首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Invasion of trophoblasts into maternal uterine tissue is essential for establishing mature feto-maternal circulation. The trophoblast invasion associated with placentation is similar to tumor invasion. In this study, we investigated the role of KAI1, an anti-metastasis factor, at the maternal-fetal interface during placentation. Mouse embryos were obtained from gestational days 5.5 (E5.5) to E13.5. Immunohistochemical analysis revealed that KAI1 was expressed on decidual cells around the track made when a fertilized ovum invaded the endometrium, at days E5.5 and E7.5, and on trophoblast giant cells, along the central maternal artery of the placenta at E9.5. KAI1 in trophoblast giant cells was increased at E11.5, and then decreased at E13.5. Furthermore, KAI1 was upregulated during the forskolinmediated trophoblastic differentiation of BeWo cells. Collectively, these results indicate that KAI1 is differentially expressed in decidual cells and trophoblasts at the maternal-fetal interface, suggesting that KAI1 prevents trophoblast invasion during placentation. [BMB Reports 2013; 46(10): 507-512]  相似文献   

3.
4.
5.
本实验利用原位杂交对小鼠妊娠不同时期胎盘中MMP-2,TIMP-2,-3mRNA的表达进行了研究。结果表明;MMP-2主要在具有很强的侵润能力的海绵滋养层细胞中表达,到妊娠13.5天时,MMP-2的表达明显降低,说明此时的滋养层细胞基本上失去侵润能力。TMIP-1和TMIP-3在滋养层细胞和蜕膜细胞中都有表达,这两种抑制因子的协同表达,一方面能够调控滋养层细胞侵入子宫内膜的深度,另一方面,滋养层细胞自身既表达MMP-2又表达TIMPs,可能对其自身有保护作用,使得MMP的水解功能局限于子宫蜕膜的特定区域。在妊娠10.5天,滋养层巨细胞同时表达TIMP-1,-3mRNA,这可能与其功能的转换是一致的;因为此时小鼠滋养层巨细胞体积最大,且不再增殖,同时其功能屯从侵入型向内分泌型转换。所以,MMPs和TIMPs在小鼠滋养层细胞和子宫蜕膜中的协同表达表明其在着床过程中可能发挥重要作用。  相似文献   

6.
Embryo implantation into the maternal uterus is a decisive step for successful mammalian pregnancy. Osteopontin (OPN) is a member of the small integrin-binding ligand N-linked glycoprotein family and participates in cell adhesion and invasion. In this study, we showed that Opn mRNA levels are up-regulated in the mouse uterus on day 4 and at the implantation sites on days 5 and 8 of pregnancy. Immunohistochemistry localized the OPN protein to the glandular epithelium on day 4 and to the decidual zone on day 8 of pregnancy. OPN mRNA and proteins are induced by in vivo and in vitro decidualization. OPN expression in the endometrial stromal cells is regulated by progesterone, a key regulator during decidualization. As a secreted protein, the protein level of OPN in the uterine cavity is enriched on day 4, and in vitro embryo culturing has indicated that OPN can facilitate blastocyst hatching and adhesion. Knockdown of OPN attenuates the adhesion and invasion of blastocysts in mouse endometrial stromal cells by suppressing the expression and enzymatic activity of matrix metalloproteinase-9 in the trophoblast. Our data indicated that OPN expression in the mouse uterus during early pregnancy is essential for blastocyst hatching and adhesion and that the knockdown of OPN in mouse endometrial stroma cells could lead to a restrained in vitro trophoblast invasion.  相似文献   

7.
Uteri taken from 25 bitches at various times during the early stages of pregnancy were studies cytologically to determine how the implantation chamber developed and how fetal-maternal relations were established. On day 13 after the end of estrus, knobs of trophoblastic syncytium formed and became wedged between cells of the uterine luminal epithelium. The syncytium quickly spread along the uterine lumen and into the mouths of the glands, dislodging and surrounding maternal cells. As invasion continued trophoblastic villi, consisting of cores of cytotrophoblast covered by a continuous layer of syncytium, penetrated deeper into the endometrium. The syncytium spread to surround maternal vessels and decidual cells. By day 26 the trophoblast had extended down to the large lacunae. Here syncytial trophoblast covering tips of the villi degenerated, leaving cytotrophoblast exposed to the necrotic zone. These cells possessed characteristics of absorbing cells. Hematomas were formed by focal necrosis of fetal and endometrial tissue at the poles of the implantation sites. Large pools of extravasated blood accumulated and red blood cells were phagocytized by surrounding trophoblastic cells. Therefore, the endotheliochorial relationship in the canine placenta appeared to be established by syncytial trophoblast invading a cellular endometrium. In the necrotic zone and hematomas, cellular trophoblast may have lost its syncytial covering, but elsewhere maternal vessels and decidual cells in the placenta were in direct contact only with syncytial trophoblast.  相似文献   

8.
9.
10.
11.
Elevated expression of tumour necrosis factor- (TNF-) is associated with adverse pregnancy outcome. This study has examined the expression of TNF- and its receptors (TNF-Rs) by mouse blastocysts and blastocyst outgrowths from day 4 to 9.5 of pregnancy and investigated the effects of elevated TNF- on the inner cell mass (ICM) and trophoblast cells of blastocyst outgrowths. RT-PCR demonstrated TNF- mRNA expression from day 7.5 to 9.5, TNF-R1 from day 6.5 to 9.5 and TNF-R2 from day 5.5 to 7.5 of pregnancy, and in situ hybridisation revealed the trophoblast giant cells (TGCs) of the early placenta as the site of TNF- expression. Day 4 blastocysts were cultured in a physiologically high concentration of TNF- (100 ng/ml) for 72 h to the outgrowth stage and then compared to blastocysts cultured in media alone. TNF--treated blastocyst outgrowths exhibited a significant reduction in ICM cells (mean ± SD 23.90±10.42 vs 9.37±7.45, t-test, P<0.0001) with no significant change in the numbers of trophoblast cells (19.97±8.14 vs 21.73±7.79, t-test, P=0.39). Within the trophoblast cell population, the TNF--treated outgrowths exhibited a significant increase in multinucleated cells (14.10±5.53 vs 6.37±5.80, t-test, P<0.0001) and a corresponding significant decrease in mononucleated cells (5.87±3.60 vs 15.37±5.87, t-test, P<0.0001). In summary, this study describes the expression of TNF- and its receptors during the peri-implantation period in the mouse. It also reports that elevated TNF- restricts ICM proliferation in the blastocyst and changes the ratio of mononucleated to multinucleated trophoblast cells. These findings suggest a mechanism by which increased expression of TNF- during trophoblast differentiation may be detrimental to pregnancy.This work was supported by the National Health and Medical Research Council of Australia  相似文献   

12.
The c-fms gene encodes the cell surface receptor of the colony-stimulating factor, CSF-1. CSF-1 has recently been shown to be expressed in the maternal uterine endometrium of pregnant mice. The ontogenetic and spatial patterns of expression of the murine proto-oncogene c-fms were analyzed in the developing mouse placenta by the technique of in situ hybridization. c-fms expression was not detected in fetally derived tissues until 9.5 days postcoitum (pc) when expression first appeared in the mural trophoblast giant cells. Expression persisted at high levels in trophoblast cells throughout gestation. In the mature placenta from 13.5 days pc on, c-fms was expressed chiefly in the spongiotrophoblast layer and, to a lesser extent, in the labyrinthine trophoblast. CSF-1 expression was first detectable in the uterine epithelium at 8.5 days pc which loosely correlated with the appearance at 7.5 days of c-fms in the decidual cells around the developing egg cylinder. The time course and spatial pattern of expression of these two genes suggest a functional role for the c-fms receptor and its ligand, CSF-1, in trophoblast development and differentiation.  相似文献   

13.
14.
Monocarboxylate transporter 8 (MCT8) is a well-established thyroid hormone (TH) transporter. In humans, MCT8 mutations result in changes in circulating TH concentrations and X-linked severe global neurodevelopmental delay. MCT8 is expressed in the human placenta throughout gestation, with increased expression in trophoblast cells from growth-restricted pregnancies. We postulate that MCT8 plays an important role in placental development and transplacental TH transport. We investigated the effect of altering MCT8 expression in human trophoblast in vitro and in a Mct8 knockout mouse model. Silencing of endogenous MCT8 reduced T3 uptake into human extravillous trophoblast-like cells (SGHPL-4; 40%, P<0.05) and primary cytotrophoblast (15%, P<0.05). MCT8 over-expression transiently increased T3 uptake (SGHPL-4∶30%, P<0.05; cytotrophoblast: 15%, P<0.05). Silencing MCT8 did not significantly affect SGHPL-4 invasion, but with MCT8 over-expression T3 treatment promoted invasion compared with no T3 (3.3-fold; P<0.05). Furthermore, MCT8 silencing increased cytotrophoblast viability (∼20%, P<0.05) and MCT8 over-expression reduced cytotrophoblast viability independently of T3 (∼20%, P<0.05). In vivo, Mct8 knockout reduced fetal:placental weight ratios compared with wild-type controls at gestational day 18 (25%, P<0.05) but absolute fetal and placental weights were not significantly different. The volume fraction of the labyrinthine zone of the placenta, which facilitates maternal-fetal exchange, was reduced in Mct8 knockout placentae (10%, P<0.05). However, there was no effect on mouse placental cell proliferation in vivo. We conclude that MCT8 makes a significant contribution to T3 uptake into human trophoblast cells and has a role in modulating human trophoblast cell invasion and viability. In mice, Mct8 knockout has subtle effects upon fetoplacental growth and does not significantly affect placental cell viability probably due to compensatory mechanisms in vivo.  相似文献   

15.
The uterus undergoes a series of dramatic changes in response to an implanting conceptus that, in some mammalian species, includes differentiation of the endometrial stroma into decidual tissue. This process, called decidualization, can be induced artificially in rodents indicating that the conceptus may not be essential for a proper maternal response in early pregnancy. In order to test this hypothesis, we determined if and how the conceptus affects uterine gene expression. We identified 5 genes (Angpt1, Angpt2, Dtprp, G1p2 and Prlpa) whose steady-state levels in the uterus undergoing decidualization depends on the presence of a conceptus. In situ hybridization revealed region-specific effects which suggested that various components of the conceptus and more than one signal from the conceptus are likely responsible for altering decidual cell function. Using cell culture models we found that trophoblast giant cells secrete a type I interferon-like molecule which can induce G1p2 expression in endometrial stromal cells. Finally, decidual Prlpa expression was reduced in the uterus adjacent to Hand1- and Ets2-deficient embryos, suggesting that normal trophoblast giant cells in the placenta are required for the conceptus-dependent effects on Prlpa expression in the mesometrial decidua. Overall, these results provide support for the hypothesis that molecular signals from the mouse conceptus have local effects on uterine gene expression during decidualization.  相似文献   

16.
Expression of p53 during mouse embryogenesis.   总被引:13,自引:0,他引:13  
By in situ hybridisation we have examined the expression of p53 during mouse embryogenesis from day 8.5 to day 18.5 post coitum (p.c.). High levels of p53 mRNA were detected in all cells of the day 8.5 p.c. and 10.5 p.c. mouse embryo. However, at later stages of development, expression became more pronounced during differentiation of specific tissues e.g. of the brain, liver, lung, thymus, intestine, salivary gland and kidney. In cells undergoing terminal differentiation, the level of p53 mRNA declined strongly. In the brain, hybridisation signals were also observed in postmitotic but not yet terminally differentiated cells. Therefore, gene expression of p53 does not appear to be linked with cellular proliferation in this organ. A proposed role for p53 in cellular differentiation is discussed.  相似文献   

17.
Notch signaling is involved in cell lineage specification in many developing organs. In mice there are four known Notch receptor genes (Notch1–4) and five ligands genes (Dll1, 3, 4 and Jagged1 and 2). Notch2 is essential for development of placenta, an organ that mediates feto-maternal nutrient and gas exchange as well as maternal adaptations to pregnancy. However the role of other Notch receptors and ligands in placentation is not known. In order to gain better insight into the role of Notch signaling in mouse placenta we thoroughly analyzed mRNA expression of all Notch receptors and ligands in all trophoblast cell types from the embryonic day (E) 7.5 to E12.5, the period during which all of the substructures of the placenta develop. Here we show that Notch receptors and ligands are specifically and dynamically expressed in multiple cell layers of developing placenta. We found that the Notch2 receptor and Jagged1 and Jagged2 ligand genes are complementarily expressed in trophoblast cells of the chorion and its later derivatives in the labyrinth. Dll4 and Notch2 expression complement each other in the ectoplacental cone, while Dll1 and Notch2 are expressed in an ectoplacental cone derivative, the junctional zone. Moreover Dll4 and Notch2 are expressed at the ectoplacental cone–decidua interface at early stages of placentation. Additionally we show that Notch2 is dynamically expressed in all trophoblast giant cell subtypes, which is consistent with previous reports. Overall these expression pattern results suggest that Notch signaling may play several diverse roles during placenta development.  相似文献   

18.
During placenta development, a succession of complex molecular and cellular interactions between the maternal endometrium and the developing embryo ensures reproductive success. The precise mechanisms regulating this maternal-fetal crosstalk remain unknown. Our study revealed that the expression of Rac1, a member of the Rho family of GTPases, is markedly elevated in mouse decidua on days 7 and 8 of gestation. To investigate its function in the uterus, we created mice bearing a conditional deletion of the Rac1 gene in uterine stromal cells. Ablation of Rac1 did not affect the formation of the decidua but led to fetal loss in mid gestation accompanied by extensive hemorrhage. To gain insights into the molecular pathways affected by the loss of Rac1, we performed gene expression profiling which revealed that Rac1 signaling regulates the expression of Rab27b, another GTPase that plays a key role in targeting vesicular trafficking. Consequently, the Rac1-null decidual cells failed to secrete vascular endothelial growth factor A, which is a critical regulator of decidual angiogenesis, and insulin-like growth factor binding protein 4, which regulates the bioavailability of insulin-like growth factors that promote proliferation and differentiation of trophoblast cell lineages in the ectoplacental cone. The lack of secretion of these key factors by Rac1-null decidua gave rise to impaired angiogenesis and dysregulated proliferation of trophoblast cells, which in turn results in overexpansion of the trophoblast giant cell lineage and disorganized placenta development. Further experiments revealed that RAC1, the human ortholog of Rac1, regulates the secretory activity of human endometrial stromal cells during decidualization, supporting the concept that this signaling G protein plays a central and conserved role in controlling endometrial secretory function. This study provides unique insights into the molecular mechanisms regulating endometrial secretions that mediate stromal-endothelial and stromal-trophoblast crosstalk critical for placenta development and establishment of pregnancy.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号