首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prairie restoration is not complete without the establishment of both grasses and forbs. However, if desirable forbs and grasses are seeded simultaneously, control of broadleaf weeds is problematic. If possible, a two‐step process of introducing forbs after establishing grasses would allow use of broadleaf‐specific herbicides at the critical early stages of grass growth. We conducted experiments to investigate methods for introducing forbs into previously restored native perennial grasslands on rural roadsides in the Sacramento Valley of California. In one experiment, we studied the effects of background vegetation (established perennial grasses or tilled ground) on seven native forb species planted from seed. In a second experiment, we evaluated the effects of background vegetation (existing perennial grasses or tilled ground) and container size (36 ml or 105 ml) with excavation technique (excavation by core removal [core] or by creating an impression [dibble]) on the growth of transplants of the native perennial forbs Asclepias fascicularis and Sisyrinchium bellum. The presence of established perennial grasses reduced the growth of seeded forbs, but did not affect transplants, indicating the vulnerability of seedling forbs to interference. When compared to control plots that had been tilled in the autumn, weed canopy cover was significantly lower in the presence of perennial grasses if seeded with forbs, but not in the presence of perennial grasses alone. Both transplanted species grew better in the large container/core treatment than the small container/dibble treatment; however, existing grasses eliminated these positive effects. Asclepias fascicularis performed better when grown in large containers than in small containers, but its growth was not affected by excavation method; S. bellum performed better when planted with the core method than the dibble method of excavation, but container size made no difference. We attribute differences in the responses of the species to interactions between phenological differences and expansive clay soils that naturally de‐compact upon drying.  相似文献   

2.
Buffelgrass ( Pennisetum ciliare ) is an exotic grass that threatens arid and semiarid ecosystems. The objective of this study was to determine effectiveness of several herbicides at reducing competition from buffelgrass to enhance establishment of planted native grasses. In Duval County, Texas, plots were delineated in two experiments in a buffelgrass-dominated pasture and mowed on 2 September 2002. On 18 September 2002 and 7 October 2002, a 41% glyphosate (N-(phosphonomethyl) glycine) herbicide was applied to all plots. A mixture of three native grasses—green sprangletop ( Leptochloa dubia ), plains bristlegrass ( Setaria leucopila ), and four-flower trichloris ( Chloris pluriflora )—was planted on 8 October 2002. On 9 October 2002, 1.12 and 2.24 kg/ha of a 80% tebuthiuron ( N -[5-(1,1-dimethyethyl)-1,3,4-thiadiazol-2-yl]- N , N '-dimethylurea) herbicide was applied preemergence to the first experiment, and all other herbicides were applied postemergence on 27 July 2003 to the second experiment. Percent canopy cover of vegetation was estimated with a 20 × 50–cm sampling frame during April, June, and October 2003 and August 2004. Postemergent herbicides had no significant effect on canopy cover of buffelgrass or planted species ( p ≥ 0.05). Canopy cover of native grasses did not exceed 8% on any treatment or sampling date, and buffelgrass cover returned to pre-treatment conditions in less than 1 year; however, the 2.24 kg/ha rate of tebuthiuron suppressed ( p < 0.05) canopy cover of buffelgrass compared with controls and increased ( p < 0.05) native grasses almost 2 years past application. Tebuthiuron may have potential value in reducing buffelgrass canopy cover and increasing cover of native grasses, particularly Chloris spp.  相似文献   

3.
Populations of the rare annual forb Amsinckia grandiflora may be declining because of competitive suppression by exotic annual grasses, and may perform better in a matrix of native perennial bunchgrasses. We conducted a field competition experiment in which Amsinckia seedlings were transplanted into forty 0.64‐m2 experimental plots of exotic annual grassland or restored perennial grassland. The perennial grassland plots were restored using mature 3 cm‐diameter plants of the native perennial bunchgrass Poa secunda planted in three densities. The exotic annual grassland plots were established in four densities through manual removal of existing plants. Both grass types reduced soil water potential with increasing biomass, but this reduction was not significantly different between grass types. Both grass types significantly reduced the production of Amsinckia inflorescences. At low and intermediate densities (dry biomass per unit area of 20–80 g/m2), the exotic annual grasses reduced Amsinckia inflorescence number to a greater extent than did Poa, although at high densities (>90 g/m2) both grass types reduced the number of Amsinckia inflorescences to the same extent. The response of Amsinckia inflorescence number to Poa biomass was linear, whereas the same response to the annual grass biomass is logarithmic, and appeared to be related to graminoid cover. This may be because of the different growth forms exhibited by the two grass types. Results of this research suggest that restored native perennial grasslands at intermediate densities have a high habitat value for the potential establishment of the native annual A. grandiflora.  相似文献   

4.
Native perennial grasses were once common in California prairies that are now dominated by annual grasses introduced from Europe. Competition from exotics may be a principal impediment to reestablishment of native perennial grasses. Introduced annual grasses, such as Vulpia myuros (zorro fescue), are often included with native perennial species in revegetation seed mixtures used in California. To examine the potential suppressive effect of this graminoid, we evaluated the growth and performance of a mixture of California native perennial grasses and resident weeds when grown with varying densities of V. myuros. The annual fescue exhibited a strongly plastic growth response to plant density, producing similar amounts of above‐ground biomass at all seeding densities. Perennial grass seedling survival and above‐ ground biomass decreased and individuals became thinner (i.e., reduced weight‐to‐height ratio) with increasing V. myuros seeding density. V. myuros also significantly suppressed above‐ground biomass and densities of weeds and had a more negative effect on weed densities than on native perennial grass densities. Biomass of native grasses and weeds was not differentially affected by increasing densities of V. myuros. Overall, because V. myuros significantly reduced the survival and performance of the mixture of native perennial grasses and this effect increased with increasing V. myuros density, we conclude that including this exotic annual in native seed mixtures is counterproductive to restoration efforts.  相似文献   

5.
The associations of resident fish communities with environmental variables and stream condition were evaluated at representative sites within the Sacramento River Basin, California between 1996 and 1998 using multivariate ordination techniques and by calculating six fish community metrics. In addition, the results of the current study were compared with recent studies in the San Joaquin River drainage to provide a wider perspective of the condition of resident fish communities in the Central Valley of California as a whole. Within the Sacramento drainage, species distributions were correlated with elevational and substrate size gradients; however, the elevation of a sampling site was correlated with a suite of water-quality and habitat variables that are indicative of land use effects on physio-chemical stream parameters. Four fish community metrics – percentage of native fish, percentage of intolerant fish, number of tolerant species, and percentage of fish with external anomalies – were responsive to environmental quality. Comparisons between the current study and recent studies in the San Joaquin River drainage suggested that differences in water-management practices may have significant effects on native species fish community structure. Additionally, the results of the current study suggest that index of biotic integrity-type indices can be developed for the Sacramento River Basin and possibly the entire Central Valley, California. The protection of native fish communities in the Central Valley and other arid environments continues to be a conflict between human needs for water resources and the requirements of aquatic ecosystems; preservation of these ecosystems will require innovative management strategies.  相似文献   

6.
The Central Valley of California is noted for its dearth of remnant native grass populations and for low native grass seedling establishment within grasslands now dominated by non‐native annual species. In contrast, remnant populations are common along the coast, and studies have shown an ability for seedlings and adults to compete with non‐native annual grasses. The invasibility of well‐established populations of native grasses in the Central Valley remains unclear. The objectives of this study were to compare the invasibility of native grasses differing in density and species composition and, given the species in this study, to assess the ability of mixes with greater species richness to resist invasion relative to their abilities in monoculture. In the Sacramento Valley of California, six species of native grasses were planted at three densities in monospecific and mixed‐species plots. Percent cover of native perennial and non‐native annual grasses was measured in years 2 and 3, and biomass was sampled in year 5. Native grass biomass and, to a lesser extent, species composition were important in explaining variation in non‐native grass invasibility in the fifth year. Species‐rich treatments did not experience less invasion than would be expected by the proportional invasibility of each species in monoculture. However, invasibility of plots consisting of slower growing, shorter statured species decreased over time, suggesting a successional benefit to diverse communities. This study demonstrates that established stands of native grasses in the Sacramento Valley can resist invasion by non‐native annual grasses and that stand biomass is a particularly important factor in determining invasibility.  相似文献   

7.
Currently, there is little professional consensus as to which ecological metrics should be used to measure restoration success in wetlands. Aquatic macroinvertebrate communities have many qualities to recommend them as useful metrics in this manner; yet, they have not been widely used to evaluate wetland restoration success. We examined the macroinvertebrate communities of four restored seasonal wetlands across a chronosequence of postrestoration age and compared them to a remnant natural wetland in the Central Valley of California. We examined two qualitatively different sets of aquatic macroinvertebrate metrics, general measures of community properties (abundance, richness, and diversity) and specific assemblage membership (nonmetric multidimensional scaling and permutational multivariate analysis of variance). Our results using these two different sets of metrics give us different answers. The general measures suggest that wetland macroinvertebrate communities converge on relatively stable values sometime after 10 years postrestoration. The specific assemblage results imply that the particular set of taxa found in restored wetlands is not predictable over the chronosequence we examined. Taken together, our results suggest that aquatic macroinvertebrate communities may be useful for measuring some aspects of restoration success but that there is unlikely to be a final aquatic community pattern indicating restoration success.  相似文献   

8.
Differences in plant resistance to water flow, patterns of water transport through stems, and stomatal behavior were studied on three species native to the exceptionally hot and dry habitat of Death Valley, California (—, and Larrea divaricata). Dawn xylem water potentials in July for Atriplex were — 27.5 bar under natural conditions. Corresponding values for Tidestromia and Larrea were respectively — 8.0 bar and -32.0 bar (natural) and — 7.5 bar and — 18.0 bar (irrigated). Recovery of xylem water potential in covered field plants of an irrigated transplant garden reached a maximum value in July of — 9.5 bar in Atriplex, — 5.7 bar in Tidestromia and — 7.0 bar in Larrea. Resistance to free-energy transfer was used to study resistance to water transport through the plants. Under field conditions irrigated Atriplex plants gave a whole plant resistance of 20.70 × 106 s cm-1, as compared lo 18.37 × 106 s cm-1 for Larrea and 10.01 × 106 s cm-1 for Tidestromia. Plant resistance to water How computed by this method on Atriplex plants grown under laboratory conditions gave a value of 3.73 × 106 s cm-1 at 35C. Paths of water flow in field plants as investigated with injected acid fuchsin indicated a sectorial straight type vessel. The relationship between transpiration rates and xylem water potentials in Atriplex hymenelytra was linear between transpiration 1.28 μg cm-2 s-1 and 2.35 μg cm-2 s-1 at 35°C. These results indicate that according to the Van den Honert model for water transport, plant resistance to water flow remained rather constant at this temperature. In Atriplex grown under laboratory conditions there was an adjustment of plant resistance so change in water flux at 9.5°C and 25°C. When laboratory-grown plants of Atriplex and Tidestromia were subjected to water stress by withholding water. Tidestromia closed stomata and reduced transpiration rates at higher water potentials than in Atriplex. The ratio of vapor pressure gradients of leaf/air to leaf diffusion resistance was proportional lo transpiration rates. It is suggested that Atriplex hymenelytra is a species that combines strong regulation of water loss by stomata with low efficiency of the water transport system. These plants are unable to prevent depression of plant water potential as transpiration increases. On the other hand. Tidestromia oblongifolia has little stomatal regulation of transpiration and a highly efficient water transport system. These plants sustain very high rates of transpiration without significant decrease in plant water potential.  相似文献   

9.
One of the major challenges confronting grassland restoration of highly invaded communities is increasing the diversity of native species. There is surprisingly little research investigating how reconstructed native grasslands respond to common management techniques and how these techniques influence the relative establishment of both native grasses and forbs. Despite the diversity and wide distribution of native clovers in California, few practitioners incorporate them into grassland restoration plans. Conversely, non‐native clovers have been seeded extensively onto California rangelands. This study addresses the following questions: (1) Using readily available management tools, is there a strategy that can benefit the growth of both planted native bunchgrasses and seeded clovers? (2) Do native bunchgrasses compete with establishing clovers and non‐native grasses? (3) Do native and non‐native clovers differ in their response to management treatments or in their productivity? Plots were established to test three factors in different combinations over 3 years: (1) early spring clipping, (2) initial broadleaf herbicide, and (3) native bunchgrass planting density. Native and non‐native clovers were seeded in years 2 and 3. Early spring clipping did not have a significant effect on native bunchgrass cover, yet it did result in greater growth of native and non‐native clovers. The direction of the response to broadleaf herbicide changed between years for native bunchgrasses and was consistently negative for native clovers. Plots with higher native grass densities did not adversely affect the seeded clovers, yet non‐native grass cover was reduced. Native and non‐native clovers exhibited similar responses to clipping and established at similar densities.  相似文献   

10.
In California's Mediterranean type grasslands, native perennial grasses such as Nassella pulchra are surrounded by introduced annual species and these annuals are thought to have displaced natives through much of their range. Amongst other invaders, two grasses Lolium multiflorum and Bromus hordeaceus, commonly dominate portions of the grassland with potential for N. pulchra restoration. We hypothesized that competitor species differences and small‐scale gaps (150 cm2) could be important determinants of N. pulchra survival and performance on these sites. Lolium multiflorum and B. hordeaceus were planted in 20 cm diameter circular plots at a constant rate of 1 seed per cm2 surrounding newly transplanted N. pulchra plants. Nassella pulchra showed no significant effect of the species of competitor or from the distribution of the competitors. Both interspersion of patches of bare ground and separation of competitors into patches did not increase N. pulchra pre‐dawn water potential, basal area change, number of seeds produced, or average weight of seeds. The presence of L. multiflorum was associated with a decrease in N. pulchra survival compared with plots with only B. hordeaceus. Plants with increases in basal area of less than 0.75 cm2 during the growing season had 74% mortality compared with no mortality in plants with more growth. However, initial N. pulchra plant size was not a good predictor of mortality. Limiting competition from annuals may increase survival of N. pulchra plantings, but 60% of the plants survived for at least 1 year, despite being transplanted into soil containing substantial annual grass seed.  相似文献   

11.
Fire suppression has removed an important ecological force previously responsible for shaping many plant communities throughout the world. Upland areas of north‐central Mississippi that have been protected from fire are now closed‐canopy forests including species known to be uncommon as bearing/witness trees in upland portions of the landscape (historically off‐site species) and sparse ground cover vegetation. Anecdotal evidence suggests that warm‐season grasses were prevalent in the understory of these communities, which could have provided more consistent fuel. We corroborate the historic presence of these grasses by looking at their natural co‐occurrence with oak regeneration (a requisite of self‐replacing stands of oaks found historically). Restoration of these communities has typically focused on burning and off‐site tree thinning. Utilizing a restoration experiment implementing these treatments, we found significantly reduced understory leaf litter in treatment areas. To test which variables associated with restoration treatments were most important for the survival of these grasses, we measured the effect of leaf litter removal and its interaction with environmental conditions on the survival of transplanted shoots. Survival of little bluestem increased with decreasing canopy density and decreasing leaf litter. Leaf‐litter removal did not increase survival, nor did it interact with either pre‐treatment leaf litter depth or canopy density. These results show that little bluestem benefits from conditions expected historically: increased light and possibly fire.  相似文献   

12.
In western California, exotic cool-season annuals appear tohave widely replaced native perennial bunchgrasses as the herbaceouscommunity dominants in grasslands, oak savannas, and oak woodlands.We argue that because these two herbaceous plant types possessvery different life histories, this invasion may have correspondinglyaltered seasonal patterns of soil-water availability. To beginto assess this hypothesis, in this study we compared exoticcool-season annuals and native perennial bunchgrasses in termsof growth, biomass allocation, rooting distribution, root morphology,and soil-water utilization. Exotic cool-season annuals completed their life cycle earlyin the dry season through rapid growth apparently made possibleby a high proportional allocation to shoots in combination withthe efficient production of roots of high specific root length.Further, annuals tended to concentrate root growth and soil-waterutilization in the upper soil profile. In contrast, native perennialbunchgrasses allocated a high proportion of their biomass tothe production of a deep root system, which allowed them tocontinue soil-water utilization well into the dry season andcontribute to the formation of a very dry soil profile. Takentogether, these contrasting patterns suggest that the invasionof exotic cool-season annuals might have produced a correspondingincrease in the amount of water present at depth in the soilprofile during the dry season. Brachypodium distachyon ; Bromus diandrus ; Cynosurus echinatus ; Elymus glaucus ;Nassella pulchra ; Trifolium hirtum ; soil-water utilization; specific root length; growth analysis; rooting depth  相似文献   

13.
On the Physiological Significance of Seminal Roots in Perennial Grasses   总被引:1,自引:0,他引:1  
Measurements of yield and composition of plants of timothy (PhleumparatenseL.) show that nutrient uptake and growth are restricted if nutrientsare supplied only to the seminal roots. Plants whose nutrientswere supplied entirely through their adventitious roots didnot differ significantly in any of the characters studied fromthose in which all the roots had a nutrient supply available. It is therefore concluded that seminal roots have no specialphysiological significance.  相似文献   

14.
Fire disturbance is considered a major factor in the promotion of non-native plant species. Non-native grasses are adapted to fire and can alter environmental conditions and reduce resource availability in native coastal sage scrub and chaparral communities of southern California. In these communities persistence of non-native grasses following fire can inhibit establishment and growth of woody species. This may allow certain native herbaceous species to colonize and persist beneath gaps in the canopy. A field manipulative experiment with control, litter, and bare ground treatments was used to examine the impact of non-native grasses on growth and establishment of a native herbaceous species, Cryptantha muricata. C. muricata seedling survival, growth, and reproduction were greatest in the control treatment where non-native grasses were present. C. muricata plants growing in the presence of non-native grasses produced more than twice the number of flowers and more than twice the reproductive biomass of plants growing in the treatments where non-native grasses were removed. Total biomass and number of fruits were also greater in the plants growing in the presence of non-native grasses. Total biomass and reproductive biomass was also greater in late germinants than early germinants growing in the presence of non-native grasses. This study suggests a potential positive effect of non-native grasses on the performance of a particular native annual in a southern California ecosystem.  相似文献   

15.
The semidesert grassland in southern Arizona has changed from a native grassland to a scattered Prosopis juliflora var. velutina (mesquite) woodland with an understory of African Eragrostis lehmanniana (Lehmann lovegrass) on many sites. To determine native grass restoration potential, seven species were direct seeded into E. lehmanniana stands that were left alive, burned, sprayed with an herbicide and then either left standing, or mowed. Initial native grass establishment was limited in the live standing treatment but was successful for all other treatments when either June or August sowing was followed by consistent summer precipitation and soil water availability. Four species, Bothriochloa barbinodis (cane beardgrass), Bouteloua curtipendula (sideoats grama), Digitaria californica (Arizona cottontop), and Leptochloa dubia (green spangletop) initially established most successfully, while only Muhlenbergia porteri (bush muhly) had consistently limited or no establishment. E. lehmanniana establishment from the seed bank was increased by canopy removal associated with burning. Densities of native grasses one year after successful initial establishment were much lower than that of E. lehmanniana. A possible revegetation strategy would be to spray emergent E. lehmanniana seedlings and surviving plants with an herbicide during the summer rainy season after spring burning. Native grasses could then be established by sowing in early August of that year or June and August of subsequent years until consistent precipitation produces a native grass stand.  相似文献   

16.
Human activities have degraded riparian systems in numerous ways, including homogenization of the floodplain landscape and minimization of extreme flows. We analyzed the effects of changes in these and other factors for extinction–colonization dynamics of a threatened Bank Swallow population along the upper Sacramento River, California, U.S.A. We monitored Bank Swallow distributions along a 160‐km stretch of the river from 1986–1992 and 1996–2003 and tested whether site extinctions and colonizations corresponded with changes in maximum river discharge, surrounding land cover, estimated colony size, temperature, and precipitation. Colonization probabilities increased with maximum discharge. Extinction probabilities decreased with proximity to the nearest grassland, decreased with colony size, and increased with maximum discharge. To explore the implications for restoration, we incorporated the statistically estimated effects of distance to grassland and maximum discharge into simple metapopulation models. Under current conditions, the Bank Swallow metapopulation appears to be in continued decline, although stable or increasing numbers cannot be ruled out with the existing data. Maximum likelihood parameters from these regression models suggest that the Sacramento River metapopulation could be restored to 45 colonies through moderate amounts of grassland restoration, large increases in discharge, or direct restoration of nesting habitat by removing approximately 10% of existing bank protection (riprap) from suitable areas. Our results highlight the importance of grassland restoration, mixed benefits of restoring high spring discharge, and the importance of within‐colony dynamics as areas for future research.  相似文献   

17.
Natural ecosystems globally are often subject to multiple human disturbances that are difficult to restore. A restoration experiment was done in an urban fragment of native coastal sage scrub vegetation in Riverside, California that has been subject to frequent fire, high anthropogenic nitrogen deposition, and invasion by Mediterranean annual weeds. Hand cultivation and grass‐specific herbicide were both successful in controlling exotic annual grasses and promoting establishment of seeded coastal sage scrub vegetation. There was no native seedbank left at this site after some 30 years of conversion to annual grassland, and the only native plants that germinated were the seeded shrubs, with the exception of one native summer annual. The city green‐waste mulch used in this study (C:N of 39:1) caused short‐term N immobilization but did not result in decreased grass density or increased native shrub establishment. Seeding native shrubs was successful in a wet year in this Mediterranean‐type climate but was unsuccessful in a dry year. An accidental spring fire did not burn first‐year shrubs, although adjacent plots dominated by annual grass did burn. The shrubs continued to exclude exotic grasses into the second growing season, suggesting that successful shrub establishment may reduce the frequency of the fire return interval.  相似文献   

18.
Native consumers and seed limitation may be particularly important in the restoration of native plants where they have been displaced by exotic plants. We used experimental exclosures and seed additions to examine the role of native mammalian consumers and seeding density (500 or 1,000 seeds/m2) in affecting the establishment of a native perennial grass, Purple needlegrass ( Nassella pulchra ), in the grasslands of California. To focus solely on consumers and propagule density, experimental areas were tilled and weeded. Consumers were important determinants of restoration success: averaged across propagule density, consumers reduced N. pulchra seedling recruitment by nearly 30%, reduced seedling height by 44%, reduced plant establishment by 52%, and reduced reproductive tiller length by 43%. Small rodents affected seedling establishment, especially where seeding density was high but did not affect seedling height. Plots accessible by squirrels and rabbits exhibited significantly decreased seedling height and plant establishment, whereas there was no additional impact of allowing large consumers (i.e., deer) access. Despite strong, spatially variable effects of consumers, doubling seed density led to nearly doubled N. pulchra establishment on average. Consumer effects were persistent, shaping N. pulchra abundance in the subsequent growing season and remaining evident over 18 months after the experiment was initiated. Our work suggests that, despite strong consumer effects, seed addition may be a viable strategy for restoration of N. pulchra in invaded areas where it has been displaced by exotic plants, especially when combined with restoration strategies that reduce competition with exotic plants.  相似文献   

19.
20.
Exotic annual grasses are a major challenge to successful restoration in temperate and Mediterranean climates. Experiments to restore abandoned agricultural fields from exotic grassland to coastal sage scrub habitat were conducted over two years in southern California, U.S.A. Grass control methods were tested in 5 m2 plots using soil and vegetation treatments seeded with a mix of natives. The treatments compared grass‐specific herbicide, mowing, and black plastic winter solarization with disking and a control. In year two, herbicide and mowing treatments were repeated on the first‐year plots, plus new control and solarization plots were added. Treatments were evaluated using percent cover, richness and biomass of native and exotic plants. Disking alone reduced exotic grasses, but solarization was the most effective control in both years even without soil sterilization, and produced the highest cover of natives. Native richness was greatest in solarization and herbicide plots. Herbicide application reduced exotics and increased natives more than disking or mowing, but produced higher exotic forb biomass than solarization in the second year. Mowing reduced grass biomass and cover in both years, but did not improve native establishment more than disking. Solarization was the most effective restoration method, but grass‐specific herbicide may be a valuable addition or alternative. Solarization using black plastic could improve restoration in regions with cool, wet summers or winter growing seasons by managing exotic seedbanks prior to seeding. While solarization may be impractical at very large scales, it will be useful for rapid establishment of annual assemblages on small scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号