首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The potential health risks of radiofrequency electromagnetic fields (RF EMFs) emitted by mobile phones are currently of considerable public interest. The present study investigated the effect of exposure to 900 MHz GSM radiofrequency radiation on steroid (cortisol and testosterone) and pituitary (thyroid-stimulating hormone, growth hormone, prolactin and adrenocorticotropin) hormone levels in 20 healthy male volunteers. Each subject was exposed to RF EMFs through the use of a cellular phone for 2 h/day, 5 days/ week, for 4 weeks. Blood samples were collected hourly during the night and every 3 h during the day. Four sampling sessions were performed at 15-day intervals: before the beginning of the exposure period, at the middle and the end of the exposure period, and 15 days later. Parameters evaluated included the maximum serum concentration, the time of this maximum, and the area under the curve for hormone circadian patterns. Each individual's pre-exposure hormone concentration was used as his control. All hormone concentrations remained within normal physiological ranges. The circadian profiles of prolactin, thyroid-stimulating hormone, adrenocorticotropin and testosterone were not disrupted by RF EMFs emitted by mobile phones. For growth hormone and cortisol, there were significant decreases of about 28% and 12%, respectively, in the maximum levels when comparing the 2-week (for growth hormone and cortisol) and 4-week (for growth hormone) exposure periods to the pre-exposure period, but no difference persisted in the postexposure period. Our data show that the 900 MHz EMF exposure, at least under our experimental conditions, does not appear to affect endocrine functions in men.  相似文献   

2.
The aim of the present study was to investigate whether weekly exposure to gamma rays causes a persistent increase in the number of radioresistant leukocytes in mice in vivo. Using the comet assay, 1 Gy radiation exposure decreased the percentage of leukocytes with less than 5% DNA in the tail (<5% DNAT), and we propose that radioresistance induction might increase the number of cells with <5% DNAT after radiation exposure. We exposed mice to 1 Gy gamma rays weekly for four weeks or 2 Gy per week for nine weeks. We observed a significant increase in cells with <5% DNAT after the third week and up to nine weeks of exposure. We exposed animals to gradually increasing radiation doses and finally challenged the lymphocytes with 1 Gy radiation both in vivo and in vitro. We observed increased radioresistance in vitro, providing evidence that a cellular process is involved. However, more radioresistance was observed in vivo than in vitro, suggesting a physiological effect. Cells challenged in vitro were maintained on ice during and after exposure, which likely caused a reduction in DNA repair. Radioresistance induction likely arose from mutation selection in stem cells because leukocytes are unable to proliferate in peripheral blood.  相似文献   

3.
A group of 24 healthy young men were evaluated before and after serial suberythematous ultraviolet (UV) radiation: group I, control (no irradiation); groups II and III, 12 radiations in 4 weeks with two different spectra (both containing UV-B). Before the first and 2 days after the last exposure all the volunteers were given an intravenous injection of thyrotropin releasing hormone (TRH, protirelin 0.2 mg) and luteinizing hormone releasing hormone (LH-RH, gonadorelin 0.1 mg). The serum concentrations of TSH, follicle stimulating hormone, LH and prolactin were measured at 0, 20, 30, 45 and 60 min by radioimmunoassay. Neither basal nor stimulated levels of the pituitary hormones showed significant changes after UV radiation. The results showed that exposure to suberythematous doses of UV did not influence the regulation of pituitary hormones in these healthy individuals. Accepted: 24 October 1996  相似文献   

4.
A total of 120 E mu-Pim1 heterozygous mice and 120 wild-type mice were exposed for 1 h/day 5 days/week at each of the four exposure levels in "Ferris-wheel" exposure systems for up to 104 weeks to GSM-modulated 898.4 MHz radiation at SARs of 0.25, 1.0, 2.0 and 4.0 W/kg. In addition, 120 heterozygous and 120 wild-type mice were sham-exposed; there was also an unrestrained negative control group. Four exposure levels were used to investigate whether a dose-response effect could be detected. Independent verification confirmed that the exposures in the current study were nonthermal. There was no significant difference in the incidence of lymphomas between exposed and sham-exposed groups at any of the exposure levels. A dose-response effect was not detected. The findings showed that long-term exposures of lymphoma-prone mice to 898.4 MHz GSM radiofrequency (RF) radiation at SARs of 0.25, 1.0, 2.0 and 4.0 W/kg had no significant effects when compared to sham-irradiated animals. A previous study (Repacholi et al., Radiat. Res. 147, 631-640, 1997) reported that long-term exposure of lymphoma-prone mice to one exposure level of 900 MHz RF radiation significantly increased the incidence of non-lymphoblastic lymphomas when compared to sham-irradiated animals.  相似文献   

5.
The purpose of this study was to assess the ability of the rat to reduce metabolic rate when exposed to deep-penetrating radio-frequency (RF) radiation. Male Sprague-Dawley rats were maintained at an ambient temperature (Ta) of 10 degrees C and exposed to 600-MHz radiation while metabolic rate (MR) was measured by indirect calorimetry. RF radiation exposures were made in a waveguide-type system that permitted the continuous control of specific absorption rate (SAR). SAR's of 2-5 W/kg led to significant reductions in MR when averaged from 30 to 60 min after the initiation of RF radiation exposure. The total decrease in MR during RF radiation exposure accounted for approximately 37% of the total RF heat load. Exposure of another group of rats to the same SAR's at a Ta of 10 degrees C resulted in a significant elevation in colonic temperature. Thus, despite the decrease in MR, heat gain still exceeded heat loss during RF radiation exposure, with a resultant elevation in deep body temperature. In conclusion, in a cold environment the rat exposed to RF radiation decreases its MR. However, the response time and efficiency of the response is not adequate to prevent an increase in body temperature.  相似文献   

6.
This study was designed to assess if radiofrequency (RF) radiation induces oxidative stress in cultured mammalian cells when given alone or in combination with ferrous ions (FeSO4). For this purpose the production of reactive oxygen species (ROS) was measured by flow cytometry in human lymphoblastoid cells exposed to 1950 MHz signal used by the third generation wireless technology of the Universal Mobile Telecommunication System (UMTS) at Specific Absorption Rate of 0.5 and 2.0 W/kg. Short (5–60 min) or long (24 h) duration exposures were carried out in a waveguide system under strictly controlled conditions of both dosimetry and environment. Cell viability was also measured after 24 h RF exposure using the Resazurin and Neutral Red assays. Several co‐exposure protocols were applied to test if RF radiation is able to alter ROS formation induced by FeSO4 (RF given before or concurrently to FeSO4). The results obtained indicate that non‐thermal RF exposures do not increase spontaneous ROS formation in any of the experimental conditions investigated. Consistent with the lack of ROS production, no change in cell viability was observed in Jurkat cells exposed to RF radiation for 24 h. Similar results were obtained when co‐exposures were considered: combined exposures to RF radiation and FeSO4 did not increase ROS formation induced by the chemical treatment alone. In contrast, in cultures treated with FeSO4 as positive control, a dose‐dependent increase in ROS formation was recorded, validating the sensitivity of the method employed. Bioelectromagnetics 30:525–535, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
Although in vitro studies have been previously conducted to determine the biological effects of radio frequency (RF) radiation, it has not yet been determined whether or not RF radiation poses a potential hazard. This study was conducted to determine whether RF radiation exposure exerts detectable effects on cell cycle distribution, cellular invasion, and migration. NIH3T3 mouse fibroblasts were exposed to 849 MHz of RF radiation at average SAR values of 2 or 10 W/kg for either 1 h, or for 1 h per day for 3 days. During the exposure period, the temperature in the exposure chamber was maintained isothermally by circulating water throughout the cavity. Cell cycle distribution was analyzed at 24 and 48 h after exposure, by flow cytometry. We detected no statistically significant differences between the sham-exposed and RF radiation-exposed cells. Cellular invasion and migration were assessed by in vitro Matrigel invasion and Transwell migration assays. The RF radiation-exposed groups evidenced no significant changes in motility and invasiveness compared to the sham-exposed group. However, the ionizing radiation-exposed cells, used as a positive control group, manifested dramatic alterations in their cell cycle distribution, cellular invasiveness, and migration characteristics. Our results show that 849 MHz RF radiation exposure exerts no detectable effects on cell cycle distribution, cellular migration, or invasion at average SAR values of 2 or 10 W/kg.  相似文献   

8.
We conducted a large-scale in vitro study focused on the effects of low level radiofrequency (RF) fields from mobile radio base stations employing the International Mobile Telecommunication 2000 (IMT-2000) cellular system in order to test the hypothesis that modulated RF fields may act as a DNA damaging agent. First, we evaluated the responses of human cells to microwave exposure at a specific absorption rate (SAR) of 80 mW/kg, which corresponds to the limit of the average whole body SAR for general public exposure defined as a basic restriction in the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines. Second, we investigated whether continuous wave (CW) and Wideband Code Division Multiple Access (W-CDMA) modulated signal RF fields at 2.1425 GHz induced different levels of DNA damage. Human glioblastoma A172 cells and normal human IMR-90 fibroblasts from fetal lungs were exposed to mobile communication frequency radiation to investigate whether such exposure produced DNA strand breaks in cell culture. A172 cells were exposed to W-CDMA radiation at SARs of 80, 250, and 800 mW/kg and CW radiation at 80 mW/kg for 2 and 24 h, while IMR-90 cells were exposed to both W-CDMA and CW radiations at a SAR of 80 mW/kg for the same time periods. Under the same RF field exposure conditions, no significant differences in the DNA strand breaks were observed between the test groups exposed to W-CDMA or CW radiation and the sham exposed negative controls, as evaluated immediately after the exposure periods by alkaline comet assays. Our results confirm that low level exposures do not act as a genotoxicant up to a SAR of 800 mW/kg.  相似文献   

9.
BACKGROUND: The effect of perchlorate in drinking water on neonatal blood thyroid-stimulating hormone (thyrotropin; TSH) levels was examined for Las Vegas and Reno, Nevada. METHODS: The neonatal blood TSH levels in Las Vegas (with up to 15 microg/L (ppb) perchlorate in drinking water) and in Reno (with no perchlorate detected in the drinking water) from December 1998 to October 1999 were analyzed and compared. The study samples were from newborns in their first month of life (excluding the first day of life) with birth weights of 2, 500-4,500 g. A multivariate analysis of logarithmically transformed TSH levels was used to compare the mean TSH levels between Las Vegas and Reno newborns, with age and sex being controlled as potential confounders. RESULTS: This study of neonatal TSH levels in the first month of life found no effect from living in the areas with environmental perchlorate exposures of 相似文献   

10.
Electromagnetic field (EMF) exposures have been shown to induce heat shock proteins (HSPs), which help to maintain the conformation of cellular proteins during periods of stress. We have previously reported that short-term exposure of chick embryos to either 60 Hz (extremely low frequency: ELF), or radio-frequency (RF: 915 MHz) EMFs induce protection against hypoxia. Experiments presented in the current report are based on a study in which long-term (4 days), continuous exposure to ELF-EMFs decreased protection against ultraviolet radiation. Based on this result, it was hypothesized that de-protection against hypoxia should also occur following long-term, continuous, or daily, repeated exposures to EMFs. To test this hypothesis, chick embryos were exposed to ELF-EMFs (8 microT) continuously for 4 days, or to ELF or RF (3.5 mW incident power)-EMFs repeated daily (20, 30, or 60 min once or twice daily for 4 days). Several of the exposure protocols yielded embryos that had statistically significant decreases in protection against hypoxic stress (continuous and 30 or 60 min ELF twice daily; or 30 or 60 min once daily RF). This is consistent with our finding that following 4 days of ELF-EMF exposure, HSP70 levels decline by 27% as compared to controls. In addition, the superposition of ELF-EMF noise, previously shown to minimize ELF-EMF induced hypoxia protection, inhibited hypoxia de-protection caused by long term, continuous ELF or daily, repeated RF exposures. This EMF-induced decrease in HSP70 levels and resulting decline in cytoprotection suggests a mechanism by which daily exposure (such as might be experienced by mobile phone users) could enhance the probability of cancer and other diseases.  相似文献   

11.
A recent study raised concern about increase of resting blood pressure after a 35 min exposure to the radiofrequency (RF) field emitted by a 900 MHz cellular phone. In this randomized, double blind, placebo controlled crossover trial, 32 healthy subjects were submitted to 900 MHz (2 W), 1800 MHz (1 W) cellular phone exposure, and to sham exposure in separate sessions. Arterial blood pressure (arm cuff method) and heart rate were measured during and after the 35 min RF and sham exposure sessions. We evaluated cardiovascular responses in terms of blood pressure and heart rate during controlled breathing, spontaneous breathing, head-up tilt table test, Valsalva manoeuvre and deep breathing test. Arterial blood pressure and heart rate did not change significantly during or after the 35 min RF exposures at 900 MHz or 1800 MHz, compared to sham exposure. The results of this study indicate that exposure to a cellular phone, using 900 MHz or 1800 MHz with maximal allowed antenna powers, does not acutely change arterial blood pressure and heart rate.  相似文献   

12.
Limited published animal research reports synergistic teratogenic effects following combined hyperthermia (induced by elevated ambient temperature) and administration of chemical teratogens. Radiofrequency (RF) radiation is widely used in occupational environments. Since RF radiation also elevates the body temperature of, and is teratogenic to, exposed animals, concurrent RF radiation and chemical agent administration may enhance teratogenicity. The present exploratory study, consisting of preliminary dose-finding studies and the primary study, was designed to investigate whether concurrent exposure of rats to RF radiation and the industrial solvent 2-methoxyethanol (2ME) can enhance the developmental toxicity of either agent acting alone. Preliminary dose-finding studies using small numbers of rats investigated the ability of various RF radiation conditions and doses of 2ME to produce external malformations (primarily of the paws) when administered on gestation day 13. Based on these preliminary studies, RF radiation exposure [sufficient to elevate rectal temperature to 42.0 degrees C (4 degrees C above normal for rats) for 30 min] and 2ME administration (150 mg/kg) were selected for the primary study. In the primary study, groups of 18 to 27 pregnant rats were administered RF radiation exposure and distilled water gavage, 2ME gavage and sham RF exposure, RF radiation exposure and 2ME gavage concurrently, or sham RF exposure and distilled water gavage. Pregnant rats were sacrificed on gestation day 20, and the offspring were examined for external malformations. Combined exposures enhanced the adverse effects produced by either experimental agent alone (no malformations were detected in the double sham group). Mean fetal malformations/litter increased from 14% after 2ME and sham RF (15/26 litters affected, with an average of 2 fetuses/litter malformed) and 30% after RF radiation and water gavage (10/18 litters affected, with an average of 4 fetuses/litter malformed), to 76% after the combined treatment (18/18 litters affected, with an average of 12 fetuses/litter malformed). In addition to a significant increase in the frequency of malformations, the severity of malformations also was enhanced by the combination treatment (on a relative severity ranking scale, the 2ME severity score was less than 1, the RF score was 3, and the combination score was 6). This study provided evidence of synergism between RF radiation and 2ME administration, but additional research will be required to characterize the extent of synergism between these two agents. Potential interactive effects between chemical and physical agents need to be investigated to determine the extent to which such interactions should impact occupational exposure standards.  相似文献   

13.
Many environmental signals, including ionizing radiation and UV rays, induce activation of Egr-1 gene, thus affecting cell growth and apoptosis. The paucity and the controversial knowledge about the effect of electromagnetic fields (EMF) exposure of nerve cells prompted us to investigate the bioeffects of radiofrequency (RF) radiation on SH-SY5Y neuroblastoma cells. The effect of a modulated RF field of 900 MHz, generated by a wire patch cell (WPC) antenna exposure system on Egr-1 gene expression, was studied as a function of time. Short-term exposures induced a transient increase in Egr-1 mRNA level paralleled with activation of the MAPK subtypes ERK1/2 and SAPK/JNK. The effects of RF radiations on cell growth rate and apoptosis were also studied. Exposure to RF radiation had an anti-proliferative activity in SH-SY5Y cells with a significant effect observed at 24 h. RF radiation impaired cell cycle progression, reaching a significant G2-M arrest. In addition, the appearance of the sub-G1 peak, a hallmark of apoptosis, was highlighted after a 24-h exposure, together with a significant decrease in mRNA levels of Bcl-2 and survivin genes, both interfering with signaling between G2-M arrest and apoptosis. Our results provide evidence that exposure to a 900 MHz-modulated RF radiation affect both Egr-1 gene expression and cell regulatory functions, involving apoptosis inhibitors like Bcl-2 and survivin, thus providing important insights into a potentially broad mechanism for controlling in vitro cell viability.  相似文献   

14.
To investigate the potential cytotoxicity of radiofrequency (RF) radiation on central nervous system, rat pheochromocytoma (PC12) cells were exposed to 2.856 GHz RF radiation at a specific absorption rate (SAR) of 4 W/kg for 8 h a day for 2 days in 35 mm Petri dishes. During exposure, the real-time variation of the culture medium temperature was monitored in the first hour. Reactive oxygen species (ROS) production, intracellular Ca2+ concentration, and cell apoptosis rate were assessed immediately after exposure by flow cytometry. The results showed that the medium temperature raised about 0.93 °C, but no significant changes were observed in apoptosis, ROS levels or intracellular Ca2+ concentration after treatment. Although several studies suggested that RF radiation does indeed cause neurological effects, this study presented inconsistent results, indicating that 2.856 GHz RF radiation exposure at a SAR of 4 W/kg does not have a dramatic impact on PC12 cells, and suggests the need for further investigation on the key cellular endpoints of other nerve cells after exposure to RF radiation.  相似文献   

15.
We investigated the possible combined genotoxic effects of radiofrequency (RF) electromagnetic fields (900 MHz, amplitude modulated at 217 Hz, mobile phone signal) with the drinking water mutagen and carcinogen 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX). Female rats were exposed to RF fields for a period of 2 years for 2 h per day, 5 days per week at average whole-body specific absorption rates of 0.3 or 0.9 W/kg. MX was given in the drinking water at a concentration of 19 microg/ml. Blood samples were taken at 3, 6 and 24 months of exposure and brain and liver samples were taken at the end of the study (24 months). DNA damage was assessed in all samples using the alkaline comet assay, and micronuclei were determined in erythrocytes. We did not find significant genotoxic activity of MX in blood and liver cells. However, MX induced DNA damage in rat brain. Co-exposures to MX and RF radiation did not significantly increase the response of blood, liver and brain cells compared to MX exposure only. In conclusion, this 2-year animal study involving long-term exposures to RF radiation and MX did not provide any evidence for enhanced genotoxicity in rats exposed to RF radiation.  相似文献   

16.
This study was designed to investigate the transient and cumulative impairments in spatial and non-spatial memory of C57Bl/6J mice exposed to GSM 1.8 GHz signal for 90 min daily by a typical cellular (mobile) phone at a specific absorption rate value of 0.11 W/kg. Free-moving male mice 2 months old were irradiated in two experimental protocols, lasting for 66 and for 148 days respectively. Each protocol used three groups of animals (n = 8 each for exposed, sham exposed and controls) in combination with two behavioural paradigms, the object recognition task and the object location task sequentially applied at different time points. One-way analysis of variance revealed statistically significant impairments of both types of memory gradually accumulating, with more pronounced effects on the spatial memory. The impairments persisted even 2 weeks after interruption of the 8 weeks daily exposure, whereas the memory of mice as detected by both tasks showed a full recovery approximately 1 month later. Intermittent every other day exposure for 1 month had no effect on both types of memory. The data suggest that visual information processing mechanisms in hippocampus, perirhinal and entorhinal cortex are gradually malfunctioning upon long-term daily exposure, a phenotype that persists for at least 2 weeks after interruption of radiation, returning to normal memory performance levels 4 weeks later. It is postulated that cellular repair mechanisms are operating to eliminate the memory affecting molecules. The overall contribution of several possible mechanisms to the observed cumulative and transient impairments in spatial and non-spatial memory is discussed.  相似文献   

17.
Cold therapy is used to relieve pain and inflammatory symptoms. Humoral changes may account for the pain alleviation related to the cold exposures. The aim of the present study was to examine the effects of two types of cold therapy, winter swimming in ice-cold water (WS) and whole body cryotherapy (WBC), on the serum levels of the growth hormone, prolactin, thyrotropin and free fractions of thyroid hormones (fT3, fT4). One group of healthy females (n = 6) was exposed to WS (water 0–2 °C) for 20 s and another group (n = 6) to WBC (air −110 °C) for 2 min, three times a week for 12 weeks. Blood samples used for the hormone measurements were taken on weeks 1, 4 and 12 before and 35 min after the cold exposures and on the days of the respective weeks, when the cold exposures were not performed. During the WS treatments, serum thyrotropin increased significantly at 35 min on weeks 1 (p < 0.01) and 4 (p < 0.05), but the responses were within the health-related reference interval. During the WS, the serum prolactin measured at 35 min on week 12 was lower than during the control treatment, and no changes in fT3 or fT4 were observed. During the WBC, no changes in the serum levels of the studied hormones were observed during the 12 weeks. In conclusion, repeated WS and WBC treatments for healthy females do not lead to disorders related to altered secretions of the growth hormone, prolactin, thyrotropin, or thyroid hormones.  相似文献   

18.
Over the past two decades, our understanding of radiation biology has undergone a fundamental shift in paradigms away from deterministic "hit-effect" relationships and towards complex ongoing "cellular responses". These responses include now familiar, but still poorly understood, phenomena associated with radiation exposure such as bystander effects, genomic instability, and adaptive responses. All three have been observed at very low doses, and at time points far removed from the initial radiation exposure, and are extremely relevant for linear extrapolation to low doses; the adaptive response is particularly relevant when exposure is spread over a period of time. These are precisely the circumstances that are most relevant to understanding cancer risk associated with environmental and occupational radiation exposures. This review will provide a synthesis of the known, and proposed, interrelationships amongst low-dose cellular responses to radiation. It also will examine the potential importance of non-targeted cellular responses to ionizing radiation in setting acceptable exposure limits especially to low-LET radiations.  相似文献   

19.
In this study, we aimed to investigate the effects of 1800 and 2100?MHz Radio Frequency (RF) radiation on the number of micronucleus (MN) in exfoliated bladder cells of rat which shows the genotoxic damage. Exposure period was 30?min/day, 6 days/week for a month and two months exposure periods. Thirty male wistar albino rats were used for five groups: Group I (n?=?6): 1800?MHz RF exposed animals for one month, Group II (n?=?6): 2100?MHz RF exposed animals for one month, Group III (n?=?6): 2100?MHz RF exposed for two months, Group IV (n?=?6): control group for one month, Group V (n?=?6): control group for two months. Rats of the control groups were housed in their home cages during the entire experimental period without subjecting to any experimental manipulation. 1800 and 2100?MHz RF exposures did not result in any significant MN frequencies in rat bladder cells with respect to the control groups (p?>?0.05). There was no statistically significant difference between 2100?MHz RF exposed groups, either. Further studies are needed to demonstrate if there is any genotoxic effect, micronucleus formation in other tissues of rats.  相似文献   

20.
Biological clocks are innate timing mechanisms that regulate many behavioral and physiological parameters in most organisms. In our modern life, heavy use of mobile phones (MPs) exerts a massive stress on organisms because their electromagnetic radiation usually results in varying degrees of damage to their biological systems including the biological rhythms. In the present study, the possible effects of exposure to radiofrequency–electromagnetic radiation (RF–EMR) from MPs on two characteristic circadian rhythms, locomotor activity and melatonin hormone rhythms, were investigated. Rats were exposed to RF–EMR from MPs at 900 MHz frequency (2-h/day for 2 weeks) during nighttime (20:00–22:00 h) followed by another two weeks without exposure for recovery. Locomotor activity rhythms of the control and treated groups (n = 5/group) were daily recorded using running wheels along the experimental period. For evaluating melatonin hormone rhythm, blood samples of control and treated groups (n = 12/group), were collected at the end of exposure and recovery periods, at 6-h time intervals per day (at 4:00, 10:00, 16:00, and 22:00 h). Rats exposed to RF–EMR exhibited phase shifting as well as a significant increased acrophase level in locomotor activity. Meanwhile, a significant decrease in serum melatonin levels with retaining lower amplitude rhythmicity was observed. Ceasing exposure for two weeks did not restore melatonin levels and circadian locomotor activity rhythms. It could be concluded that, under the current conditions, exposure to RF–EMR revealed disturbances in locomotor activity and melatonin level, although they maintained rhythmicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号