首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Rings of rat aorta cultured in Matrigel, a reconstituted gel composed of basement membrane molecules, gave rise to three-dimensional networks composed of solid cellular cords and occasional microvessels with slitlike lumina. Immunohistochemical and ultrastructural studies showed that the solid cords were composed of endothelial sprouts surrounded by nonendothelial mesenchymal cells. The angiogenic response of the aortic rings in Matrigel was compared to that obtained in interstitial collagen, fibrin, or plasma clot. Morphometric analysis demonstrated that the mean luminal area of the microvascular sprouts and channels was significantly smaller in Matrigel than in collagen, fibrin, or plasma clot. The percentage of patent microvessels in Matrigel was also markedly reduced. Autoradiographic studies of3H-thymidine-labeled cultures showed reduced DNA synthesis by developing microvessels in Matrigel. The overall number of solid endothelial cords and microvessels was lower in Matrigel than in fibrin or plasma clot. A mixed cell population isolated from Matrigel cultures formed a monolayer in collagen or fibrin-coated dishes but rapidly reorganized into a polygonal network when plated on Matrigel. The observation that gels composed of basement membrane molecules modulate the canalization, proliferation, and organization into networks of vasoformative endothelial cells in three-dimensional cultures supports the hypothesis that the basement membrane is a potent regulator of microvascular growth and morphogenesis. This work was supported by grants from the W. W. Smith Charitable Trust and grants CA14137 and HL43392 from the National Institutes of Health, Bethesda, MD.  相似文献   

2.
Type IV collagen, which is encoded by six genetically distinct alpha-chains (alpha 1-alpha 6), is a major component of the kidney glomerulus. The alpha 1(IV) and alpha 2(IV) chains are present predominantly in the mesangial matrix, whereas the alpha 3(IV), alpha 4(IV), and alpha 5(IV) chains are localized almost exclusively to the glomerular basement membrane (GBM). Thickening of the GBM and expansion of the mesangial matrix are believed to contribute to the pathogenesis of diabetic nephropathy. In the present study, we evaluated the expression of alpha 1(IV), alpha 3(IV), and alpha 5(IV) chains in rat glomerular endothelial (GEndC) and mesangial cells (GMC). Under physiological concentrations of glucose (5 mM), alpha 1(IV) and alpha 5(IV) chains were detectable in GMCs, with an obvious absence of alpha 3(IV) chain. All three isoforms tested were present in GEndCs. At diabetic concentrations of glucose (25 mM), alpha 1(IV) was up-regulated in GMCs, whereas expression level of alpha 1(IV) remained unaltered in GEndCs. The alpha 3(IV) and alpha 5(IV) chains were up-regulated in GEndCs, but remained unchanged in GMCs under diabetic glucose concentrations (25 mM). Collectively, our results demonstrate that GMC might contribute to mesangial matrix expansion, mediated by alpha 1(IV) collagen, while GEndC might contribute to thickening of GBM, mediated by alpha 3(IV) collagen, in patients with diabetic nephropathy.  相似文献   

3.
Collagen IV scaffolds assemble through an intricate pathway that begins intracellularly and is completed extracellularly. Multiple intracellular enzymes act in concert to assemble collagen IV protomers, the building blocks of collagen IV scaffolds. After being secreted from cells, protomers are activated to initiate oligomerization, forming insoluble networks that are structurally reinforced with covalent crosslinks. Within these networks, embedded binding sites along the length of the protomer lead to the “decoration” of collagen IV triple helix with numerous functional molecules. We refer to these networks as “smart” scaffolds, which as a component of the basement membrane enable the development and function of multicellular tissues in all animal phyla. In this review, we present key molecular mechanisms that drive the assembly of collagen IV smart scaffolds.  相似文献   

4.
5.
Summary Glomerular basement membrane thickening is thought to be due to increased collagen synthesis and abnormal cross linking. Based upon the observation that the incorporation of distinct proline analogues leads to increased degradation of the newly abnormally formed collagen we administered cis 3 hydroxyproline orally to streptozotocin diabetic rats.Measuring glomerular basement membrane thickness we found in the treated group significantly lower values. The solubility of collagen in the treated group was significantly increased, indicating the mechanism of action of the proline analogue. The collagen content of kidneys in the treated group was reduced as well correlating with the basement membrane thickness. Provided the absence of toxicity of cis 3 hydroxyproline its pharmaceutical use for the inhibition of basement membrane proliferation seems promising.  相似文献   

6.
The roles of beta-catenin in evagination of the optic primordium in rat embryos were studied using immunostaining. High levels of beta-catenin appeared transiently in the evaginating optic primordium. Evagination of the optic primordium was suppressed in embryos treated with LiCl. In deficient optic vesicles of these embryos, accumulation of beta-catenin was decreased. Deficient optic vesicles also showed suppression of cyclin D1 accumulation and bromodeoxyuridine incorporation, no break in the deposition of laminin and type IV collagen at the basement membrane (BM) and prevention of the change in distribution of microtubules and microfilaments. These results suggest that beta-catenin regulates cell proliferation, breakdown of BM and changes in cell shape in the evaginating optic primordium to cause optic vesicle formation.  相似文献   

7.
Summary— Snail muscles were extracted by a solution of EDTA and electron microscopy showed that the extract contained dispersed, depolymerized collagen fibrils and cross-shaped laminin-like structures. The extracts were purified by ultracentrifugation followed by two different procedures which enriched the content of laminin-like structures. The laminin-related molecules displayed unique properties when analyzed by biochemical, immunological and morphological methods. Electrophoretic patterns of the molecular form purified primarily by ion exchange chromatography, resembled EHS-tumor laminin and displayed a cruciform shape when viewed by electron microscopy. Immunohistology, using antiserum obtained against the agarose gel-purified protein, showed that this laminin was primarily located in the extracellular matrix surrounding muscle fibers. Western blots using anti-EHS laminin antibody showed reaction of a 300 kDa subunit of this snail laminin. The protein obtained by another procedure, initially using gel filtration, followed by ion exchange chromatography, also appeared to be a laminin. It had a collapsed cruciform appearance when viewed by electron microscopy. It contained several different subunits, one of which, ca 300 kDa, reacted with anti-EHS-laminin antibody and with anti-snail laminin antibody. In contrast, EHS laminin did not react with the anti-snail laminin antibody. The composite results suggest that at least two different forms of laminin are extractable from snail muscle and that they share molecular properties and immune determinants with mouse tumor laminin.  相似文献   

8.
Laminins, one of the major functional components of basement membranes, are found underlying endothelium, and encasing pericytes and smooth muscle cells in the vessel wall. Depending on the type of blood vessel (capillary, venule, postcapillary venule, vein or artery) and their maturation state, both the endothelial and mural cell phenotype vary, with associated changes in laminin isoform expression. Laminins containing the α4 and α5 chains are the major isoforms found in the vessel wall, with the added contribution of laminin α2 in larger vessels. We here summarize current data on the precise localization of these laminin isoforms and their receptors in the different layers of the vessel wall, and their potential contribution to vascular homeostasis.  相似文献   

9.
Summary We describe here a modified nonenzymatic method for the isolation of rat aortic endothelial cells with vasoformative properties. Aortic rings placed on plastic or gelatin-coated surfaces generated outgrowths primarily composed of endothelial cells. Prompt removal of aortic explants after endothelial migration minimized fibroblast contamination. However, fibroblasts, because of their high proliferative rate tended to overgrow the endothelial cells even when present in small numbers. This potential pitfall was avoided by weeding out fibroblasts with the rounded tip of a bent glass pipette. Primary endothelial colonies free of fibroblasts were segregated in cloning rings, trypsin-treated, and transferred to gelatin-coated dishes. Endothelial cells were cultured in MCDB 131 growth medium containing 10% fetal bovine serum, endothelial cell growth supplement, and heparin. Using this technique, pure endothelial cell strains were obtained from single aortic rings. Confluent endothelial cells formed a contact-inhibited monolayer with typical cobblestone pattern. The endothelial cells were positive for Factor VIII-related antigen, took up DiI-Ac-LDL, and bound the Griffonia Simplicifolia-isolectin-B4. Endothelial cells cultured on collagen gel formed a polarized monolayer, produced basement membrane, displayed Weibel-Palade bodies and caveolae, and were connected by tight junctions. In addition, they reorganized into a network of microvascular cords and tubes when overlaid with a second layer of collagen and formed microvascular sprouts in response to fibroblast-conditioned medium. This isolation procedure yields stable strains of vasoformative endothelial cells, which can be used to study aortic endothelium-related angiogenesis and its mechanisms.  相似文献   

10.
Summary Ethanolamine (Etn) stimulates hepatocyte proliferation in vivo and in vitro; however, the physiological function of Etn in hepatocytes has yet to be elucidated. In the present study, we examined the effect of Etn using a primary culture of rat hepatocytes. The level of membrane phosphatidylethanolamine (PE) significantly decreased when the hepatocytes were cultured without Etn but increased to the level found in the liver when the culture medium was supplemented with 20–50 μM Etn. Moreover, Etn stimulated DNA synthesis in a dose-dependent manner and had a synergistic effect with epidermal growth factor (EGF). A binding assay and Western blotting showed that the number of EGF receptors was 22–30% lower in cells grown in the absence of Etn compared to those grown in its presence, but the respective Kd values were almost the same. Furthermore, tyrosine phosphorylation of the EGF receptor was significantly lower in cells grown without Etn. Phosphatidylcholine (PC) synthesis in the liver is unique in that it occurs via stepwise methylation of PE. We found that without Etn supplementation, bezafibrate-induced inhibition of PE methylation increased the level of PE by decreasing its conversion to PC and stimulated DNA synthesis. Moreover, the function of EGF in stimulating DNA synthesis was significantly enhanced under Etn-sufficient conditions. These data suggest that Etn is a nutritional factor required for synthesis of adequate PE, levels of which are important for hepatocyte proliferation.  相似文献   

11.
Ascorbic acid stimulates secretion of type I collagen because of its role in 4-hydroxyproline synthesis, but there is some controversy as to whether secretion of type IV collagen is similarly affected. This question was examined in differentiated F9 cells, which produce only type IV collagen, by labeling proteins with [14C]proline and measuring collagen synthesis and secretion. Hydroxylation of proline residues in collagen was inhibited to a greater extent in cells treated with the iron chelator α,α′-dipyridyl (97.7%) than in cells incubated without ascorbate (63.1%), but both conditions completely inhibited the rate of collagen secretion after 2–4 h, respectively. Neither treatment affected laminin secretion. Collagen synthesis was not stimulated by ascorbate even after treatment for 2 days. On SDS polyacrylamide gels, collagen produced by α,α′-dipyridyl-treated cells consisted mainly of a single band that migrated faster than either fully (+ ascorbate) or partially (− ascorbate) hydroxylated α1(IV) or α2(IV) chains. It did not contain interchain disulfide bonds or asn-linked glycosyl groups, and was completely digested by pepsin at 15°C. These results suggested that it was a degraded product lacking the 7 S domain and that it could not form a triple helical structure. In contrast, the partially hydroxylated molecule contained interchain disulfide bonds and it was cleaved by pepsin to collagenous fragments similar in size to those obtained from the fully hydroxylated molecule, but at a faster rate. Kinetic experiments and monensin treatment suggested that completely unhydroxylated type IV collagen was degraded intracellularly in the endoplasmic reticulum or cis Golgi. These studies indicate that partial hydroxylation of type IV collagen confers sufficient helical structure to allow interchain disulfide bond formation and resistance to pepsin and intracellular degradation, but not sufficient for optimal secretion. J Cell. Biochem. 67:338–352, 1997. Published 1997 Wiley-Liss, Inc.  相似文献   

12.
The basement membrane (BM) is a special type of extracellular matrix that lines the basal side of epithelial and endothelial tissues. Functionally, the BM is important for providing physical and biochemical cues to the overlying cells, sculpting the tissue into its correct size and shape. In this review, we focus on recent studies that have unveiled the complex mechanical properties of the BM. We discuss how these properties can change during development, homeostasis and disease via different molecular mechanisms, and the subsequent impact on tissue form and function in a variety of organisms. We also explore how better characterization of BM mechanics can contribute to disease diagnosis and treatment, as well as development of better in silico and in vitro models that not only impact the fields of tissue engineering and regenerative medicine, but can also reduce the use of animals in research.  相似文献   

13.
Laminin-1 is essential for early embryonic basement membrane assembly and differentiation. Several steps can be distinguished, i.e., the expression of laminin and companion matrix components, their accumulation on the cell surface and assembly into basement membrane between endoderm and inner cell mass, and the ensuing differentiation of epiblast. In this study, we used differentiating embryoid bodies derived from mouse embryonic stem cells null for gamma1-laminin, beta1-integrin and alpha/beta-dystroglycan to dissect the contributions of laminin domains and interacting receptors to this process. We found that (a) laminin enables beta1-integrin-null embryoid bodies to assemble basement membrane and achieve epiblast with beta1-integrin enabling expression of the laminin alpha1 subunit; (b) basement membrane assembly and differentiation require laminin polymerization in conjunction with cell anchorage, the latter critically dependent upon a heparin-binding locus within LG module-4; (c) dystroglycan is not uniquely required for basement membrane assembly or initial differentiation; (d) dystroglycan and integrin cooperate to sustain survival of the epiblast and regulate laminin expression; and (e) laminin, acting via beta1-integrin through LG1-3 and requiring polymerization, can regulate dystroglycan expression.  相似文献   

14.
During ovulation, enzymatic degradation of the extracellular matrix occurs within and around the graafian follicles. In this study, the activities of several different proteolytic enzymes were measured in the culture media of follicles taken from pregnant mare serum gonadotropin (PMSG)-primed immature rats. At 52 h after PMSG, the follicles were cultured for 2 to 15 h in media with or without human chorionic gonadotropin (hCG). Type I collagenase activity in hCG-stimulated follicles gradually increased within 6 h to 3.3-fold above that of the controls. Relatively pure populations of granulosa cells produced type I collagenase to a similar extent. Likewise, type IV collagenase increased 3.8-fold by 6 h after exposure of the follicles to hCG. In contrast, plasminogen activator activity increased by 3.9-fold at 2 h after hCG, but was negligible at 4, 6, and 15 h after incubation. These results suggest that plasminogen activator may activate both type I and type IV collagenase in hCG-stimulated ovulatory follicles.  相似文献   

15.
Type IV collagen alpha1-alpha6 chains have important roles in the assembly of basement membranes and are implicated in the pathogenesis of Goodpasture syndrome, an autoimmune disorder, and Alport syndrome, a hereditary renal disease. We report comparative sequence analyses and structural predictions of the noncollagenous C-terminal globular NC1 domain (28 sequences). The inferred tree verified that type IV collagen sequences fall into two groups, alpha1-like and alpha2-like, and suggested that vertebrate alpha3/alpha4 sequences evolved before alpha1/alpha2 and alpha5/alpha6. About one fifth of NC1 residues were identified to confer either the alpha1 or alpha2 group-specificity. These residues accumulate opposite charge in subdomain B of alpha1 (positive) and alpha2 (negative) sequences and may play a role in the stoichiometric chain selection upon type IV collagen assembly. Neural network secondary structure prediction on multiple aligned sequences revealed a subdomain core structure consisting of six hydrophobic beta-strands and one short alpha-helix with a significant hydrophobic moment. The existence of opposite charges in the alpha-helices may carry implications for intersubdomain interactions. The results provide a rationale for defining the epitope that binds Goodpasture autoantibodies and a framework for understanding how certain NC1 mutations may lead to Alport syndrome. A search algorithm, based entirely on amino acid properties, yielded a possible similarity of NC1 to tissue inhibitor of metalloproteinases (TIMP) and prompted an investigation of a possible functional relationship. The results indicate that NC1 preparations decrease the activity of matrix metalloproteinases 2 and 3 (MMP-2, MMP-3) toward a peptide substrate, though not to [14C]-gelatin. We suggest that an ancestral NC1 may have been incorporated into type IV collagen as an evolutionarily mobile domain carrying proteinase inhibitor function.  相似文献   

16.
Summary The transport of 125I-labeled serum lipoproteins through the aortic endothelium was studied by radioautography. Rat aorta and heart was perfused in vitro with a medium containing human very low density (VLDL), low density (LDL), high density lipoprotein (HDL), delipidated HDL apolipoprotein or rat HDL. In all lipoproteins more than 95% of the radioactivity was TCA precipitable and lipid radioactivity was from 2–4% in HDL, 4–6% in LDL, 7–15% in VLDL. After 18–60 min of perfusion and wash with unlabeled medium, most of the aortic radioactivity was TCA precipitable and the percent of lipid counts was similar to that in the original lipoprotein. Following perfusion with VLDL, LDL, or HDL the radioautographic reaction was seen over the endothelium, the subendothelial space and the inner media, and was separated by an unlabeled zone from the reaction present over the adventitia. Uniform labeling of the entire wall was found after perfusion with HDL apolipoprotein. The presence of silver grains over endothelial cells in regions rich in plasmalemmal vesicles suggested that these organelles participate in the transport of the labeled lipoprotein, as was shown for lactoperoxidase (Stein and Stein, 1972). The present data indicate that cholesterol may enter the aortic wall as a constituent of lipoprotein particles. Since an HDL particle carries less than 1/20 of the cholesterol present in a LDL particle, it seems that the lower susceptibility of the female to atheromatosis might be related to the higher ratio of HDL to LDL particles in the female serum.The excellent technical help of Miss R. Ben-Moshe, Mrs. A. Mandeles, Mr. G. Hollander and Mrs. Y. Dabach is gratefully acknowledged. This study was supported in part by grants from National Institute of Health (No. 06-101-1), United States Public Health Service; Delegation Generale a la Recherche Scientifique et Technique of the French Government and from the Ministry of Health, the Government of Israel.  相似文献   

17.
Ascorbic acid plays an important role in connective tissue metabolism, where, among other effects, it acts as a reducing factor in the reactions catalyzed by prolyl and lysyl hydroxylases. In vitro, ascorbic acid has been shown to have a positive influence on collagen synthesis at pre- and/or post-translational levels and a negative effect on elastin production. In the present work, the effects of vitamin C on extracellular matrix deposition have been studied in vivo. Stereological analysis on electron micrographs showed, compared to age-matched controls, a 50 to 60% increase of collagen deposition in the media and in the adventitia of the aorta of rats treated for 30 days from the 18th day of life with 10% ascorbate in their drinking water. By contrast, elastin volume density was significantly reduced by the treatment at all ages examined. These morphological data were supported by in situ hybridization observations showing enhanced collagen type I mRNA and reduced elastin mRNA expression upon treatment. Although vitamin C did not inhibit lysyl oxidase activity in vivo, being only slightly higher than in controls, enzyme activity was significantly reduced, when high doses of ascorbate were added in vitro. Lysyl oxidase activity may be a function of enhanced collagen metabolism rather than a direct effect of the vitamin on the enzyme activity. These data indicate that ascorbate exerts opposite effects on the deposition of two major components of the extracellular matrix in vivo, at least during periods of rapid growth.  相似文献   

18.
Skin equivalents were prepared by culturing human keratinocytes on the surface of type I collagen gel contracted by human skin fibroblasts (dermal equivalents) and by raising the gel to an air-liquid interface. A stratified squamous epithelium was formed with a well-differentiated cornified layer at the top of keratinocyte layers within 7 days after plating of the keratinocytes on the dermal equivalents. Although major basement membrane components such as collagens IV and VII and laminin 5 were detected immunohistochemically at the dermal-epidermal junction, a lamina densa was rarely observed by electron microscopy even in 14-day skin equivalents. When laminin 5 (1, 5 or 20 μg/ml) was added to the culture medium on day 7 through day 14, types IV and VII collagens at the dermal-epidermal junction stained more strongly by immunohistochemistry compared with the control. Patches of lamina densa were present along the epidermal-dermal junction, and vesicles containing electron-opaque sheets approximately 0.6 μm in diameter that reacted with anti-collagen IV antibody were also observed in basal keratinocytes in 14-day skin equivalents by electron microscopy. Morphometric analysis showed that the total length of lamina densa along the dermal-epidermal junction as well as in the vesicles increased up to 180%, 230% or 520% of control cultures by the addition of laminin 5 (1, 5 or 20 μg/ml, respectively). These results suggest that laminin 5 accelerates formation of the lamina densa along dermal-epidermal junction of the skin equivalents, depending on the concentration of laminin 5 supplemented exogenously.  相似文献   

19.
20.
We have previously shown that type IV collagen (alpha1 (IV) and alpha2 (IV) collagen chains) (Col-IV) inhibits testosterone (T) production by Leydig cells (LC). The aim of this study was to analyze mechanism/s by which Col-IV exerts this effect. No significant differences in the specific binding of hCG to LH/hCG receptors in LC cultured on uncoated or Col-IV coated plates were observed. An inhibition of cAMP production in hCG-stimulated LC cultured on Col-IV was detected. The inhibition exerted by Col-IV on T production in response to hCG was also observed when cells were stimulated with 8Bromo-cAMP. In addition, conversion of steroid precursors to T in LC cultured on uncoated and Col-IV coated plates was similar. On the other hand, we detected an increase of ERK1/2 phosphorylation in hCG-stimulated LC cultured on Col-IV. Genistein added to LC cultures reduced the ability of Col-IV to increase ERK1/2 phosphorylation and reverted the inhibitory effect of Col-IV on T production. An inhibitor of MEK, PD98059 added to LC cultures also reverted the inhibitory effect of Col-IV on T production. A decrease of steroidogenic acute regulatory protein (StAR) expression in hCG-stimulated LC cultured on Col-IV coated plates that could be reverted by addition of PD98059 to the cultures was also demonstrated. All together these results suggest that Col-IV inhibits T production in LC by binding to integrins, activating ERK1/2, decreasing cAMP production and decreasing StAR expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号