首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Death-associated protein kinase (DAPK) is a multidomain enzyme that plays a central role in autophagic and apoptotic signaling, although the protein-protein interactions regulating DAPK functions are not well defined. Peptide aptamer libraries were used to identify the tumor suppressor protein tuberin (TSC2) as a novel DAPK death domain-binding protein, and we evaluated whether DAPK is a positive or negative effector of the TSC2-regulated mammalian target of rapamycin (mTORC1) signaling pathway. Binding studies using death domain miniproteins in vitro and deletion analysis in vivo determined that the death domain of DAPK is the major site for the interaction with TSC2. Recombinant DAPK phosphorylates TSC2 in vitro, and DAPK kinase activity is stimulated by growth factor signaling. Transfection of DAPK promotes phosphorylation of TSC2 in vivo, whereas short interfering RNA-mediated attenuation of DAPK reduces growth factor-stimulated phosphorylation of TSC2. DAPK-dependent phosphorylation leads to TSC1-TSC2 complex dissociation, and consequently manipulation of DAPK by transfection or short interfering RNA demonstrated that DAPK is a positive regulator of mTORC1 in response to growth factor activation. Epistatic studies suggest that DAPK functions downstream from the RAS-MEK-ERK and phosphatidylinositol 3-kinase-AKT growth factor signaling pathways. DAPK(+/-) mouse embryo fibroblasts have attenuated mTORC1 signaling compared with DAPK+/+ counterparts, and overexpression of DAPK in DAPK(+/-) MEFs stimulates mTORC1 activity. These data uncover a novel interaction between DAPK and TSC2 proteins that has revealed a positive link between growth factor stimulation of DAPK and mTORC1 signaling that may ultimately affect autophagy, cell survival, or apoptosis.  相似文献   

2.
The death-associated protein kinase (DAPK) family has been characterized as a group of pro-apoptotic serine/threonine kinases that share specific structural features in their catalytic kinase domain. Two of the DAPK family members, DAPK1 and DAPK2, are calmodulin-dependent protein kinases that are regulated by oligomerization, calmodulin binding, and autophosphorylation. In this study, we have determined the crystal and solution structures of murine DAPK2 in the presence of the autoinhibitory domain, with and without bound nucleotides in the active site. The crystal structure shows dimers of DAPK2 in a conformation that is not permissible for protein substrate binding. Two different conformations were seen in the active site upon the introduction of nucleotide ligands. The monomeric and dimeric forms of DAPK2 were further analyzed for solution structure, and the results indicate that the dimers of DAPK2 are indeed formed through the association of two apposed catalytic domains, as seen in the crystal structure. The structures can be further used to build a model for DAPK2 autophosphorylation and to compare with closely related kinases, of which especially DAPK1 is an actively studied drug target. Our structures also provide a model for both homodimerization and heterodimerization of the catalytic domain between members of the DAPK family. The fingerprint of the DAPK family, the basic loop, plays a central role in the dimerization of the kinase domain.  相似文献   

3.
Death-associated protein kinase (DAPK) is a death domain-containing serine/threonine kinase, and participates in various apoptotic paradigms. Here, we identify the extracellular signal-regulated kinase (ERK) as a DAPK-interacting protein. DAPK interacts with ERK through a docking sequence within its death domain and is a substrate of ERK. Phosphorylation of DAPK at Ser 735 by ERK increases the catalytic activity of DAPK both in vitro and in vivo. Conversely, DAPK promotes the cytoplasmic retention of ERK, thereby inhibiting ERK signaling in the nucleus. This reciprocal regulation between DAPK and ERK constitutes a positive feedback loop that ultimately promotes the apoptotic activity of DAPK. In a physiological apoptosis system where ERK-DAPK interplay is reinforced, downregulation of either ERK or DAPK suppresses such apoptosis. These results indicate that bidirectional signalings between DAPK and ERK may contribute to the apoptosis-promoting function of the death domain of DAPK.  相似文献   

4.
Death associated protein kinase 1 (DAPK) is an important serine/theoreine kinase involved in various cellular processes such as apoptosis, autophagy and inflammation. DAPK expression and activity are misregulated in multiple diseases including cancer, neuronal death, stoke, et al. Methylation of the DAPK gene is common in many types of cancer and can lead to loss of DAPK expression. In this review, we summarize the pathological status and functional roles of DAPK in disease and compare the published reagents that can manipulate the expression or activity of DAPK. The pleiotropic functions of DAPK make it an intriguing target and the barriers and opportunities for targeting DAPK for future clinical application are discussed.  相似文献   

5.
6.
Activation of death-associated protein kinase (DAPK) occurs via dephosphorylation of Ser-308 and subsequent association of calcium/calmodulin. In this study, we confirmed the existence of the alternatively spliced human DAPK-beta, and we examined the levels of DAPK autophosphorylation and DAPK catalytic activity in response to tumor necrosis factor or ceramide. It was found that DAPK is rapidly dephosphorylated in response to tumor necrosis factor or ceramide and then subsequently degraded via proteasome activity. Dephosphorylation and activation of DAPK are shown to temporally precede its subsequent degradation. This results in an initial increase in kinase activity followed by a decrease in DAPK expression and activity. The decline in DAPK expression is paralleled with increased caspase activity and cell apoptosis. These results suggest that the apoptosis regulatory activities mediated by DAPK are controlled both by phosphorylation status and protein stability.  相似文献   

7.
The neuroprotective activity of pyruvate has been confirmed in previous in vivo and in vitro studies. Here, we report a novel mechanism that pyruvate prevents SH-SY5Y cells from glutamate excitotoxicity by regulating death-associated protein kinase 1 (DAPK1) protein complex. Our results showed pyruvate regulated DAPK1 protein complex to protect cells by two ways. First, pyruvate induced the dissociation of DAPK1 with NMDA receptors. The disruption of the DAPK1-NMDA receptors complex resulted in a decrease in NMDA receptors phosphorylation. Then the glutamate-stimulated Ca2+ influx was inhibited and intracellular Ca2+ overload was alleviated, which blocked the release of cytochrome c and cell death. In addition, increased Bcl-xL induced by pyruvate regulated Bax/Bak dependent death by inhibiting the release of cytochrome c from the mitochondrial inter-membrane space into the cytosol. As a result, the cytochrome c-initiated caspase cascade, including caspase-3 and caspase-9, was inhibited. Second, pyruvate promoted the association between DAPK1 and Beclin-1, which resulted in autophagy activation. The autophagy inhibitor 3-methyladenine reversed the protection afforded by pyruvate. Furthermore, the attenuation of mitochondrial damage induced by pyruvate was partly reduced by 3-methyladenine. This suggested autophagy mediated pyruvate protection by preventing mitochondrial damage. Taken together, pyruvate protects cells from glutamate excitotoxicity by regulating DAPK1 complexes, both through dissociation of DAPK1 from NMDA receptors and association of DAPK1 with Beclin-1. They go forward to protect cells by attenuating Ca2+ overload and activating autophagy. Finally, a convergence of the two ways protects mitochondria from glutamate excitotoxicity, which leads to cell survival.  相似文献   

8.
Death associated protein kinase (DAPK) is a large, multi-domain ser/thr kinase whose activities converge upon multiple signaling pathways that regulate autophagy, caspase-dependent cell death, cell adhesion and migration. The cellular levels of DAPK are post-translationally regulated by the combined activities of two degradation systems, including the ubiquitin proteasome and an extra-lysosomal proteolysis pathway. At least three distinct E3 ubiquitin ligases target DAPK, including mindbomb1, the chaperone dependent ligase, CHIP (carboxy terminus of Hsp70-interacting protein) and a cullin RING ligase complex, KLHL20-Cul3-RBX1. In addition, it appears that the cellular levels of DAPK are also regulated by an extra-lysosomal protease, cathepsin B. While protein quality control and recycling clearly benefit cells by removal of misfolded or toxic proteins and recycling of their components, the finding that multiple surveillance systems target DAPK suggests that these protein degradation systems also act to fine tune DAPK expression levels in response to specific signaling pathways.  相似文献   

9.
Death associated protein kinase 1 (DAPK1) was initially discovered in the progress of gamma-interferon induced programmed cell death, it is a key factor in the central nervous system, including Parkinson's disease (PD). However, the underlying mechanisms of DAPK1 in PD remain unclear and this research work aims to explore the potential mechanisms of DAPK1 in PD. In the study, we exposed SH-SY5Y cells to MPP+ and treated mice with MPTP to investigate the roles of DAPK1 in PD and the underlying mechanisms. The results indicated that the expression of DAPK1 is significantly upregulated and negatively correlated with miR-124-3p levels in SH-SY5Y cells treated by MPP+, and miR-124-3p mimics could effectively inhibit DAPK1 expressions and alleviate MPP+-induced cell apoptosis. In addition, knockdown MALAT1 reduces the levels of DAPK1 and the ratio of SH-SY5Y cell apoptosis, which is reversed via miR-124-3p inhibitor in vitro. Similarly, knockdown MALAT1 could improve behavioral changes and reduce apoptosis by miR-124-3p upregulation and DAPK1 downregulation in MPTP induced PD mice. Taken together, our data showed that lncRNA MALAT1 positively regulates DAPK1 expression by targeting miR-124-3p, and mediates cell apoptosis and motor disorders in PD. In summary, these results suggest that MALAT1/miR-124-3p /DAPK1 signaling cascade mediates cell apoptosis in vitro and in vivo, which may provide experimental evidence of developing potential therapeutic strategies for PD.  相似文献   

10.
Dysregulation of the balance between cell proliferation and cell death is a central feature of malignances. Death-associated protein kinase 3 (DAPK3) regulates programmed cell death including apoptosis and autophagy. Our previous study showed that DAPK3 downregulation was detected in more than half of gastric cancers (GCs), which was related to tumor invasion, metastasis, and poor prognosis. However, the precise molecular mechanism underlying DAPK3-mediated tumor suppression remains unclear. Here, we showed that the tumor suppressive function of DAPK3 was dependent on autophagy process. Mass spectrometry, in vitro kinase assay, and immunoprecipitation revealed that DAPK3 increased ULK1 activity by direct ULK1 phosphorylation at Ser556. ULK1 phosphorylation by DAPK3 facilitates the ULK1 complex formation, the VPS34 complex activation, and autophagy induction upon starvation. The kinase activity of DAPK3 and ULK1 Ser556 phosphorylation were required for DAPK3-modulated tumor suppression. The coordinate expression of DAPK3 with ULK1 Ser556 phosphorylation was confirmed in clinical GC samples, and this co-expression was correlated with favorable survival outcomes in patients. Collectively, these findings indicate that the tumor-suppressor roles of DAPK3 in GC are associated with autophagy and that DAPK3 is a novel autophagy regulator, which can directly phosphorylate ULK1 and activate ULK1. Thus, DAPK3 might be a promising prognostic autophagy-associated marker.Subject terms: Tumour-suppressor proteins, Macroautophagy  相似文献   

11.
The histone deacetylase inhibitor (HDACi) LBH589 has been verified as an effective anticancer agent. The identification and characterization of new targets for LBH589 action would further enhance our understanding of the molecular mechanisms involved in HDACi therapy. The role of the tumor suppressor death-associated protein kinase (DAPK) in LBH589-induced cytotoxicity has not been investigated to date. Stable DAPK knockdown (shRNA) and DAPK overexpressing (DAPK+++) cell lines were generated from HCT116 wildtype colon cancer cells. LBH589 inhibited cell proliferation, reduced the long-term survival, and up-regulated and activated DAPK in colorectal cancer cells. Moreover, LBH589 significantly suppressed the growth of colon tumor xenografts and in accordance with the in vitro studies, increased DAPK levels were detected immunohistochemically. LBH589 induced a DAPK-dependent autophagy as assessed by punctuate accumulation of LC3-II, the formation of acidic vesicular organelles, and degradation of p62 protein. LBH589-induced autophagy seems to be predominantly caused by DAPK protein interactions than by its kinase activity. Caspase inhibitor zVAD increased autophagosome formation, decreased the cleavage of caspase 3 and PARP but didn’t rescue the cells from LBH589-induced cell death in crystal violet staining suggesting both caspase-dependent as well as caspase-independent apoptosis pathways. Pre-treatment with the autophagy inhibitor Bafilomycin A1 caused caspase 3-mediated apoptosis in a DAPK-dependent manner. Altogether our data suggest that DAPK induces autophagy in response to HDACi-treatment. In autophagy deficient cells, DAPK plays an essential role in committing cells to HDACi-induced apoptosis.  相似文献   

12.
Stevens C  Hupp TR 《Autophagy》2008,4(4):531-533
DAPK represents a relatively unique enzyme in the protein kinase superfamily whose major biological functions are linked to both autophagy and signal-mediated apoptosis. However, genetic studies have not yet uncovered how DAPK integrates into the core autophagy-related (Atg) machinery since DAPK is not present in a genetically tractable eukaryotic cell such as yeast. Furthermore, there have been no definitive DAPK binding proteins identified in metazoan systems that play a direct role in cooperating with DAPK in autophagy. We have utilized a growing concept in systems biology that invokes linear peptide-motifs as a fundamental mechanism driving protein-protein interactions and as a key switch underlying the dynamics of a signal transduction pathway. By using peptide combinatorial libraries as an assay that reflects the diversity of the linear peptide motif repertoire in the mammalian proteome, we identified microtubule-associated protein 1B (MAP1B) as a novel DAPK interacting protein that stimulates DAPK-dependent membrane blebbing and autophagy. MAP1B has previously been shown to form a functional interaction with the autophagosomal protein Atg8 (LC3). Together these studies define a genetic interaction between DAPK-MAP1B in the regulation of autophagy that may have particular relevance to cellular signalling pathways that regulate cell survival or cell death under distinct environmental stresses.  相似文献   

13.
14.
Death-associated protein kinase (DAPK) is a calmodulin-regulated serine/threonine kinase and elicits tumor suppression function through inhibiting cell adhesion/migration and promoting apoptosis. Despite these biological functions, the signaling mechanisms through which DAPK is regulated remain largely elusive. Here, we show that the leukocyte common antigen-related (LAR) tyrosine phosphatase dephosphorylates DAPK at pY491/492 to stimulate the catalytic, proapoptotic, and antiadhesion/antimigration activities of DAPK. Conversely, Src phosphorylates DAPK at Y491/492, which induces DAPK intra-/intermolecular interaction and inactivation. Upon EGF stimulation, a rapid Src activation leads to subsequent LAR downregulation, and these two events act in synergism to inactivate DAPK, thereby facilitating tumor cell migration and invasion toward EGF. Finally, DAPK Y491/492 hyperphosphorylation is found in human cancers in which Src activity is aberrantly elevated. These results identify LAR and Src as a DAPK regulator through their reciprocal modification of DAPK Y491/492 residues and establish a functional link of this DAPK-regulatory circuit to tumor progression.  相似文献   

15.
Death-associated protein kinase (DAPK) is a calmodulin-regulated serine/threonine kinase and possesses apoptotic and tumor-suppressive functions. However, it is unclear whether DAPK elicits apoptosis-independent activity to suppress tumor progression. We show that DAPK inhibits random migration by reducing directional persistence and directed migration by blocking cell polarization. These effects are mainly mediated by an inhibitory role of DAPK in talin head domain association with integrin, thereby suppressing the integrin–Cdc42 polarity pathway. We present evidence indicating that the antimigratory effect of DAPK represents a mechanism through which DAPK suppresses tumors. First, DAPK can block migration and invasion in certain tumor cells that are resistant to DAPK-induced apoptosis. Second, using an adenocarcinoma cell line and its highly invasive derivative, we demonstrate DAPK level as a determining factor in tumor invasiveness. Collectively, our study identifies a novel function of DAPK in regulating cell polarity during migration, which may act together with its apoptotic function to suppress tumor progression.  相似文献   

16.
死亡相关蛋白激酶(DAPK)是一种新的钙调蛋白(CaM)调节的丝/苏氨酸激酶,是凋亡的正性调节因子。细胞凋亡被认为是控制和治疗肿瘤的最有效方法之一,它与肿瘤的发生、发展和转移有着密切的联系。而DAPK参与多条途径诱导的细胞凋亡,被公认为是一种肿瘤抑制基因。在此我们将重点讨论DAPK促进细胞凋亡的机制,为靶向治疗肿瘤提供方向和理论依据。  相似文献   

17.
Death-associated protein kinase (DAPK) undergoes activation in response to various death stimuli, and they have been associated with an increase in DAPK catalytic activity. One of the most prominent features of DAPK-induced cell death is the effect on the cytoskeleton, including loss of matrix attachment, and membrane blebbing. One known cytoskeletal-associated substrate of DAPK is the myosin-II light chain, phosphorylated by DAPK on Ser19, thus stabilizing actin stress fibres. Moreover, paxillin, a component of focal adhesions, was found to be localized in close proximity to the tips of the DAPK-positive filaments, indicating that stress fibres containing DAPK extend to focal contacts. Forced expression of DAPK in multiple cell types results in morphological changes such as cell rounding, membrane blebbing, shrinking and detachment. During directed migration, DAPK functions as a potent inhibitor of cell polarization, as evidenced by its perturbation of the formation of static protrusion at the leading edge. Furthermore, DAPK inhibits random migration by suppressing directional persistence. One of the studies considered DAPK as an anoikis inducer. Others showed that DAP-kinase inhibits the activities of cell surface integrins by converting them into an inactive conformation. Biochemical experiments have established the DAPK binding to Syntaxin1 and its subsequent phosphorylation at Ser188 in a Ca2+ dependent manner. This phosphorylation event has been shown to decrease the binding of Syntaxin to MUNC18-1, a protein critically involved in synaptic vesicle docking. Here, we have investigated the structural interactions that modulate DAPK phosphorylation with Syntaxin and its functional role in binding to the MUNC18-1 to regulate vesicle docking. This review will summarize our current knowledge of the role of DAPK on cytoskeleton reorganization and report the mechanisms that regulate these changes.  相似文献   

18.
《Autophagy》2013,9(4):531-533
DAPK represents a relatively unique enzyme in the protein kinase superfamily whose major biological functions are linked to both autophagy and signal-mediated apoptosis. However, genetic studies have not yet uncovered how DAPK integrates into the core autophagy-related (Atg) machinery since DAPK is not present in a genetically tractable eukaryotic cell such as yeast. Furthermore, there have been no definitive DAPK binding proteins identified in metazoan systems that play a direct role in cooperating with DAPK in autophagy. We have utilized a growing concept in systems biology that invokes linear peptide-motifs as a fundamental mechanism driving protein-protein interactions and as a key switch underlying the dynamics of a signal transduction pathway. By using peptide combinatorial libraries as an assay that reflects the diversity of the linear peptide motif repertoire in the mammalian proteome, we identified microtubule-associated protein 1B (MAP1B) as a novel DAPK interacting protein that stimulates DAPK-dependent membrane blebbing and autophagy. MAP1B has previously been shown to form a functional interaction with the autophagosomal protein Atg8 (LC3). Together these studies define a genetic interaction between DAPK-MAP1B in the regulation of autophagy that may have particular relevance to cellular signalling pathways that regulate cell survival or cell death under distinct environmental stresses.

Addendum to: Harrison B, Kraus M, Burch L, Stevens C, Craig A, Gordon-Weeks P, Hupp T. DAPK-1 binding to a linear interaction motif in MAP1B stimulates autophagy and membrane blebbing. J Biol Chem 2008; In press.  相似文献   

19.
The heritability of B cell chronic lymphocytic leukemia (CLL) is relatively high; however, no predisposing mutation has been convincingly identified. We show that loss or reduced expression of death-associated protein kinase 1 (DAPK1) underlies cases of heritable predisposition to CLL and the majority of sporadic CLL. Epigenetic silencing of DAPK1 by promoter methylation occurs in almost all sporadic CLL cases. Furthermore, we defined a disease haplotype, which segregates with the CLL phenotype in a large family. DAPK1 expression of the CLL allele is downregulated by 75% in germline cells due to increased HOXB7 binding. In the blood cells from affected family members, promoter methylation results in additional loss of DAPK1 expression. Thus, reduced expression of DAPK1 can result from germline predisposition, as well as epigenetic or somatic events causing or contributing to the CLL phenotype.  相似文献   

20.
Death-associated protein kinase (DAPK) is a unique multidomain kinase acting both as a tumor suppressor and an apoptosis inducer. The molecular mechanism underlying the effector function of DAPK is not fully understood, while the role of DAPK in T lymphocyte activation is mostly unknown. DAPK was activated after TCR stimulation. Through the expression of a dominant-negative and a constitutively active form of DAPK in T cells, we found that DAPK negatively regulated T cell activation. DAPK markedly affected T cell proliferation and IL-2 production. We identified TCR-induced NF-kappaB activation as a target of DAPK. In contrast, IL-1beta- and TNF-alpha-triggered NF-kappaB activation was not affected by DAPK. We further found that DAPK selectively modulated the TCR-induced translocation of protein kinase Ctheta, Bcl-10, and IkappaB kinase into membrane rafts. Notably, the effect of DAPK on the raft entry was specific for the NF-kappaB pathway, as other raft-associated molecules, such as linker for activation of T cells, were not affected. Our results clearly demonstrate that DAPK is a novel regulator targeted to TCR-activated NF-kappaB and T cell activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号