首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To facilitate the assessment of drug safety and determination of phamacokinetics, an anion exchange isolation of zidovudine triphosphate (ZDV-TP) from human peripheral blood mononuclear cells (hPBMC), coupled with dephosphorylation, desaltation, and detection by liquid chromatography-tandem mass spectroscopy (LC-MS-MS) was validated. hPBMCs were harvested from whole blood, lysed, and a suspension of intracellular ZDV-TP was produced. ZDV-TP was isolated from ZDV, ZDV-monophosphate (ZDV-MP), and ZDV-diphosphate (ZDV-DP), which were all present in the cell lysate, by performing a salt gradient anion exchange SPE. Isolated ZDV-TP was dephosphorylated with acid phosphatase to its parent drug form, ZDV. ZDV was then desalted and concentrated for tandem mass spectral detection. An LC-MS-MS methodology was developed and validated for the determination of molar ZDV directly corresponding to the intra-hPBMC molar ZDV-TP concentration. ZDV-TP concentrations were determined in femtomoles per million hPBMCs (fmol/10(6)cells). The assay was able to determine ZDV-TP concentrations accurately and precisely within the range of 5-640 fmol/10(6)cells with 10 million cells per sample analyzed. Inter- and intra-day accuracy and precision data for back calculated standards and quality controls fell within 15% of nominal. The assay correlated well with a previous ELISA method developed and validated in our laboratory, and has been successfully used to quantitate ZDV-TP concentrations in patients being routinely monitored and treated with ZDV.  相似文献   

2.
3.
The compounds WHI-05 (5-bromo-6-methoxy-5, 6-dihydro-3'-azidothymidine-5'-[p-methoxyphenyl] methoxyalaninyl phosphate) and WHI-07 (5-bromo-6-methoxy-5, 6-dihydro-3'-azidothymidine-5'-[p-bromophenyl] methoxyalaninyl phosphate) are aryl phosphate derivatives of zidovudine (ZDV) with dual-function anti-human immunodeficiency virus and contraceptive activity. These drugs were rationally designed to bypass the thymidine kinase (TK) dependency of ZDV activation as well as to achieve spermicidal activity. We investigated the TK activity and intracellular metabolism of WHI-05 and WHI-07 in normal human vaginal and cervical epithelial cells as well as sperm. The time- and concentration-dependent intracellular formation of ZDV metabolites following addition of WHI-05 and WHI-07 to normal human vaginal, ectocervical, and endocervical epithelial cells as well as motile sperm was studied by analytical HPLC. Thymidine kinase activity in these cells was determined by the flow cytometric method based on intracellular phosphorylation of the fluorescent nucleoside, 5-amino-2-deoxyuridine-dansyl chloride and by the ability of cell-free extracts to convert [(3)H]thymidine to thymidine monophosphate in comparison to NALM-6, a pre-B leukemia cell line. TK activity of genital tract epithelial cells and sperm was found to be relatively low or lacking. Addition of WHI-05 and WHI-07 to vaginal and cervical epithelial cells resulted in their concentration- and time-dependent conversion to alaninyl ZDV monophosphate (Ala-ZDV-MP) and 5'-ZDV monophosphate as the major metabolites. Studies using motile human sperm also demonstrated the conversion of WHI-05 and WHI-07 to Ala-ZDV-MP. These results demonstrate that human female genital tract epithelial cells and sperm efficiently convert WHI-05 and WHI-07 to bioactive ZDV metabolites despite their TK deficiency.  相似文献   

4.
Long-term, 32-P-labeled L cells were infected with the obligately intracellular parasite Chlamydia psittaci (strain 6 BC). At 20 h postinfection, [3-H]uridine was added, and the infected cells were sampled at intervals for incorporation of the labels into the uridine triphosphate (UTP) and cytidine triphosphate (CTP) pools of the host L cell and the uridine monophosphate (UMP) and cytidine monophosphate (CMP) in 16S ribosomal ribonucleic acid (RNA) of the parasite. The specific activity of the nucleotides was calculated from the ratio of 3-H to 32-P counts in the nucleotides. The rate of approach to equilibrium labeling of UTP and CTP in L-cell pools and UMP and CMP in 16S RNA from the exogenous uridine label was determined from the increase in the ratios of the specific activities of CTP to UTP and CMP to UMP with time. The rate of approach to equilibrium CMP:UMP labeling of the 16S RNA of C. psittaci was consistent with the rate predicted from the kinetics of labeling of the CTP and UTP pools of the host L cell. In analogous experiments, the rate of approach to equilibrium guanosine monophosphate:adenosine monophosphate labeling of 16S RNA from an exogenous [14-C]adenine label was consistent with the rate predicted from the kinetics of labeling of the purine nucleoside triphosphate pool of the host cell. These results support the concept that members of the genus Chlamydia owe their obligate intracellular mode of reproduction to a requirement for energy intermediates which is fulfilled by the host cell. In addition, evidence was obtained that the total acid-soluble purine nucleoside triphosphate pool of L cells accurately represents the precursors of L-cell 18S ribosomal RNA.  相似文献   

5.
DNA excision repair inhibition by arabinofuranosyl cytosine (ara-C) or by ara-C/hydroxyurea (HU) was measured in log phase and confluent cultures of normal and xeroderma pigmentosium (XP)-variant human fibroblasts following insult by ultraviolet (UV) light (20 J/m2). Repair inhibition was determined by measuring the accumulation of DNA single-strand breaks/108 daltons following cell culture exposure to ara-C or ara-C/HU in a series of 3 hr. pulses up ro 24 hr. after UV insult. Both normal and XP-variant derived cells showed a wide range of sensitivity to ara-C in log phase cells (0.2–9.4 breaks/108 daltons DNA), although strand break accumulation was constant for each specific cell line. The same cells were more sensitive to ara-C/HU with a 2–14 fold increase in DNA strand breaks depending upon the cell line assayed. In confluent cultures of normal cells, maximum sensitivity to ara-C and ara-C/HU was achieved with similar levels of repair inhibition observed (16.1 and 16.5 breaks/108 daltons, respectively). The same level of repair inhibition was observed in confulent XP-variants receiving ara-C/HU, but was reduced by 62–68% in cells treated with ara-C alone. Ara-C repair arrest was more rapidly reversed by competing concentrations of exogenous deoxycytidine (dCyd) in XP-variant compared to normal cells, especially in confluent cell cultures. In ara-C/HU treated cells, the level of dCyd reversal was reduced in the XP-variant when compared to cells exposed to ara-C alone. However, the same addition of HU had relatively little effect on dCyd reversal in normal cells. The measurements of dNTP levels indicate an elevated level of intracellular deoxycytosine triphosphate in XP-variant vs normal cells. The implications of these results are discussed as they relate to possible excision repair anomalies in the XP-variant.Abbreviations ara-C arabinofuranosul cytosine - dCTP deoxycytosine triphosphate - dCyd deoxycytidine - dNTP deoxynucleoside triphosphate - dT thymidine - HU hydroxyurea - XP xeroderma pigmentosium This research was sponsored jointly by the National Cancer Institute under Interagency Agreement #40-5-63, and the Office of Health and Environment Research, U. S. Department of Energy, under Contract W-7405-eng-26 with the Union Carbide Corporation.  相似文献   

6.
Objective: To test the hypothesis that incorporation of medium‐chain fatty acids (FAs) into adipocyte triglycerides alters intracellular lipolysis. Research Methods and Procedures: 3T3‐L1 adipocytes were pretreated with octanoate for various incubation periods. After the removal of exogenous FAs, cells were incubated with different lipolytic agonists. To determine the effects on lipolysis, we measured the following: the release of glycerol and FAs, lipase activity, protein levels of hormone‐sensitive lipase (HSL), and perilipin A; translocation of HSL; phosphorylation of perilipin A; and levels of cellular adenosine triphosphate, cyclic adenosine monophosphate, and H2O2. To compare the effects of starvation with those caused by octanoate pretreatment, we measured glycerol release and H2O2 generation in rat adipocytes of starved donors. Results: Pretreatment of adipocytes with octanoate in vitro increased basal lipolysis but decreased the cellular response for agonists. The same effects were seen in starvation in vivo. Preincubation with octanoate for 48 hours did not affect basal lipase activity, HSL, and perilipin protein levels, but it reduced agonist‐stimulated perilipin phosphorylation and HSL translocation toward fat droplets. This was associated with a reduction in basal cellular adenosine triphosphate levels and agonist‐stimulated cyclic adenosine monophosphate generation. Starvation and octanoate pretreatment both increased intracellular H2O2 concentrations, which might also contribute to the inhibition on agonist‐stimulated lipolysis. Discussion: Pretreatment with octanoate seems to induce changes in adipocyte lipolysis in a pattern mimicking the effects of starvation. Such changes could contribute, in part, to weight loss in animals and humans associated with dietary medium‐chain FAs.  相似文献   

7.
Hyperleptinemia accompanying obesity affects endothelial nitric oxide (NO) and is a serious factor for vascular disorders. NO, superoxide (O(2)(-)), and peroxynitrite (ONOO(-)) nanosensors were placed near the surface (5+/-2 microm) of a single human umbilical vein endothelial cell (HUVEC) exposed to leptin or aortic endothelium of obese C57BL/6J mice, and concentrations of calcium ionophore (CaI)-stimulated NO, O(2)(-), ONOO(-) were recorded. Endothelial NO synthase (eNOS) expression and L-arginine concentrations in HUVEC and aortic endothelium were measured. Leptin did not directly stimulate NO, O(2)(-), or ONOO(-) release from HUVEC. However, a 12-h exposure of HUVEC to leptin increased eNOS expression and CaI-stimulated NO (625+/-30 vs. 500+/-24 nmol/l control) and dramatically increased cytotoxic O(2)(-) and ONOO(-) levels. The [NO]-to-[ONOO(-)] ratio ([NO]/[ONOO(-)]) decreased from 2.0+/-0.1 in normal to 1.30+/-0.1 in leptin-induced dysfunctional endothelium. In obese mice, a 2.5-fold increase in leptin concentration coincided with 100% increase in eNOS and about 30% decrease in intracellular L-arginine. The increased eNOS expression and a reduced l-arginine content led to eNOS uncoupling, a reduction in bioavailable NO (250+/-10 vs. 420+/-12 nmol/l control), and an elevated concentration of O(2)(-) (240%) and ONOO(-) (70%). L-Arginine and sepiapterin supplementation reversed eNOS uncoupling and partially restored [NO]/[ONOO(-)] balance in obese mice. In obesity, leptin increases eNOS expression and decreases intracellular l-arginine, resulting in eNOS an uncoupling and depletion of endothelial NO and an increase of cytotoxic ONOO(-). Hyperleptinemia triggers an endothelial NO/ONOO(-) imbalance characteristic of dysfunctional endothelium observed in other vascular disorders, i.e., atherosclerosis and diabetes.  相似文献   

8.
9.
10.
Acrolein is a highly electrophilic alpha, beta-unsaturated aldehyde, the levels of which are increased in the blood of smokers. To determine if acrolein is involved in the pathology of smoke angiopathy, the effect of acrolein on human umbilical vein endothelial cells (HUVEC) was examined. Intracellular nitric oxide (NO) levels, determined using diaminofluorescein-2 diacetate (DAF-2 DA), an NO sensitive fluorescent dye, were found to be increased after treatment in HUVEC with 10 microM acrolein. The measurement of nitrite with 2,3-diaminonaphthalene and a Western blot analysis revealed that nitrite and S-nitroso-cysteine levels were increased in a dose-dependent manner, confirming that NO production is increased by acrolein. The increase was not reduced by treatment with 10mM N-acetyl-l-cysteine (NAC), an anti-oxidant, but was reduced with 10 microM of the intracellular calcium chelator, 1,2-bis (o-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid tetra (acetoxymethyl) ester. Acrolein-stimulated NO production was significantly reduced by pretreatment with 1mM N(G)-nitro-l-arginine-methyl ester (L-NAME), an NO synthase inhibitor. The cytotoxicity of acrolein was reduced by pretreatment with 10 microM 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (carboxy-PTIO), an intracellular NO scavenger, or 1mM L-NAME, whereas it was not reduced by 10mM NAC, 20 microM Curcumin, another peroxide scavenger, or 100 microM Mn(III)TMPyP, a superoxide dismutase mimic. Nuclear staining and a Western blot analysis using an anti-cleaved caspase 3 antibody revealed that the reduced viability of HUVEC by acrolein was due to apoptosis, which was reversed after pretreatment with 0.1mM carboxy-PTIO or 1mM L-NAME. Thus, acrolein increases intracellular calcium production to induce intracellular NO production by a calcium-dependent NO synthase, possibly eNOS, and the excess and rapid increase in NO might lead to the apoptosis of HUVEC. These data suggest that acrolein might be involved in the pathology of smoke angiopathy through the NO-induced apoptosis of endothelial cells.  相似文献   

11.
Vitamin E reacts with radicals such as lipid peroxyl radical (LOO*) and singlet oxygen ((1)O2), and plays a role in inhibiting lipid peroxidation in cell membranes and preventing the oxidation of low-density lipoproteins (LDL). However, only a few studies have investigated the effect of vitamin E on the degradation of hydrogen peroxide (H2O2). Therefore, we examined the effect of vitamin E on glutathione redox cycle-dependent H2O2 degradation activity in human umbilical vein endothelial cells (HUVEC). Confluent HUVEC were cultured for seven days in media containing various concentrations of vitamin E (alpha-tocopherol). The level of glutathione redox cycle-dependent H2O2 degradation activity and the intracellular glutathione level were determined. HUVEC that had been cultured in the presence of higher concentrations of vitamin E had a higher level of H2O2 degradation activity and a higher intracellular content of the reduced form of glutathione (GSH). Therefore, it is suggested that the vitamin E-induced increase in H2O2 degradation activity in HUVEC results from an increase in intracellular GSH level.  相似文献   

12.
The mechanisms by which tumor cells extravasate to form metastasis remain controversial. Previous studies performedin vivoandin vitrodemonstrate that the contact between tumor cells and the vascular wall impairs endothelium integrity. Here, we investigated the effect of breast adenocarcinoma MCF-7 cells on the apoptosis of human umbilical vein endothelial cells (HUVEC). TUNEL labeling, nuclear morphology, and DNA electrophoresis indicated that MCF-7 cells induced a two- to fourfold increase in HUVEC apoptosis. Caspase-3 activity was significantly enhanced. Neither normal cells tested (mammary epithelial cells, fibroblasts, leukocytes) nor transformed hematopoietic cells tested (HL60, Jurkat) induced HUVEC apoptosis. On the contrary, cells derived from solid tumors (breast adenocarcinoma, MDA-MB-231 and T47D; fibrosarcoma, HT 1080) had an effect similar to that of MCF-7 cells. The induction of apoptosis requires cell-to-cell contact, since it could not be reproduced by media conditioned by MCF-7 cells cultured alone or cocultured with HUVEC. Our results suggest that cells derived from solid tumors may alter the endothelium integrity by inducing endothelial cell apoptosis. On the contrary, normal or malignant leukocytes appear to extravasate by distinct mechanisms and do not damage the endothelium. Our data may lead to a better understanding of the steps involved in tumor cell extravasation.  相似文献   

13.
14.
DNA precursor synthesis can be blocked specifically by the drug hydroxyurea (HU) which has therefore been used for anticancer therapy. High concentrations of HU, however, affect other processes than DNA synthesis; nevertheless, most studies on the biological action of HU have been made with concentrations at least one order of magnitude higher than those needed for cell-growth inhibition. In this study we characterized the effects of low concentrations of HU (i.e. concentrations leading to 50% inhibition of cell growth in 72 h) on cell cycle kinetics and nucleotide pools in mouse S49 cells with various defined alterations in DNA precursor synthesis. The effect of 50 microM HU on deoxyribonucleoside triphosphate pools was a 2-3-fold decrease in the dATP and dGTP pools, with no change in the dCTP pool and a certain increase in the dTTP pool. Addition of deoxycytidine or thymidine led to a partial reversal of the growth inhibition and cell-cycle perturbation caused by HU, and was accompanied by an increased level of the deoxyribonucleoside triphosphates. Addition of purine deoxyribonucleoside gave no protection, indicating that salvage of these nucleosides could not supply precursors for DNA synthesis in T-lymphoma cells. We observed a higher sensitivity to HU of cells lacking purine nucleoside phosphorylase or with a ribonucleotide reductase with altered allosteric regulation. Cells lacking thymidine kinase or deoxycytidine kinase were just as sensitive as wild-type cells.  相似文献   

15.

Background

HIV-1 subtype B is the most prevalent in developed countries and, consequently, it has been extensively studied. On the other hand, subtype C is the most prevalent worldwide and therefore is a reasonable target for future studies. Here we evaluate the acquisition of resistance and the viability of HIV-1 subtype B and C RT clones from different isolates that were subjected to in vitro selection pressure with zidovudine (ZDV) and lamivudine (3TC).

Methods/Principal Findings

MT4 cells were infected with chimeric virus pseudotyped with RT from subtype B and C clones, which were previously subjected to serial passage with increasing concentrations of ZDV and 3TC. The samples collected after each passage were analyzed for the presence of resistance mutations and VL. No differences were found between subtypes B and C in viral load and resistance mutations when these viruses were selected with 3TC. However, the route of mutations and the time to rebound of subtype B and C virus were different when subjected to ZDV treatment. In order to confirm the role of the mutations detected, other clones were generated and subjected to in vitro selection. RT subtype B virus isolates tended to acquire different ZDV resistance mutations (Q151M and D67N or T215Y, D67D/N and F214L) compared to subtype C (D67N, K70R, T215I or T215F).

Conclusions/Significance

This study suggests that different subtypes have a tendency to react differently to antiretroviral drug selection in vitro. Consequently, the acquisition of resistance in patients undergoing antiretroviral therapy can be dependent on the subtypes composing the viral population.  相似文献   

16.
Glutathione (GSH) plays an important role in the cellular defense against (per-)oxidative stress. The capacity of this cellular defense system may be related to the oxygen tension, cells are normally subjected to in vivo; therefore, we studied the de novo synthesis of glutathione, and the redox turnover under peroxidative stress, in human umbilical vein and artery endothelial cells (HUVEC, HUAEC) and human skin fibroblasts. De novo synthesis in these cell types was studied in vitro by measuring the time course of intracellular GSH recovery after depletion with diamide. For fibroblasts, the initial rate of de novo synthesis after GSH depletion was twice that of the endothelial cell strains. In the endothelial cells (HUVEC, HUAEC) the original intracellular GSH level is reached within 40 min. while in the same time span, the GSH level in fibroblasts returned to 75% of control level. The activity of the hexose monophosphate shunt (HMS) was determined under oxidative stress as a measure for the coupled redox turnover of intracellular GSH. Under control conditions the HMS in endothelial cells was twice as high as in fibroblasts. Cumene hydroperoxide (40 microM) induced a three-fold increase in HMS in both HUVEC and HUAEC, while fibroblasts exhibited an increase of 83%. During the same peroxidative stress, the intracellular GSH concentration of HUVEC, HUAEC and fibroblasts stayed at control level. So with respect to GSH metabolism there were no differences between the two endothelial cell strains. In comparison with the endothelial cells, the fibroblasts were less susceptible toward oxidative stress.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
18.
Extensive stalk elongation in Skl mutants of Caulobacter crescentus occurs when they are grown in complete medium. This stalk elongation is less pronounced in synthetic medium with glucose as the sole carbon source than in complex peptone yeast extract medium. Addition of exogenous nucleoside triphosphates (adenosine triphosphate [ATP], guanosine triphosphate [GTP], cytidine triphosphate, and uridine triphosphate) inhibits stalk elongation of the Skl mutants, whereas cyclic guanosine 3',5'-monophosphate (GMP) stimulates stalk elongation in the Skl strains grown in synthetic glucose medium. Cyclic GMP also produces stalk elongation in wild-type C. crescentus and concurrently produces a cell division defect resulting in cellular filament formation. Under conditions tested, cyclic adenosine 3',5'-monophosphate and dibutyryl cyclic adenosine monophosphate did not enhance stalk elongation. Endogenous ATP and GTP levels in the mutants are significantly lower than corresponding nucleotide concentrations of the parent wild-type strains. Control of syntheses resulting in stalk formation in C. crescentus appears to be related to intracellular concentrations of nucleotides, with cyclic GMP as a prominent candidate for an important regulatory role in this aspect of morphogenesis.  相似文献   

19.
Cyclic adenosine 3':5' monophosphate (cAMP) accumulation during one hour's incubation in 10 mM theophylline and 10 mM pyruvate; initial concentrations of adenosine triphosphate (ATP) and their rate of depletion during one hour's incubation; concentrations of adenosine diphosphate (ADP), adenosine monophosphate (AMP), fructose 2,6 diphosphate (FDP), and glyceraldehyde 3-phosphate (GAP), were assayed in spermatozoa of various genotypes. No effects of transmission ratio distorting t-haplotypes (in heterozygous males) on these variables were found.  相似文献   

20.
The levels of adenosine triphosphate, diphosphate, and monophosphate in liver and isolated liver mitochondria were examined in foetal, neonatal, and suckling rats. It was shown that while the total adenine nucleotide level in liver varied only slightly during development, there was a steady increase in the concentration of mitochondrial adenine nucleotides. This increase was most dramatic just after birth. Experiments using pups obtained by caesarean section one day prior to normal birth and kept in a humidicrib for up to two hours, showed that the mitochondrial adenine nucleotide level doubles during this period. This increase is associated with the maturation of the mitochondrial inner membrane as measured by the enhancement of respiratory control.
The results indicate that in addition to the adenine nucleotide translocator—which effects the exchange of adenosine triphosphate and diphosphate—there must be a second transport mechanism present, at least in perinatal mitochondria, which is responsible for the net uptake of adenine nucleotides.
The adenine nucleotides in this study were measured, using a modified luciferin—luciferase assay. In this method the preincubation of sample with appropriate enzymes to convert adenosine monophosphate and diphosphate to adenosine triphosphate, was carried out in the same scintillation vial as the final assay. This eliminated a second sampling step and thereby increased the convenience, speed, and accuracy of this very sensitive method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号