but Al, Pb, Hg, As, Cu, and Zn are also considered. Toxic metal ions pollute the environment through anthropogenic activities and affect the quality of plant crop. They represent one of the main abiotic stress factors influencing the health of plants and, as a secondary effect, of animals including man. The review summarizes the generally accepted answers to the questions: How do the toxic metal ions enter the photosynthetic organisms? How are they accumulated in plants? Which mechanisms do plants develop to tolerate metal stress and protect themselves?  相似文献   

12.
Fungal pathogens face similar stress conditions to those affecting plants and saprotrophic fungi. Therefore, mechanisms underlying fungal response to the stress factors may be well-conserved across various taxa. Saccharomyces cerevisiae was the most researched for signal transduction pathways but many of the pathways' components were later reported for filamentous fungi as well. The most widely studied pathways are those involving the G proteins, adenylate cyclase (cAMP) and mitogen-activated protein kinases (MAPKs). Apart from these, the target-of-rapamycin (TOR), calcium/calcineurin and cell wall integrity (CWI) pathways are of significant interest when stress response is considered. All these pathways were included in this review. It seems that the TOR-received signals are transferred to the CWI pathway, secondary metabolism and virulence. Specific and non-specific cellular responses of Fusarium species, triggered by signals received from the environment, were discussed, with particular focus on stress response and pathogenicity towards the plant host.  相似文献   

13.
The question of how phenotypic and genomic complexity are inter‐related and how they are shaped through evolution is a central question in biology that historically has been approached from the perspective of animals and plants. In recent years, however, fungi have emerged as a promising alternative system to address such questions. Key to their ecological success, fungi present a broad and diverse range of phenotypic traits. Fungal cells can adopt many different shapes, often within a single species, providing them with great adaptive potential. Fungal cellular organizations span from unicellular forms to complex, macroscopic multicellularity, with multiple transitions to higher or lower levels of cellular complexity occurring throughout the evolutionary history of fungi. Similarly, fungal genomes are very diverse in their architecture. Deep changes in genome organization can occur very quickly, and these phenomena are known to mediate rapid adaptations to environmental changes. Finally, the biochemical complexity of fungi is huge, particularly with regard to their secondary metabolites, chemical products that mediate many aspects of fungal biology, including ecological interactions. Herein, we explore how the interplay of these cellular, genomic and metabolic traits mediates the emergence of complex phenotypes, and how this complexity is shaped throughout the evolutionary history of Fungi.  相似文献   

14.
药用植物内生真菌及活性物质多样性研究进展   总被引:30,自引:2,他引:30  
药用植物具有丰富的物种多样性,是人类生存与发展的重要自然资源。内生真菌广泛存在于健康植物组织内部,是植物微生态系统的重要组成部分,各种药用植物中蕴藏着非常丰富的内生真菌。通过与药用植物的“协同进化”,某些内生真菌具有了产生与宿主植物相同或相似的生物活性物质的能力。内生真菌产生的各种活性物质,在生物制药、农业生产、工业发酵等方面都表现出美好的应用前景,受到世界各国专家的广泛关注。利用内生真菌发酵实现生物活性物质的工业化生产,可以提高产量、降低产品成本,满足人们日益增长的需求;同时有利于珍稀、濒危药用植物资源的保护,对减少野生药用植物多样性的破坏具有重要意义。本文从药用植物内生真菌物种多样性与产生生物活性物质多样性等方面总结近年最新的研究进展,提出了内生真菌及活性物质研究的未来发展方向。  相似文献   

15.
Microorganisms, or microbes, can function as threatening pathogens that cause disease in humans, animals, and plants; however, they also act as litter decomposers in natural ecosystems. As the outermost barrier and interface with the environment, the microbial cell surface is crucial for cell-to-cell communication and is a potential target of chemotherapeutic agents. Surface ultrastructures of microbial cells have typically been observed using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Owing to its characteristics of low-temperature specimen preparation and superb resolution (down to 1 nm), cryo-field emission SEM has revealed paired rodlets, referred to as hydrophobins, on the cell walls of bacteria and fungi. Recent technological advances in AFM have enabled high-speed live cell imaging in liquid at the nanoscale level, leading to clear visualization of cell-drug interactions. Platinum-carbon replicas from freeze-fractured fungal spores have been observed using transmission electron microscopy, revealing hydrophobins with varying dimensions. In addition, AFM has been used to resolve bacteriophages in their free state and during infection of bacterial cells. Various microscopy techniques with enhanced spatial resolution, imaging speed, and versatile specimen preparation are being used to document cellular structures and events, thus addressing unanswered biological questions.  相似文献   

16.
Phytoalexins   总被引:4,自引:0,他引:4  
Plants respond to infection by accumulating low-molecular-weight antimicrobial stress metabolites called phytoalexins. The phytoalexins are generally lipophilic substances that are products of a plant's secondary metabolism, and they often accumulate at infection sites to concentrations which are inhibitory to the development of fungi and bacteria. Resistance and susceptibility in plants are not determined by the presence or absence of genetic information for resistance mechanisms, including biosynthetic pathways for phytoalexin synthesis, but, rather, by the speed with which the information is expressed, the activity of the gene products, and the magnitude of the resistance response. Unlike the antibody-antigen component of the immune system in animals, low specificity is the general rule for the induction of phytoalexin accumulation and their activity against microorganisms. Annual plants can be systemically immunized against diseases caused by fungi, bacteria, and viruses by restricted infection with the pathogens, avirulent forms of pathogens, or compounds formed in immunized plants. Immunization induces plants to respond rapidly to infection with a multicomponent resistant response. The biosynthesis and accumulation of phytoalexins is one component of this resistant response. Resistance may be elicited by components in the walls and cell surfaces of fungi and bacteria and by compounds liberated from cells, their walls, or surfaces. Resistance can be enhanced or suppressed by products produced by the pathogen, the host, or by their interaction. The successful pathogen avoids recognition by the plant as nonself, suppresses the resistance response, or detoxifies its products. The actors in this play for survival on the metabolic level include the shikimate, acetate-malonate, and acetate-mevalonate pathways; glucans; oligogalacturonates; glycoproteins; lipopolysaccharides; and poly-unsaturated fatty acids. The play is directed by the genetic information of host and pathogen, and this direction is at the level of recognition and not by the presence or absence of mechanisms to contain the development of infectious agents.  相似文献   

17.
陈世萍  高玉葆  梁宇  任安芝 《生态学报》2001,21(12):1964-1972
以黑麦草为实验对象,研究了干旱胁迫条件下内生真菌感染对植株叶片含水量和叶内游离脯氨酸含量的影响,同时对渗透胁迫条件下植株叶内ABA含量的变化进行了分析。结果表明:①内生真菌的感染有助于使叶片保持较高的含水量;②在两种形式的水分胁迫下,。前期至中期高感染种群的叶片游离脯氨酸含量低于感染种群,而在末期则有高出低感染种群的趋势;③内生真菌感染对黑麦草叶内ABA累积的正效应只发生在轻度渗透胁迫下的较短时间范围内。  相似文献   

18.
19.
Secondary metabolites Already 400 million years ago when land plants evolved, they probably produced secondary metabolites as means of defence against herbivores, microbes and competing plants. Secondary metabolites usually are bioactive agents, which can interfere with molecular targets in animals and microbes. Therefore, many plants and substances isolated from them can serve as valuable drugs in medicine and pharmacy. Some secondary metabolites also serve as signal compounds to attract pollinating animals and seed‐dispersing animals, but also for UV protection, as antioxidants or mobile nitrogen stores. Biology and evolution but also physiological and genetic bases of secondary metabolism are discussed in this overview.  相似文献   

20.
V B Ivanov 《Tsitologiia》1986,28(3):295-302
Cellular patterns of continual cell proliferation are considered in plants and animals. In plants, the cells, analogous to the animal stem cells, can be formed many times during plant ontogenesis. Their functioning as stem cells is determined by their position in the growing organ. This is the reason why a plant can grow for a very long time. There are some common features of cellular patterns of proliferation in plants and animals providing the stability and optimal subordination between cell proliferation, differentiation and function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号