首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ultraviolet-visible spectroscopy has been used to follow the solubilization of the dark-adapted purple membrane of Halobacterium halobium by Triton X-100. Turbidity of purple membrane fragments and absorbance of bacteriorhodopsin variations during continuous addition of detergent give solubilization profiles exhibiting several break points corresponding to different equilibrium stages of the solubilization process. The present method allows the determination of the detergent to protein+lipid ratio in mixed aggregates at the corresponding break points. It was concluded that, when performed systematically, this technique is a very convenient and powerful tool for the quantitative study of biomembrane-to-micelle transition.  相似文献   

2.
Two methods have been developed for the rapid and accurate estimation of orthophosphate in the presence of Triton X-100. The first is unaffected by up to 2.0–2.5% (v/v) of the detergent in the assay samples, while the second method is essentially unaffected by Triton X-100 and is also suitable for use in the presence of acid labile organic phosphate. Both are proportional in the range 0.05–1.0 μmole of orthophosphate in the assay.  相似文献   

3.
《FEBS letters》1987,226(1):72-76
Chlorophyllase (chlorophyll chlorophyllidohydrolase, EC 3.1.1.14) catalyses the transesterification of chlorophylls with the surfactant Triton X-100, which is widely used in the preparation and study of this enzyme. The preparation and some properties of water-soluble tritonyl chlorophyllide esters are described. A mechanism for the role of Triton X-100 as an inhibitor in chlorophyllase-catalyzed hydrolysis and transesterification of chlorophylls is proposed. Bacteriochlorophyl a also has been employed as a substrate for green plant chlorophyllase.  相似文献   

4.
Lowry determination of protein in the presence of Triton X-100.   总被引:66,自引:0,他引:66  
The Lowry procedure has been modified for use in the presence of Triton X-100 (TX-100) by the addition of 10% sodium dodecyl sulfate. The method is applicable to samples containing 40–120 μg protein.  相似文献   

5.
Light-induced release/uptake of both protons and other ions cause transient changes in conductivity in suspensions of purple membrane (PM) fragments (Marinetti, Tim, and David Mauzerall, 1983, Proc. Natl. Acad. Sci. USA, 80:178-180). We find that the release/uptake of nonproton ions with quantum yield greater than 1 is observed at most pHs and ionic strengths. Only at both low pH and low ionic strength is the conductivity transient mostly due to protons. Our hypothesis is that during the photocycle, changes occur in the PM's dense surface charge distribution that result in changes in the number of counterions bound or condensed at the membrane surface. To test this, the PM structure was perturbed with the nonionic detergent Triton X-100. Immediately after addition, Triton does not abolish the nonproton ion movements; in fact at low detergent concentrations (0.02% vol/vol) the signal amplitudes increased considerably. However, when PM is completely solubilized into monomers in Triton, the conductivity transients are due to protons alone, though at lower quantum yield compared with native PM. These results suggest that changes in the surface charge distribution in native PM's photocycle could contribute to proton transfer between the aqueous phase and bR itself.  相似文献   

6.
The interaction of the non-ionic surfactant Triton X-100 with Halobacterium purple membranes has been examined at sublytic and lytic surfactant concentrations. These membranes present a number of important peculiarities in their behaviour towards the surfactant. Although solubilization is a very slow process, with a half-time of the order of hours, detergent binding appears to occur at the same fast rate as that found in other membranes. Lipids are solubilized more easily than proteins, so that hardly any protein is solubilized at surfactant concentrations at which about 75% of the lipid is in the form of detergent-mixed micelles; once started, protein solubilization takes place within a narrow range of surfactant concentrations. Retinal provides a built-in probe to monitor detergent-induced conformational changes by spectroscopy in the visible range. No spectral variation is detected at the prelytic stage, i.e. when detergent is incorporated into the membrane in monomeric form. Membrane disruption is accompanied by a blue shift in the absorption maximum, retinal isomerization (from all-trans to 13-cis), and a decrease in specific absorbance (bleaching). Increasing detergent concentrations after solubilization is completed do not produce further shifts in the spectral maximum, but the specific absorbance is progressively decreased. It is shown that Triton X-100 has a complex effect on the retinal chromophore, modifying its configuration and microenvironment (changes in maximum wavelength) and promoting hydrolysis of the retinal-bacteriorhopsin Schiff's base (bleaching).  相似文献   

7.
8.
9.
Multilamellar liposomes containing pure phosphatidylcholine (PC) or mixtures of PC with cholesterol, cholesteryl palmitate, beta-carotene, cardiolipin, phosphatidylethanolamine or gramicidin A have been treated with the detergent Triton X-100. Solubilization has been monitored as a decrease in turbidity of the liposome suspension, and also by determination of bilayer components in the solubilized fraction. The same solubilization pattern is found for unsaturated (egg yolk) or saturated (dimyristoyl) PC. Similar results are also found when dimyristoyl PC is solubilized above or below its gel-to-fluid transition temperature. Cholesterol solubilizes in parallel with PC; gramicidin A is solubilized preferentially to this phospholipid and the non-polar lipids cholesteryl palmitate or beta-carotene remain insoluble at detergent concentrations producing complete PC solubilization. Addition of cardiolipin or phosphatidylethanolamine does not seem to alter the general pattern of PC solubilization. Phosphatidylethanolamine is less soluble than PC, while cardiolipin solubilizes at the same detergent concentrations than PC. These results are considered in relation to previous studies with natural membranes.  相似文献   

10.
The sensitivity of the fluorescamine assay is increased by hydrolysis of the protein sample in 2 n NaOH. The assay is linear from 0.125 to 10 μg of protein and can measure concentrations as low as 0.5 μg/ml. The presence of several detergents including Triton X-100 in both the protein sample (up to 10%) and in the fluorescamine assay itself (up to 0.33%) does not interfere.  相似文献   

11.
Plasma membrane (PM) vesicles isolated from the yeast Saccharomyces cerevisiae (wild-type NCIM 3078, and a MG 21290 mutant pma 1-1) were used to monitor the effect of the detergents, 3-[(3-cholamidopropyl) dimethylammonio]-1-propane sulfonate (Chaps) and Triton X-100, on (H+)-ATPase (E.C. 3.6.1.35), NADH oxidase and NADH-hexacynoferrate (III)[HCF (III)] oxidoreductase (E.C. 1.6.99.3) activities. The results obtained show that Triton X-100 inhibited both membrane bound and solubilized NADH-dependent redox activities. The nature of this inhibition as determined for NADH-HCF(III) oxidoreductase was non-competitive and the Ki values for wild and mutant enzymes were 1.2 x 10(-5) M and 8.0 x 10(-6) M, respectively. The findings are interpreted, in view of the established reports, that the active site architecture of PM bound NADH-dependent oxidoreductase in yeast is likely to be different than in other eukaryotes.  相似文献   

12.
Plasma membrane (PM) vesicles isolated from the yeast Saccharomyces cerevisiae (wild-type NCIM 3078, and a MG 21290 mutant pma 1-1) were used to monitor the effect of the detergents, 3-[(3-cholamidopropyl) dimethylammonio]-1-propane sulfonate (Chaps) and Triton X-100, on H+-ATPase (E.C. 3.6.1.35), NADH oxidase and NADH- hexacynoferrate (III)[HCF (III)] oxidoreductase (E.C. 1.6.99.3) activities. The results obtained show that Triton X-100 inhibited both membrane bound and solubilized NADH-dependent redox activities. The nature of this inhibition as determined for NADH–HCF(III) oxidoreductase was non-competitive and the Ki values for wild and mutant enzymes were 1.2?×?10?5?M and 8.0?×?10?6?M, respectively. The findings are interpreted, in view of the established reports, that the active site architecture of PM bound NADH-dependent oxidoreductase in yeast is likely to be different than in other eukaryotes.  相似文献   

13.
Activation of acetylcholinesterase by Triton X-100   总被引:1,自引:0,他引:1  
  相似文献   

14.
The molecular weight of proteins in protein-detergent complexes can be determined from ultracentrifugation experiments if the amount of bound detergent is known. A new sensitive method to measure the binding of the nonionic detergent Triton X-100 to proteins has been developed. For the membrane proteins studied, less than 50 μg of protein was required to achieve an accuracy of 10% in the determination of the detergent-protein weight ratio.The proteins were equilibrated with the detergent by electrophoresis into polyacrylamide gels containing radioactively labelled Triton X-100. The gels were then sliced and the amount of bound detergent calculated from the increase in radioactivity in the slices containing the protein zone. The amounts of protein were determined by amino acid analysis of identical protein zones cut from gels running parallel .  相似文献   

15.
Low density Triton X-100-insoluble plasma membrane microdomains can be isolated from different mammalian cell types and are proposed to be involved in membrane trafficking, cell morphogenesis and signal transduction. Heterotrimeric G-proteins and their receptors are often associated with such domains, suggesting that these structures are involved in G-protein-coupled signaling. Here we report that detergent-insoluble plasma membrane microdomains also exist in higher plants and contain about 15% of membrane-bound heterotrimeric G-protein beta-subunit (Gbeta). Plasma membrane microdomains were isolated from tobacco leaves. They have low buoyant density relative to the surrounding plasma membrane, and are insoluble in Triton X-100 at 4 degrees C. Detergent-insoluble vesicles were examined by freeze-fracture electron microscopy. They have sizes in the range 100-400 nm, and often contain aggregated protein complexes. The majority of plasma membrane proteins cannot be detected in the Triton X-100-insoluble fraction, while few polypeptides are highly enriched. We identified six proteins with molecular masses of 22, 28, 35, 60, 67 and 94 kDa in detergent-insoluble fractions that are glycosylphosphatidylinositol (GPI)-anchored.  相似文献   

16.
The nonionic detergent, Triton X-100, was investigated as an agent for releasing plasma membrane from milk fat globules. The sedimentable material (50 000 × g, 1 h) derived by treating washed goat globules with the detergent (0.2%) was compared to membrane made by the classical globule churning procedure. Characterization included lipid and protein analyses, gel electrophoresis of peptide components, determination of enzymatic activities, and examination with the electron microscope. The results established that the detergent-released material is membrane with similarities to the product by churning. Evaluation of variables revealed that a detergent concentration of 0.1 to 0.2% and reaction temperature of 20–22°C appear optimum with respect to membrane yield when a reaction time of 2 min is employed. At higher detergent concentrations or temperatures removal of phospholipid from the membrane was maximized. Triton X-100 was observed to release membrane from milk fat globules of the goat, human and cow, the latter with a minor procedural modification. The detergent based method is a convenient procedure for obtaining plasma membrane material in good yield for biochemical studies. It also should aid investigations of milk fat globule structure.  相似文献   

17.
The zwitterionic detergent CHAPS, a derivative of the bile salts, is widely used in membrane protein solubilization. It is a “facial” detergent, having a hydrophilic side and a hydrophobic back. The objective of this work is to characterize the interaction of CHAPS with a cell membrane. To this aim, erythrocytes were incubated with a wide range of detergent concentrations in order to determine CHAPS partition behavior, and its effects on membrane lipid order, hemolytic effects, and the solubilization of membrane phospholipids and cholesterol. The results were compared with those obtained with the nonionic detergent Triton X-100. It was found that CHAPS has a low affinity for the erythrocyte membrane (partition coefficient K = 0.06 mM− 1), and at sub-hemolytic concentrations it causes little effect on membrane lipid order. CHAPS hemolysis and phospholipid solubilization are closely correlated. On the other side, binding of Triton X-100 disorders the membrane at all levels, and has independent mechanisms for hemolysis and solubilization. Differential behavior was observed in the solubilization of phospholipids and cholesterol. Thus, the detergent resistant membranes (DRM) obtained with the two detergents will have different composition. The behaviors of the two detergents are related to the differences in their molecular structures, suggesting that CHAPS does not penetrate the lipid bilayer but binds in a flat position on the erythrocyte surface, both in intact and cholesterol depleted erythrocytes. A relevant result for Triton X-100 is that hemolysis is not directly correlated with the solubilization of membrane lipids, as it is usually assumed.  相似文献   

18.
Cells of marine pseudomonad B-16 (ATCC 19855) washed with a solution containing 0.3 M NaCl, 50 mM MgCl2, and 10 mM KCl (complete salts) could be protected from lysis in a hypotonic environment if the suspending medium contained either 20 mM Mg2+, 40 mM Na+, or 300 mM K+. When the outer double-track layer (the outer membrane) of the cell envelope was removed to yield mureinoplasts, the Mg2+, Na+ or K+, requirements to prevent lysis were raised to 80, 210, and 400 mM, respectively. In the presence of 0.1% Triton X-100, 220, 320, and 360 mM Mg2+, Na+ or K+, respectively, prevented lysis of the normal cells. Mureinoplasts and protoplasts, however, lysed instantly in the presence of the detergent at all concentrations of Mg2+, Na+, or K+ tested up to 1.2 M. Thus, the structure of the outer membrane appears to be maintained by appropriate concentrations of Mg2+ or Na+ in a form preventing the penetration of Triton X-100 and thereby protecting the cytoplasmic membrane from dissolution by the detergent. K+ was effective in this capacity with cells washed with complete salts solution but not with cells washed with a solution of NaCl, suggesting that bound Mg2+ was required in the cell wall membrane for K+ to be effective in preventing lysis by the detergent. At high concentrations (1 M) K+ and Mg2+, but not Na+, appeared to destabilize the structure of the outer membrane in the presence of Triton X-100.  相似文献   

19.
20.
The effects of a surface active agent, Triton X-100, were studied in the routine Giemsa staining of seven blood parasites: Plasmodium vivax, Trypanosoma cruzi, T. lewisi, Leishmania donovani, Toxoplasma gondii, and microfilariae of Dirofilaria immitis and of Wuchereria bancrofti. Concentrations of Triton X-100 ranging from 0.01% to 0.5% were used in staining (a) both thick and thin blood films of all organisms except L. donovani, (b) tissue smears of L. donovani, and (c) tissue and peritoneal fluid smears of T. gondii. In general, the addition of the detergent to the Giemsa solution resulted in cleaner preparations and better stained organisms. Morphological details were more distinct, thus facilitating microscopical detection and identification of species. The most beneficial concentration of Triton X-100 was found to be 0.1%. Since it has a hemolytic effect on erythrocytes, concentrations above 0.01% cannot be used in staining thin blood films. It is suggested also that the use of Triton-Giemsa may help prevent transfer of some of these organisms from one slide to another during mass staining procedures as it has been demonstrated to do with malaria parasites (Brooke and Donaldson, 1950).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号