首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C1-Tetrahydrofolate synthase is a trifunctional polypeptide found in eukaryotic organisms that catalyzes 10-formyltetrahydrofolate synthetase (EC 6.3.4.3), 5,10-methenyltetrahydrofolate cyclohydrolase (EC 3.5.4.9), and 5,10-methylenetetrahydrofolate dehydrogenase (EC 1.5.1.5) activities. In Saccharomyces cerevisiae, C1-tetrahydrofolate synthase is found in both the cytoplasm and the mitochondria. The gene encoding yeast mitochondrial C1-tetrahydrofolate synthase was isolated using synthetic oligonucleotide probes based on the amino-terminal sequence of the purified protein. Hybridization analysis shows that the gene (designated MIS1) has a single copy in the yeast genome. The predicted amino acid sequence of mitochondrial C1-tetrahydrofolate synthase shares 71% identity with yeast C1-tetrahydrofolate synthase and shares 39% identity with clostridial 10-formyltetrahydrofolate synthetase. Chromosomal deletions of the mitochondrial C1-tetrahydrofolate synthase gene were generated using the cloned MIS1 gene. Mutant strains which lack a functional MIS1 gene are viable and can grow in medium containing a nonfermentable carbon source. In fact, deletion of the MIS1 locus has no detectable effect on cell growth.  相似文献   

2.
A human mitochondrial isozyme of C1-tetrahydrofolate (THF) synthase was previously identified by its similarity to the human cytoplasmic C1-THF synthase. All C1-THF synthases characterized to date, from yeast to human, are trifunctional, containing the activities of 5,10-methylene-THF dehydrogenase, 5,10-methenyl-THF cyclohydrolase, and 10-formyl-THF synthetase. Here we report on the enzymatic characterization of the recombinant human mitochondrial isozyme. Enzyme assays of purified human mitochondrial C1-THF synthase protein revealed only the presence of 10-formyl-THF synthetase activity. Gel filtration and crosslinking studies indicated that human mitochondrial C1-THF synthase exists as a homodimer in solution. Steady-state kinetic characterization of the 10-formyl-THF synthetase activity was performed using (6R,S)-H4-PteGlu1, (6R,S)-H4-PteGlu3, and (6R,S)-H4-PteGlu5 substrates. The (6R,S)-H4-PteGlun Km dropped from greater than 500 microM for the monoglutamate to 15 microM and 3.6 microM for the tri- and pentaglutamates, respectively. The Km values for formate and ATP also are lowered when THF polyglutamates are used. The formate Km dropped 79-fold and the ATP Km dropped more than 5-fold when (6R,S)-H4-PteGlu5 was used as the substrate in place of (6R,S)-H4-PteGlu1.  相似文献   

3.
Although expression of the gastrin/cholecystokinin-2 receptor (CCK2R) is widely reported in human colorectal cancer, little is known on its role in mediating mature amidated gastrin (gastrin-17 amide, G-17) induced intracellular signal transduction in colon cancer cells. The purpose of this study was to explore the intracellular events of colorectal cancer cells after gastrin binding to CCK2R. Meanwhile, the influence of a natural point mutation 286V-->F in the third intracellular loop of CCK2R on gastrin-envoked intracellular signal transduction was also investigated. Firstly, Colo320 cells were stably transfected with wild type (Colo320 WT) and mutant CCK2R (Colo320 M), respectively. The intracellular signal transduction events in response to gastrin were investigated in both Colo320 WT and Colo320 M cells. In Colo320 WT cells, G-17 induced formation of intracellular cyclic AMP and inositol 1,4,5-trisphosphate, and stimulated intracellular calcium mobilization. G-17 also stimulated tyrosine phosphorylation of ERKl/2, p38, FAK, and paxillin, and up-regulated the mRNA expression of early response gene c-Jun and c-Fos. However, G-17 inhibited proliferation and induced apoptosis in Colo320 WT cells. Mutation 286V-->F in the third intracellular loop of CCK2R blocked G-17 induced biological without affecting binding affinity of CCK2R to G-17. Our results suggest that activation of CCK2R by gastrin stimulates heterotrimeric G-protein Gq and G(12/13) mediated intracellular signal transduction pathway in colon cancer cells. The valine-287 residue in third intracellular loop of CCK2R plays a pivotal role in CCK2R mediated intracellular signal transduction.  相似文献   

4.
5.
C1-Tetrahydrofolate synthase is a trifunctional polypeptide found in eukaryotic organisms that catalyzes 10-formyltetrahydrofolate synthetase (EC 6.3.4.3), 5,10-methenyltetrahydrofolate cyclohydrolase (EC 3.5.4.9), and 5,10-methylenetetrahydrofolate dehydrogenase (EC 1.5.1.5) activities. In Saccharomyces cerevisiae, C1-tetrahydrofolate synthase is encoded by the ADE3 locus, yet ade3 mutants have low but detectable levels of these enzyme activities. Synthetase, cyclohydrolase, and dehydrogenase activities in an ade3 deletion strain co-purify 4,000-fold to yield a single protein species as seen on sodium dodecyl sulfate-polyacrylamide gels. The native molecular weight of the isozyme (Mr = 200,000 by gel exclusion chromatography) and the size of its subunits (Mr = 100,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis) are similar to those of C1-tetrahydrofolate synthase. Cell fractionation experiments show that the isozyme, but not C1-tetrahydrofolate synthase, is localized in the mitochondria. Genetic studies indicate that the isozyme is encoded in the nuclear genome. Peptide mapping experiments show that C1-tetrahydrofolate synthase and the isozyme are not structurally identical. However, immunotitration experiments and amino acid sequence analysis suggest that C1-tetrahydrofolate synthase and the isozyme are structurally related. We propose to call the isozyme "mitochondrial C1-tetrahydrofolate synthase."  相似文献   

6.
Aberrant beta-catenin-TCF target gene activation plays a key role in colorectal cancer, both in the initiation stage and during invasion and metastasis. We identified the neuronal cell adhesion molecule L1, as a target gene of beta-catenin-TCF signaling in colorectal cancer cells. L1 expression was high in sparse cultures and coregulated with ADAM10, a metalloprotease involved in cleaving and shedding L1's extracellular domain. L1 expression conferred increased cell motility, growth in low serum, transformation and tumorigenesis, whereas its suppression in colon cancer cells decreased motility. L1 was exclusively localized in the invasive front of human colorectal tumors together with ADAM10. The transmembrane localization and shedding of L1 by metalloproteases could be useful for detection and as target for colon cancer therapy.  相似文献   

7.
The A3243G mutation in the human mitochondrial tRNALeu(UUR) gene causes a number of human diseases. This mutation reduces the level and fraction of aminoacylated tRNALeu(UUR) and eliminates nucleotide modification at the wobble position of the anticodon. These deficiencies are associated with mitochondrial translation defects that result in decreased levels of mitochondrial translation products and respiratory chain enzyme activities. We have suppressed the respiratory chain defects in A3243G mutant cells by overexpressing human mitochondrial leucyl-tRNA synthetase. The rates of oxygen consumption in suppressed cells were directly proportional to the levels of leucyl-tRNA synthetase. Fifteenfold higher levels of leucyl-tRNA synthetase resulted in wild-type respiratory chain function. The suppressed cells had increased steady-state levels of tRNALeu(UUR) and up to threefold higher steady-state levels of mitochondrial translation products, but did not have rates of protein synthesis above those in parental mutant cells. These data suggest that suppression of the A3243G mutation occurred by increasing protein stability. This suppression of a tRNA gene mutation by increasing the steady-state levels of its cognate aminoacyl-tRNA synthetase is a model for potential therapies for human pathogenic tRNA mutations.  相似文献   

8.
The canonical Wnt signalling pathway is a critical pathway involved in the proliferation of cells. It has been well-established that it plays the central role during colorectal carcinogenesis and development. Yet the exact molecular mechanism of how the canonical Wnt pathway is fine-tuned remains elusive. We found that SLC35C1, a GDP-fucose transporter, negatively regulates the Wnt signalling pathway. We show here that SLC35C1 is reduced in all colon cancer by both immunohistochemistry images and TCGA data, whereas β-catenin is increased. Down-regulation of SLC35C1 is also detected by real-time PCR in stage 3 and stage 4 colorectal cancer tissues. Moreover, analysing the TCGA database with cBioPortal reveals the negative correlation of SLC35C1 mRNA level to the expression of β-catenin. Reduced SLC35C1 significantly promotes cell proliferation and colony formation of HEK293 cells. Meanwhile, in HEK293 cells silencing SLC35C1 activates canonical Wnt pathway, whereas overexpressing SLC35C1 inhibits it. Consistently, the reduction of SLC35C1 in HEK293 cells also elevated the mRNA level of Wnt target genes C-myc, Axin2 and Cyclin D1, as well as the secretion of Wnt3a. In conclusion, we identified SLC35C1 as a negative regulator of the Wnt signalling pathway in colon cancer. Decreased SLC35C1 may cause over-activation of Wnt signalling in colorectal cancer.  相似文献   

9.
Development of tumor-specific probes for imaging by positron emission tomography has broad implications in clinical oncology, such as diagnosis, staging, and monitoring therapeutic responses in patients, as well as in biomedical research. Thymidylate synthase (TSase)-based de novo biosynthesis of DNA is an important target for drug development. Increased DNA replication in proliferating cancerous cells requires TSase activity, which catalyzes the reductive methylation of dUMP to dTMP using (R)-N(5),N(10)-methylene-5,6,7,8-tetrahydrofolate (MTHF) as a cofactor. In principle, radiolabeled MTHF can be used as a substrate for this reaction to identify rapidly dividing cells. In this proof-of-principle study, actively growing (log phase) breast cancer (MCF7, MDA-MB-231, and hTERT-HME1), normal breast (human mammary epithelial and MCF10A), colon cancer (HT-29), and normal colon (FHC) cells were incubated with [(14)C]MTHF in culture medium from 30 min to 2 h, and uptake of radiotracer was measured. Cancerous cell lines incorporated significantly more radioactivity than their normal counterparts. The uptake of radioactively labeled MTHF depended upon a combination of cell doubling time, folate receptor status, S phase percentage, and TSase expression in the cells. These findings suggest that the recently synthesized [(11)C]MTHF may serve as a new positron emission tomography tracer for cancer imaging.  相似文献   

10.
11.
The IC53 gene was reported to be upregulated in the colon adenocarcinoma cell line SW480. Here, we show that the expression level of IC53 is positively correlated with the grade and depth of invasion in adenocarcinoma of the colon. Injection of IC53 stably transfected HCT-116 cells into athymic nude mice promoted tumor growth. Furthermore, overexpression of IC53 increased cell invasive growth, which could be dramatically prevented by knocking down IC53 with siRNA. The effects of IC53 on cell-invasive growth were mediated by upregulation of integrins, activation of phosphatidylinositol 3-kinase and phosphorylation of Akt. A single-nucleotide polymorphism rs2737 in the IC53 gene created a potential microRNA379 target site, and microRNA379 expression inhibited IC53 translation. Among 222 patients with colorectal cancer, the C/C rs2737 genotype was associated with late onset of colorectal cancer (median age 63.0 versus 55.3 years, P = 0.003). The frequency of the C/C rs2737 genotype was much lower in patients who developed colorectal cancer below the age of 45 years than in individuals over age 45 years (10.8% versus 26.6%, P = 0.039). These data indicated that IC53 is a positive mediator for colon cancer progression, and IC53-rs2737 may serve as protection from the onset of colorectal cancer.  相似文献   

12.
CDX1 is a homeobox protein that inhibits proliferation of intestinal epithelial cells and regulates intestine-specific genes involved in differentiation. CDX1 expression is developmentally and spatially regulated, and its expression is aberrantly down-regulated in colorectal cancers and colon cancer-derived cell lines. However, very little is known about the molecular mechanism underlying the regulation of CDX1 gene expression. In this study, we characterized the CDX1 gene structure and identified that its gene promoter contained a typical CpG island with a CpG observed/expected ratio of 0.80, suggesting that the CDX1 gene is a target of aberrant methylation. Alterations of DNA methylation in the CDX1 gene promoter were investigated in a series of colorectal cancer cell lines. Combined Bisulfite Restriction Analysis (COBRA) and bisulfite sequencing analysis revealed that the CDX1 promoter is methylated in CDX1 non-expressing colorectal cancer cell lines but not in human normal colon tissue and T84 cells, which express CDX1. Treatment with 5'-aza-2'-deoxycytidine (5-azaC), a DNA methyltransferase inhibitor, induced CDX1 expression in the colorectal cancer cell lines. Furthermore, de novo methylation was determined by establishing stably transfected clones of the CDX1 promoter in SW480 cells and demethylation by 5-azaC-activated reporter gene expression. These results indicate that aberrant methylation of the CpG island in the CDX1 promoter is one of the mechanisms that mediate CDX1 down-regulation in colorectal cancer cell lines.  相似文献   

13.
Recent profile studies of microRNA (miRNA) expression have documented a deregulation of miRNA (miR-320a) in human colorectal carcinoma. However, its expression pattern and underlying mechanisms in the development and progression of colorectal carcinoma has not been elucidated clearly. Here, we performed real-time PCR to examine the expression levels of miR-320a in colon cancer cell lines and tumor tissues. And then, we investigated its biological functions in colon cancer cells by a gain of functional strategy. Further more, by the combinational approaches of bioinformatics and experimental validation, we confirmed target associations of miR-320a in colorectal carcinoma. Our results showed that miR-320a was frequently downregulated in cancer cell lines and colon cancer tissues. And we demonstrated that miR-320a restoration inhibited colon cancer cell proliferation and β-catenin, a functionally oncogenic molecule was a direct target gene of miR-320a. Finally, the data of real-time PCR showed the reciprocal relationship between miR-320a and β-catenin's downstream genes in colon cancer tissues. These findings indicate that miR-320a suppresses the growth of colon cancer cells by directly targeting β-catenin, suggesting its application in prognosis prediction and cancer treatment.  相似文献   

14.
Respiratory deficient mutants of Saccharomyces cerevisiae previously assigned to complementation group G59 are pleiotropically deficient in respiratory chain components and in mitochondrial ATPase. This phenotype has been shown to be a consequence of mutations in a nuclear gene coding for mitochondrial leucyl-tRNA synthetase. The structural gene (MSL1) coding for the mitochondrial enzyme has been cloned by transformation of two different G59 mutants with genomic libraries of wild type yeast nuclear DNA. The cloned gene has been sequenced and shown to code for a protein of 894 residues with a molecular weight of 101,936. The amino-terminal sequence (30-40 residues) has a large percentage of basic and hydroxylated residues suggestive of a mitochondrial import signal. The cloned MSL1 gene was used to construct a strain in which 1 kb of the coding sequence was deleted and substituted with the yeast LEU2 gene. Mitochondrial extracts obtained from the mutant carrying the disrupted MSL1::LEU2 allele did not catalyze acylation of mitochondrial leucyl-tRNA even though other tRNAs were normally charged. These results confirmed the correct identification of MSL1 as the structural gene for mitochondrial leucyl-tRNA synthetase. Mutations in MSL1 affect the ability of yeast to grow on nonfermentable substrates but are not lethal indicating that the cytoplasmic leucyl-tRNA synthetase is encoded by a different gene. The primary sequence of yeast mitochondrial leucyl-tRNA synthetase has been compared to other bacterial and eukaryotic synthetases. Significant homology has been found between the yeast enzyme and the methionyl- and isoleucyl-tRNA synthetases of Escherichia coli. The most striking primary sequence homology occurs in the amino-terminal regions of the three proteins encompassing some 150 residues. Several smaller domains in the more internal regions of the polypeptide chains, however, also exhibit homology. These observations have been interpreted to indicate that the three synthetases may represent a related subset of enzymes originating from a common ancestral gene.  相似文献   

15.
5-Fluorouracil (5-FU) is a classic chemotherapeutic drug that has been widely used for colorectal cancer treatment, but colorectal cancer cells are often resistant to primary or acquired 5-FU therapy. Several studies have shown that miR-21 is significantly elevated in colorectal cancer. This suggests that this miRNA might play a role in this resistance. In this study, we investigated this possibility and the possible mechanism underlying this role. We showed that forced expression of miR-21 significantly inhibited apoptosis, enhanced cell proliferation, invasion, and colony formation ability, promoted G1/S cell cycle transition and increased the resistance of tumor cells to 5-FU and X radiation in HT-29 colon cancer cells. Furthermore, knockdown of miR-21 reversed these effects on HT-29 cells and increased the sensitivity of HT-29/5-FU to 5-FU chemotherapy. Finally, we showed that miR-21 targeted the human mutS homolog2 (hMSH2), and indirectly regulated the expression of thymidine phosphorylase (TP) and dihydropyrimidine dehydrogenase (DPD). These results demonstrate that miR-21 may play an important role in the 5-FU resistance of colon cancer cells.  相似文献   

16.
The nucleotide sequence of the gene for 10-formyltetrahydrofolate synthetase (EC 6.3.4.3) from Clostridium acidiurici ("Clostridium acidi-urici") was determined. The synthetase mRNA initiation and termination regions were determined by primer extension and S1 nuclease mapping. Two potential -10 and -35 promoter regions were identified upstream of mRNA initiation. The terminator region was found to be in a large region of dyad symmetry. A comparison of the amino acid sequences of the monofunctional synthetase and the eucaryotic trifunctional enzyme, C1-tetrahydrofolate synthase, from Saccharomyces cerevisiae demonstrated a region of strong homology.  相似文献   

17.
This study compared six commercially available reagents (Arrest-In, ExpressFect, FuGENE HD, jetPEI, Lipofectamine 2000, and SuperFect) for gene transfection. We examined the efficiency and cytotoxicity using nine different cell lines (MC3T3-E1 mouse preosteoblasts, PT-30 human epithelial precancer cells, C3H10T1/2 mouse stem cells, MCF-7 human breast cancer cells, HeLa human cervical cancer, C2C12 mouse myoblasts, Hep G2 human hepatocellular carcinoma, 4T1 mouse mammary carcinoma, and HCT116 human colorectal carcinoma), and primary cells (HEKn human epidermal keratinocytes) with two different plasmid DNAs encoding luciferase or β-galactosidase in the presence or absence of serum. Maximal transfection efficiency in MC3T3-E1, C3H10T1/2, HeLa, C2C12, Hep G2, and HCT116 was seen using FuGENE HD, in PT-30, 4T1, and HEKn was seen using Arrest-In, and in MCF-7 was seen using jetPEI. Determination of cytotoxicity showed that the largest amount of viable cells was found after transfection with jetPEI and ExpressFect. These results suggest that FuGENE HD is the most preferred transfection reagent for many cell lines, followed by Arrest-In and jetPEI. These results may be useful for improving nonviral gene and cell therapy applications.  相似文献   

18.
The 12S rRNA gene was shown to be a hot spot for aminoglycoside-induced and non-syndromic hearing loss since several deafness-associated mtDNA mutations were identified in this gene. Among them, we distinguished the A1555G, the C1494T and the T1095C mutations and C-insertion or deletion at position 961. One hundred Tunisian patients with non-syndromic hearing loss and 100 hearing individuals were analysed in this study. A PCR-RFLP analysis with HaeIII restriction enzyme showed the presence of the A1555G mutation in the 12S rRNA gene in only one out of the 100 patients. In addition, PCR-RFLP and radioactive PCR revealed the presence of a new HaeIII polymorphic restriction site in the same gene of 12S rRNA site in 4 patients with non-syndromic hearing loss. UVIDOC-008-XD analyses showed the presence of this new polymorphic restriction site with a variable heteroplasmic rates at position +1517 of the human mitochondrial genome. On the other hand, direct sequencing of the entire mitochondrial 12S rRNA gene in the 100 patients and in 100 hearing individuals revealed the presence of the A750G and A1438G polymorphisms and the absence of the C1494T, T1095C and 961insC mutations in all the tested individuals. Sequencing of the whole mitochondrial genome in the 4 patients showing the new HaeIII polymorphic restriction site revealed only the presence of the A8860G transition in the MT-ATP6 gene and the A4769G polymorphism in the ND2 gene.  相似文献   

19.
20.
Liu M  Tang Q  Qiu M  Lang N  Li M  Zheng Y  Bi F 《FEBS letters》2011,585(19):2998-3005
It has become increasingly clear that microRNAs play an important role in many human diseases including cancer. Here, we show that expression of miR-21 in HEK293 and several colorectal cancer cells was found inversely correlated with ras homolog gene family, member B (RhoB) expression. miR-21 expression significantly suppressed RhoB 3' UTR luciferase-reporter activity, but the inhibitory effect was lost when the putative target sites were mutated. Exogenous miR-21 over-expression mimicked the effect of RhoB knockdown in promoting proliferation and invasion and inhibiting apoptosis, whereas anti-miR-21 or RhoB expression yielded opposite effects, in colorectal cancer cells. These results suggest that miR-21 is a regulator of RhoB expression and RhoB could be a useful target in exploring the potential therapeutic benefits of miR-21 mediated tumor cell behaviors in colorectal cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号