共查询到20条相似文献,搜索用时 15 毫秒
1.
We measured magnetic fields and two sources of contact current in 36 homes in Pittsfield, MA. The first source, V(P-W), is the voltage due to current in the grounding wire, which extends from the service panel neutral to the water service line. This voltage can cause contact current to flow upon simultaneous contact with a metallic part of the water system, such as the faucet, and the frame of an appliance, which is connected to the panel neutral through the equipment-grounding conductor. The second is V(W-E), the voltage between the water pipe and earth, attributable to ground currents in the water system and magnetic induction from nearby power lines. In homes with conductive water systems and drains, V(W-E) can produce a voltage between the faucet and drain, which may produce contact current into an individual contacting the faucet while immersed in a bathtub. V(P-W) was not strongly correlated to the magnetic field (both log transformed) (r = 0.28; P < 0.1). On the other hand, V(W-E) was correlated to the residential magnetic field (both log transformed) (r = 0.54; P < 0.001), with the highest voltages occurring in homes near high voltage transmission lines, most likely due to magnetic induction on the grounding system. This correlation, combined with both frequent exposure opportunity for bathing children and substantial dose to bone marrow resulting from contact, lead us to suggest that contact current due to V(W-E) could explain the association between high residential magnetic fields and childhood leukemia. 相似文献
2.
The ongoing Childhood Leukemia Survival Study is examining the possible association between magnetic field exposure and survival of children with newly diagnosed acute lymphocytic leukemia (ALL). We report the results of the first year 24 h personal magnetic field monitoring for 356 US and Canadian children by time weighted average TWA and alternative exposure metrics. The mean TWA of 0.12 microT was similar to earlier personal exposure studies involving children. A high correlation was found between 24 h TWA and alternative metrics: 12 h day TWA, 12 night TWA, geometric mean, 95th percentile value, percentage time over 0.2 and 0.3 microT, and an estimate of field stability (Constant Field Metric). Two measures of field intermittency, rate of change metric (RCM) and standardized rate of change metric (RCMS), were not highly correlated with TWA. The strongest predictor of TWA was location of residence, with highest TWAs associated with urban areas. Residence in an apartment, lower paternal educational level, and residential mobility were also associated with higher TWAs. There were no significant differences in the appliance use patterns of children with higher TWA values. Children with the highest field intermittency (high RCM) were more likely to sit within 3 feet of a video game attached to the TV. Our results suggest that 24 h TWA is a representative metric for certain patterns of exposure, but is not highly correlated with two metrics that estimate field intermittency. 相似文献
3.
Joseph D. Bowman Christian K. Miller Edward F. Krieg Ruiguang Song 《Bioelectromagnetics》2010,31(5):391-405
To improve the assessment of magnetic field exposures for occupational health studies, the Multiwave® System III (MW3) was developed to capture personal exposures to the three‐dimensional magnetic field vector B (t) in the 0–3000 Hz band. To process hundreds of full‐shift MW3 measurements from epidemiologic studies, new computer programs were developed to calculate the magnetic field's physical properties and its interaction with biological systems through various mechanisms (magnetic induction, radical pair interactions, ion resonance, etc.). For automated calculations in the frequency domain, the software uses new algorithms that remove artifacts in the magnetic field's Fourier transform due to electronic noise and the person's motion through perturbations in the geomagnetic field from steel objects. These algorithms correctly removed the Fourier transform artifacts in 92% of samples and have improved the accuracy of frequency‐dependent metrics by as much as 3300%. The output of the MwBatch software is a matrix of 41 exposure metrics calculated for each 2/15 s sample combined with 8 summary metrics for the person's full‐period exposure, giving 294 summary‐exposure metrics for each person monitored. In addition, the MwVisualizer software graphically explores the magnetic field's vector trace, its component waveforms, and the metrics over time. The output was validated against spreadsheet calculations with pilot data. This software successfully analyzed full‐shift MW3 monitoring with 507 electric utility workers, comprising over 1 million vector waveforms. The software's output can be used to test hypotheses about magnetic field biology and disease with biophysical models and also assess compliance with exposure limits. Bioelectromagnetics 31:391–405, 2010. © 2010 Wiley‐Liss, Inc. 相似文献
4.
We conducted a pilot study to assess magnetic field levels in electric compared to gasoline‐powered vehicles, and established a methodology that would provide valid data for further assessments. The sample consisted of 14 vehicles, all manufactured between January 2000 and April 2009; 6 were gasoline‐powered vehicles and 8 were electric vehicles of various types. Of the eight models available, three were represented by a gasoline‐powered vehicle and at least one electric vehicle, enabling intra‐model comparisons. Vehicles were driven over a 16.3 km test route. Each vehicle was equipped with six EMDEX Lite broadband meters with a 40–1,000 Hz bandwidth programmed to sample every 4 s. Standard statistical testing was based on the fact that the autocorrelation statistic damped quickly with time. For seven electric cars, the geometric mean (GM) of all measurements (N = 18,318) was 0.095 µT with a geometric standard deviation (GSD) of 2.66, compared to 0.051 µT (N = 9,301; GSD = 2.11) for four gasoline‐powered cars (P < 0.0001). Using the data from a previous exposure assessment of residential exposure in eight geographic regions in the United States as a basis for comparison (N = 218), the broadband magnetic fields in electric vehicles covered the same range as personal exposure levels recorded in that study. All fields measured in all vehicles were much less than the exposure limits published by the International Commission on Non‐Ionizing Radiation Protection (ICNIRP) and the Institute of Electrical and Electronics Engineers (IEEE). Future studies should include larger sample sizes representative of a greater cross‐section of electric‐type vehicles. Bioelectromagnetics 34:156–161, 2013. © 2012 Wiley Periodicals, Inc. 相似文献
5.
W. T. Kaune S. D. Darby S. N. Gardner Z. Hrubec R. N. Iriye M. S. Linet 《Bioelectromagnetics》1994,15(1):33-51
A study was carried out in 1990 to guide the development of a protocol for assessing residential exposures of children to time-weighted-average (TWA) power-frequency magnetic fields. The principal goal of this dosimetry study was to determine whether area (i.e., spot and/or 24 h) measurements of power-frequency magnetic fields in the residences and in the schools and daycare centers of 29 children (4 months through 8 years of age) could be used to predict their measured personal 24-h exposures. TWA personal exposures, measured with AMEX-3D meters worn by subjects, were approximately log-normally distributed with both residential and nonresidential geometric means of 0.10 μT (1.0 mG). Between-subjects variability in residential personal exposure levels (geometric standard deviation of 2.4) was substantially greater than that observed for nonresidential personal exposure levels (1.4). The correlation between log-transformed residential and total personal exposure levels was 0.97. Time-weighted averages of the magnetic fields measured in children's bedrooms, family rooms, living rooms, and kitchens were highly correlated with residential personal exposure levels (r = 0.90). In general, magnetic field levels measured in schools and daycare centers attended by subjects were smaller and less variable than measured residential fields and were only weakly correlated with measured nonresidential personal exposures. The final measurement protocol, which will be used in a large US study examining the relationship between childhood leukemia and exposure to magnetic fields, contains the following elements: normal- and low-power spot magnetic field measurements in bedrooms occupied by subjects during the 5 years prior to the date of diagnosis for cases or the corresponding date for controls; spot measurements under normal and low power-usage conditions at the centers of the kitchen and the family room; 24-h magnetic-field recordings near subjects' beds; and wire coding using the Wertheimer-Leeper method. © 1994 Wiley-Liss, Inc. 1 This article is a US Government work and, as such, is in the public domain in the United States of America. 相似文献
6.
Sixty-Hz magnetic field exposures were measured for 45 adult residents of Maine. Thirty of the subjects resided near rights-of-way (ROWs) with either 345- and 115-kV transmission lines, or ROWs with only 115-kV transmission lines; fifteen resided far from any transmission lines. Personal exposure data for a single 24-hour period was acquired with the EMDEX. The EMDEX's event-marker button was used to partition exposures into Home and Away components. Also, three area measurements were taken for each subject during the personal exposure measurement period: 1) 24-hr fixed-site bedroom measurement with a second EMDEX; 2) Spot measurements in at least three rooms of every residence; and 3) Spot measurements outside each residence. Residence near transmission lines highly loaded during the measurement period was associated with increased Home and Total exposure relative to a far-away population. Average exposure level while away from home was uniform (at about 2 mG) throughout the study population. On a quantitative level, Home exposure was correlated equivalently with Spot-In (r = .70) and the 24-hr fixed site measurement (r = .68). Correlations of area measurements with Total exposure were weaker because of the dilution effect of Away exposure (r = .64 for Spot-In; r = .61 for 24-h Bedroom). Away and Home exposures were not correlated (r = .14), which reinforced our confidence that the participants used the EMDEX correctly. The data suggest the need for caution before inferences are drawn about total personal exposure from area measurements. The study demonstrates the feasibility of obtaining valid measures of magnetic-field exposure with the personal exposure monitors that have been developed. 相似文献
7.
Sven Schmiedel Hauke Brüggemeyer Johannes Philipp Jost Wendler Hiltrud Merzenich Joachim Schüz 《Bioelectromagnetics》2009,30(2):81-91
Electric field strength values calculated by wave propagation modeling were applied as an exposure metric in a case–control study conducted in Germany to investigate a possible association between radio frequency electromagnetic fields (RF‐EMF) emitted from television and radio broadcast transmitters and the risk of childhood leukemia. To validate this approach it was examined at 850 measurement sites whether calculated RF‐EMF are an improvement to an exposure proxy based on distance from the place of residence to a transmitter. Further, the agreement between measured and calculated RF‐EMF was explored. For dichotomization at the 90% quantiles of the exposure distributions it was found that distance agreed less with measured RF‐EMF (Kappa coefficient: 0.55) than did calculated RF‐EMF (Kappa coefficient: 0.74). Distance was a good exposure proxy for a single transmitter only which uses the frequency bands of amplitude modulated radio, whereas it appeared to be of limited informative value in studies involving several transmitters, particularly if these are operating in different frequency bands. The analysis of the agreement between calculated RF‐EMF and measured RF‐EMF showed a sensitivity of 76.6% and a specificity of 97.4%, leading to an exposure misclassification that still allows one to detect a true odds ratio as low as 1.4 with a statistical power of >80% at a two‐sided significance level of 5% in a study with 2,000 cases and 6,000 controls. Thus, calculated RF‐EMF is confirmed to be an appropriate exposure metric in large‐scale epidemiological studies on broadcast transmitters. Bioelectromagnetics 30:81–91, 2009. © 2008 Wiley‐Liss, Inc. 相似文献
8.
To explore the feasibility of performing an epidemiologic study of female breast cancer and magnetic field (MF) exposures, we chose to study garment workers, who reportedly have some of the highest MF exposures. We collected personal exposure (PE, n = 48) and survey measurements (n = 77) near commercial sewing machines at three garment facilities and conducted a pilot interview among 25 garment workers asking about exposure duration, activities, and machine characteristics. MF levels were higher for older machines with alternating current (AC) than newer machines with direct current (DC) motors. MF levels were comparable for both idling and sewing activities. Most interviewed workers could describe duration of exposure and machine type (automatic/manual), but not other machine characteristics. Measurements were lower than previously reported for garment workers but were higher than exposures to most women. A historical exposure assessment can be conducted by linking duration of exposure with reconstructed exposure measurements but may be limited by the accuracy of work history data. 相似文献
9.
Considerable interest has developed during the past ten years regarding the hypothesis that living organisms may respond to temporal variability in ELF magnetic fields to which they are exposed. Consequently, methods to measure various aspects of temporal variability are of interest. In this paper, five measures of temporal variability were examined: Arithmetic means (D(mean)) and rms values (D(rms)) of the first differences (i.e., absolute value of the difference between consecutive measurements) of magnetic field recordings; "standardized" forms of D(rms), denoted RCMS, obtained by dividing D(rms) by the standard deviations of the magnetic field data; and mean (F(mean)) and rms (F(rms)) values of fractional first differences. Theoretical investigations showed that D(mean) and D(rms) are virtually unaffected by long-term systematic trends (changes) in exposure. These measures thus provide rather specific measures of short-term temporal variability. This was also true to a lesser extent for F(mean) and F(rms). In contrast, the RCMS metric was affected by both short-term and long-term exposure variabilities. The metrics were also investigated using a data set consisting of twice-repeated two-calendar-day recordings of bedroom magnetic fields and personal exposures of 203 women residing in the western portion of Washington State. The predominant source of short-term temporal variability in magnetic field exposures arose from the movement of subjects through spatially varying magnetic fields. Spearman correlations between TWA bedroom magnetic fields or TWA personal exposures and five measures of temporal variability were relatively low. Weak to moderate levels of correlation were observed between temporal variability measured during two different sessions separated in time by 3 or 6 months. We conclude that first difference and fractional difference metrics provide specific and fairly independent measures of short-term temporal variability. The RCMS metric does not provide an easily interpreted measure of short-term or long-term temporal variability. This last result raises uncertainties about the interpretation of published studies that use the RCMS metric. 相似文献
10.
The development of a wire code protocol based on a study of electrical installations in Melbourne, Australia, is described. Because of very significant differences between the Melbourne power distribution system and that used in Denver, Colorado, an approach different from that used by Wertheimer and Leeper was required. A combined practical and theoretical approach was used to determine a continuous exposure index, defined as a measure of the potential for exposure due to external electrical installations. The protocol was tested on a convenient sample of 41 homes in which the field was monitored over a 12 hour overnight period. A correlation of 0.85 (95% CI 0.74–0.92, P < .0001) was obtained between the measured time-weighted average and the wire coding exposure index. To assess the efficacy of the wiring configuration index, a computer simulation of a case-control study was then performed. It was concluded that, using the same basic reasoning of the Wertheimer and Leeper code, it is possible to develop a location-specific code that provides a good correlation with the residential time-weighted average and an acceptable degree of exposure misclassification. © 1994 Wiley-Liss, Inc. 相似文献
11.
Larry Dlugosz Kathleen Belanger Pamela Johnson Michael B. Bracken 《Bioelectromagnetics》1994,15(6):593-597
Two types of dosimeters for measuring human exposure to 60 Hz magnetic fields were compared. Fifty adults wore the single-axis, wrist model AMEX (average magnetic field exposure system) and the triple axis, hip-pocket or pouch model AMEX-3D meters for 2 days. Ninety-six percent of the tests were accomplished without apparent dosimeter failure. The average root mean square magnetic flux density measurements with the AMEX3D (mean = 0.10 μT, S.D. = 0.07, range = 0.03 ? 0.31) were significantly higher than with the AMEX meter (mean = 0.07 μT, S.D. 0.05, range = 0.02 ? 0.27 μT) (t test, P < 0.01). There was substantial correlation between the AMEX and the AMEX-3D measurements (Pearson's correlation coefficient = 0.65, P < 0.01) but poor concordance (Intraclass correlation coefficient = ? 0.25). These results suggest that there is a wide variation in exposure to extremely low frequency magnetic fields in the population. Magnetic field measurements with the AMEX-3D are nearly always higher than with the AMEX dosimeters. Caution is advised when comparing magnetic field measurements made with different types of dosimeters. © 1994 Wiley-Liss, Inc. 相似文献
12.
Bary W. Wilson Kris Caputa Maria A. Stuchly Jeffrey D. Saffer Karl C. Davis Calvin E. Washam Lloyd G. Washam Glenn R. Washam Mark A. Wilson 《Bioelectromagnetics》1994,15(6):563-577
Exposure systems that provide good magnetic field uniformity, minimum stray fields, and minimal heating, vibration, and hum, as well as capability for true sham exposure in which current flows in the coils, are needed to determine rigorously the biological effects of weak magnetic fields. Designs based on acrylic polymer coil support structures and twisted pair bifilary coil windings were employed to fabricate several different systems for the exposure of laboratory animals and cell cultures to magnetic fields. These systems exhibit excellent performance characteristics in terms of exposure field uniformity, stray field containment, and exposure field cancellation in the sham exposure mode. A custom-written computer program was used to determine the best arrangement for coils with regard to field uniformity in the exposure volume and stray field containment. For in vivo exposures, modules were made up of four Merritt four-coil sets, built into a single structure and positioned to form an octapole with fields directed in the horizontal plane. For in vitro applications, two different coil configurations were selected to produce the vertical fields required. A quadrupole system, comprising modules consisting of two Merritt four-coil sets arranged side by side to limit stray fields, was built as a prototype. In the second configuration, one Merritt four-coil set was positioned inside the other to form a concentric coil set. In both in vitro systems, exposure chambers were connected to remote commercial incubators in order to reduce ambient magnetic fields in the exposure volume. An active field cancellation circuit was developed for reducing ambient AC magnetic fields in the in vitro sham exposure chamber, when necessary. These design and fabrication approaches provide systems that offer uniform field exposures and excellent stray field containment when needed and are portable, washable, and relatively inexpensive. © 1994 Wiley-Liss, Inc. 1 This article is a US Government work and, as such, is in the public domain in the United States of America. 相似文献
13.
Myelogenous leukemia and electric blanket use 总被引:2,自引:0,他引:2
In a case-control study of adult acute and chronic myelogenous leukemia in Los Angeles County, we tested the hypothesis that excess exposure to electromagnetic fields from electric blankets was associated with risk of leukemia. We did this by studying 116 cases of acute myelogenous leukemia (AML) and 108 cases of chronic myelogenous leukemia (CML) along with matched neighborhood controls. The cases and controls were queried as to electric blanket use and the risks computed. For AML the risk was 0.9 (95% CI 0.5-1.6) and for CML the risk was 0.8 (95% CI 0.4-1.6). Cases did not differ from controls by duration of use, year of first regular use, year since last use, or socioeconomic status. Our best estimates of exposure indicate that electric blanket use increases overall exposure to electric fields by less than 50% and magnetic fields by less than 100%. We conclude that there is no major leukemogenic risk associated with electric blanket use in Los Angeles County. 相似文献
14.
Transcranial magnetic stimulation or repetitive transcranial magnetic stimulation (TMS/rTMS) is currently being used in treatments of the central nervous system diseases, for instance, depressive states. The principles of localized magnetic stimulation are summarized and the risk and level of occupational field exposure of the therapeutic staff is analyzed with reference to ICNIRP guidelines for pulses below 100 kHz. Measurements and analysis of the occupational exposure to magnetic fields of the staff working with TMS/rTMS are presented. 相似文献
15.
Physiological processes in organisms can be influenced by extremely low-frequency (ELF) electromagnetic energy. Biological effect studies have great importance; as well as measurement studies since they provide information on the real exposure situations. In this study, the leakage magnetic fields around a transformer were measured in an apartment building in Küçükçekmece, Istanbul, and the measurement results were evaluated with respect to the international exposure standards. The transformer station was on the bottom floor of a three-floor building. It was found that people living and working in the building were exposed to ELF magnetic fields higher than the threshold magnetic field value of the International Agency for Research on Cancer (IARC). Many people living in this building reported health complaints such as immunological problems of their children. There were child-workers working in the textile factories located in the building. Safe distances or areas for these people should be recommended. Protective measures could be implemented to minimize these exposures. Further residential exposure studies are needed to demonstrate the exposure levels of ELF magnetic fields. Precautions should, therefore, be taken either to reduce leakage or minimize the exposed fields. Shielding techniques should be used to minimize the leakage magnetic fields in such cases. 相似文献
16.
Epidemiological studies have indicated a connection between extremely low frequency magnetic flux densities above 0.4 microT (time weighted average) and childhood leukemia risks. This conclusion is based mainly on indoor exposure measurements. We therefore regarded it important to map outdoor magnetic flux densities in public areas in Trondheim, Norway. Because of seasonal power consumption variations, the fields were measured during both summer and winter. Magnetic flux density was mapped 1.0 m above the ground along 17 km of pavements in downtown Trondheim. The spectrum was measured at some spots and the magnetic flux density emanated mainly from the power frequency of 50 Hz. In summer less than 4% of the streets showed values exceeding 0.4 microT, increasing to 29% and 34% on cold and on snowy winter days, respectively. The average levels were 0.13 microT (summer), 0.85 microT (winter, cold), and 0.90 microT (winter, snow), with the highest recorded value of 37 microT. High spot measurements were usually encountered above underground transformer substations. In winter electric heating of pavements also gave rise to relatively high flux densities. There was no indication that the ICNIRP basic restriction was exceeded. It would be of interest to map the flux density situation in other cities and towns with a cold climate. 相似文献
17.
Residential magnetic and electric fields 总被引:1,自引:0,他引:1
A magnetic flux density (MFD) and electric-field (E-field) data-acquisition system was built for characterizing extremely low-frequency fields in residences. Every 2 min during 24-h periods, MFD and E-field measurements were made in 43 homes in King, Pierce, and Snohomish counties of Washington State. The total electrical energy used in each residence during the 24-h measurement period was also recorded, and maps were drawn to scale of the distribution wiring within 43 m (140 ft) of these homes. Finally, on a separate date, field measurements were made in each home during an epidemiological interview. The results of this study can be summarized as follows: 1) 24-h-average MFD measured at two separate points in the family room were correlated, as were a 24-h-average bedroom measurement and the mean of the two family-room measurements. 2) The 24-h-average family-room MFD and E-field measurements were uncorrelated. 3) The 24-h-average total harmonic distortions of family-room MFD and E-fields were less than about 24% and 7%, respectively. 4) Residential MFD exhibited a definite 24-h (diurnal) cycle. 5) The 24-h-average and interviewer-measured MFD were correlated. 6) Residential 24-h-average MFD were correlated with the wiring code developed by Wertheimer and Leeper. 7) An improved prediction of 24-h-average residential MFD was obtained using the total number of service drops, the distance to neighboring transmission lines, and the number of primary phase conductors. 相似文献
18.
W T Kaune R S Banks M S Linet E E Hatch R A Kleinerman S Wacholder R E Tarone C Haines 《Bioelectromagnetics》2001,22(5):294-305
Bowman et al. used epidemiologic data to test a model in which subjects were classified as being "in-resonance" or "not-in-resonance" for 60-Hz magnetic-field exposures depending on single static magnetic-field measurements at the centers of their bedrooms. A second paper by Swanson concluded that a single static magnetic-field measurement is insufficient to meaningfully characterize a residential environment. The main objective of this study was to investigate exposure-related questions raised by these two papers in two U.S. data sets, one containing single spot measurements of static magnetic fields at two locations in homes located in eight states, and the other repeated spot measurements (seven times during the course of one year) of the static magnetic fields at the centers of bedrooms and family rooms and on the surfaces of beds in 51 single-family homes in two metropolitan areas. Using Bowman's criterion, bedrooms were first classified as being in-resonance or not-in-resonance based on the average of repeated measurements of the static magnetic field measured on the bed where the presumed important exposure actually occurred. Bedrooms were then classified a second time using single spot measurements taken at the centers of bedrooms, centers of family rooms, or on the surfaces of beds, as would be done in the typical epidemiologic study. The kappa statistics characterizing the degree of concordance between the first (on-bed averages) and second (spot measurements) methods of assessing resonance status were 0.44, 0.33, and 0.67, respectively. This level of misclassification could significantly affect the results of studies involving the determination of resonance status. 相似文献
19.
20.
A recent study examining the relationship between distance to nearby power lines and childhood cancer risk re‐opened the debate about which exposure metrics are appropriate for power frequency magnetic field investigations. Using data from two large population‐based UK and German studies we demonstrate that distance to power lines is a comparatively poor predictor of measured residential magnetic fields. Even at proximities of 50 m or less, the positive predictive value of having a household measurement over 0.2 µT was only 19.4%. Clearly using distance from power lines, without taking account of other variables such as load, results in a poor proxy of residential magnetic field exposure. We conclude that such high levels of exposure misclassification render the findings from studies that rely on distance alone uninterpretable. Bioelectromagnetics 30:183–188, 2009. © 2008 Wiley‐Liss, Inc. 相似文献