首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphatidylinositol transfer proteins (PITPs) regulate the interface between signal transduction, membrane-trafficking, and lipid metabolic pathways in eukaryotic cells. The best characterized mammalian PITPs are PITP alpha and PITP beta, two highly homologous proteins that are encoded by distinct genes. Insights into PITP alpha and PITP beta function in mammalian systems have been gleaned exclusively from cell-free or permeabilized cell reconstitution and resolution studies. Herein, we report for the first time the use of genetic approaches to directly address the physiological functions of PITP alpha and PITP beta in murine cells. Contrary to expectations, we find that ablation of PITP alpha function in murine cells fails to compromise growth and has no significant consequence for bulk phospholipid metabolism. Moreover, the data show that PITP alpha does not play an obvious role in any of the cellular activities where it has been reconstituted as an essential stimulatory factor. These activities include protein trafficking through the constitutive secretory pathway, endocytic pathway function, biogenesis of mast cell dense core secretory granules, and the agonist-induced fusion of dense core secretory granules to the mast cell plasma membrane. Finally, the data demonstrate that PITP alpha-deficient cells not only retain their responsiveness to bulk growth factor stimulation but also retain their pluripotency. In contrast, we were unable to evict both PITP beta alleles from murine cells and show that PITP beta deficiency results in catastrophic failure early in murine embryonic development. We suggest that PITP beta is an essential housekeeping PITP in murine cells, whereas PITP alpha plays a far more specialized function in mammals than that indicated by in vitro systems that show PITP dependence.  相似文献   

2.
The exocytosis is a process of fusion of secretory vesicles with plasma membrane, which plays a prominent role in many crucial cellular processes, e.g. secretion of neurotransmitters, cytokinesis or yeast budding. Prior to the SNARE-mediated fusion, the initial contact of secretory vesicle with the target membrane is mediated by an evolutionary conserved vesicle tethering protein complex, the exocyst. In all eukaryotic cells, the exocyst is composed of eight subunits — Sec5, Sec6, Sec8, Sec10, Sec15, Exo84 and two membrane-targeting landmark subunits Sec3 and Exo70, which have been described to directly interact with phosphatidylinositol (4,5)-bisphosphate (PIP2) of the plasma membrane. In this work, we utilized coarse-grained molecular dynamics simulations to elucidate structural details of the interaction of yeast Sec3p and Exo70p with lipid bilayers containing PIP2. We found that PIP2 is coordinated by the positively charged pocket of N-terminal part of Sec3p, which folds into unique Pleckstrin homology domain. Conversely, Exo70p interacts with the lipid bilayer by several binding sites distributed along the structure of this exocyst subunit. Moreover, we observed that the interaction of Exo70p with the membrane causes clustering of PIP2 in the adjacent leaflet. We further revealed that PIP2 is required for the correct positioning of small GTPase Rho1p, a direct Sec3p interactor, prior to the formation of the functional Rho1p-exocyst-membrane assembly. Our results show the critical importance of the plasma membrane pool of PIP2 for the exocyst function and suggest that specific interaction with acidic phospholipids represents an ancestral mechanism for the exocyst regulation.  相似文献   

3.
Phosphatidylinositol transfer proteins (PITP) are abundant cytosolic proteins found in all mammalian cells. Two cytosolic isoforms of 35 and 36 kDa (PITP alpha and PITP beta) have been identified which share 77% identity. These proteins are characterized by having a single phospholipid binding site which exhibits dual headgroup specificity. The preferred lipid that can occupy the site can be either phosphatidylinositol (PI) or phosphatidylcholine (PC). In addition, PITP beta can also bind sphingomyelin. A second characteristic of these proteins is the ability to transfer PI and PC (or SM) from one membrane compartment to another in vitro. The function of PITP in mammalian cells has been examined mainly using reconstitution studies utilizing semi-intact cells or cell-free systems. From such analyses, a requirement for PITP has been identified in phospholipase C-mediated phosphatidylinositol bisphosphate (PI(4,5)P2) hydrolysis, in phosphoinositide 3-kinase catalyzed PIP3 generation, in regulated exocytosis, in the biogenesis of secretory granules and vesicles and in intra-golgi transport. Studies aimed at elucidating the mechanism of action of PITP in each of these seemingly disparate processes have yielded a singular theme: the activity of PITP stems from its ability to transfer PI from its site of synthesis to sites of cellular activity. This function was predicted from its in vitro characteristics. The second feature of PITP that was not predicted is the ability to stimulate the local synthesis of several phosphorylated forms of PI including PI(4)P, PI(4,5)P2, PI(3)P, PI(3,4,5)P3 by presenting PI to the lipid kinases involved in phosphoinositide synthesis. We conclude that PITP contributes in multiple aspects of cell biology ranging from signal transduction to membrane trafficking events where a central role for phosphoinositides is recognized either as a substrate or as an intact lipid signalling molecule.  相似文献   

4.
Phosphoinositides like phosphatidylinositol 4,5-bisphosphate (PIP2) are negatively charged lipids that play a pivotal role in membrane trafficking, signal transduction, and protein anchoring. We have designed a force field for the PIP2 headgroup using quantum mechanical methods and characterized its properties inside a lipid bilayer using molecular dynamics simulations. Macroscopic properties such as area/headgroup, density profiles, and lipid order parameters calculated from these simulations agree well with the experimental values. However, microscopically, the PIP2 introduces a local perturbation of the lipid bilayer. The average PIP2 headgroup orientation of 45° relative to the bilayer normal induces a unique, distance-dependent organization of the lipids that surround PIP2. The headgroups of these lipids preferentially orient closer to the bilayer normal. This perturbation creates a PIP2 lipid microdomain with the neighboring lipids. We propose that the PIP2 lipid microdomain enables the PIP2 to function as a membrane-bound anchoring molecule.  相似文献   

5.
Oncogenic Ras mutants such as v-Ha-Ras cause a rapid rearrangement of actin cytoskeleton during malignant transformation of fibroblasts or epithelial cells. Both PI-3 kinase and Rac are required for Ras-induced malignant transformation and membrane ruffling. However, the signal transduction pathway(s) downstream of Rac that leads to membrane ruffling and other cytoskeletal change(s) as well as the exact biochemical nature of the cytoskeletal change remain unknown. Cortactin/EMS1 is the first identified molecule that is dissociated in a Rac–phosphatidylinositol 4,5-biphosphate (PIP2)-dependent manner from the actin-myosin II complex during Ras-induced malignant transformation; either the PIP2 binder HS1 or the Rac blocker SCH51344 restores the ability of EMS1 to bind the complex and suppresses the oncogenicity of Ras. Furthermore, while PIP2 inhibits the actin-EMS1 interaction, HS1 reverses the PIP2 effect. Thus, we propose that PIP2, an end-product of the oncogenic Ras/PI-3 kinase/Rac pathway, serves as a second messenger in the Ras/Rac-induced disruption of the actin cytoskeleton and discuss the anticancer drug potential of PIP2-binding molecules.  相似文献   

6.
磷脂酰肌醇转移蛋白(phosphatidylinositol/phosphatidylcholine transfer proteins,PITP)普遍存在于真核生物细胞中,PITP能够结合并交换一分子的磷脂酰肌醇(phosphatidylinositol,PI)或磷脂酰胆碱(phosphatidylcholine,PC),并促进这两类脂分子在细胞内膜组分间的转移。PITP对细胞内膜组分间脂类的运输和代谢、分泌囊泡的形成和运输、磷脂酶C(phospholipase,PLC)调节的信号传导以及神经退化等生理生化过程具有重要的影响。综述了近年来PITP的研究进展,并对目前研究中存在的一些问题进行探讨。  相似文献   

7.
In several organisms, including Saccharomyces cerevisiae and other yeast species, the product encoded by the SEC61 gene is considered to be the core element of the translocation apparatus within the endoplasmic reticulum membrane through which translocation of secretory and membrane proteins occurs. In this study, we have cloned and characterized the homolog of the SEC61 gene from the yeast Pichia anomala. The cloned gene includes an ORF, interrupted after the first ten nucleotides by an intron of 131 bp, encoding a 479-amino acid putative polypeptide exhibiting homology to the products encoded by different eukaryotic SEC61 genes, particularly to those from other yeast species. We show that the P. anomala SEC61 gene is correctly processed (intron splicing) when expressed in S. cerevisiae and that it is able to complement the thermosensitive phenotype associated with a mutation in the S. cerevisiae SEC61 gene. Received: 24 May 2002 / Accepted: 10 July 2002  相似文献   

8.
    
Summary Some key elements of signal transduction have been identified within the nucleus and demonstrated to be responsive to specific agonists in numerous cell types. In particular, mitogenic stimuli have been reported to induce, a transient increase of the nuclear phospholipase C β1 activity, causing the release of inositide-derived second messengers, whereas differentiating stimuli induced a decrease of the enzyme activity and an increase of nuclear phosphatidylinositol 4,5-bisphosphate (PIP2). Recently, we reported evidence, in human osteosarcoma Saos-2 cell lines, on the presence of specific nuclear phospholipase C isoforms and on the activation of phospholipase C β1 in the nucleus following the exposure to interleukin-1α. In this study we report immunocytochemical ultrastructural evidence on quantitative variations of PIP2 and phospholipase C β1 amounts in the nucleus of Saos-2 cells at different times of exposure to interleukin-1α. After short periods of culture in the presence of the agonist, the intranuclear amount of PIP2 is decreased, while a translocation of phospholipase C β1 occurs from the cytoplasm to the nucleus, in correspondence with the increased hydrolyzing activity of the enzyme. After longer periods of incubation with interleukin-1α, on the other hand, the intranuclear amount of PIP2 is restored to initial level, while the amount of phospholipase C β1 is increased both at the nuclear and cytoplasmic level, when its activation is no longer effective. The results, compared with those obtained in other cell types responsive to given agonists, account for a cell-specific modulation of signal transduction based on polyphosphoinositide breakdown at the nuclear level.  相似文献   

9.
Phosphoinositides provide compartment-specific signals for membrane trafficking. Plasma membrane phosphatidylinositol 4,5-bisphosphate (PIP2) is required for Ca2+-triggered vesicle exocytosis, but whether vesicles fuse into PIP2-rich membrane domains in live cells and whether PIP2 is metabolized during Ca2+-triggered fusion were unknown. Ca2+-dependent activator protein in secretion 1 (CAPS-1; CADPS/UNC31) and ubMunc13-2 (UNC13B) are PIP2-binding proteins required for Ca2+-triggered vesicle exocytosis in neuroendocrine PC12 cells. These proteins are likely effectors for PIP2, but their localization during exocytosis had not been determined. Using total internal reflection fluorescence microscopy in live cells, we identify PIP2-rich membrane domains at sites of vesicle fusion. CAPS is found to reside on vesicles but depends on plasma membrane PIP2 for its activity. Munc13 is cytoplasmic, but Ca2+-dependent translocation to PIP2-rich plasma membrane domains is required for its activity. The results reveal that vesicle fusion into PIP2-rich membrane domains is facilitated by sequential PIP2-dependent activation of CAPS and PIP2-dependent recruitment of Munc13. PIP2 hydrolysis only occurs under strong Ca2+ influx conditions sufficient to activate phospholipase Cη2 (PLCη2). Such conditions reduce CAPS activity and enhance Munc13 activity, establishing PLCη2 as a Ca2+-dependent modulator of exocytosis. These studies provide a direct view of the spatial distribution of PIP2 linked to vesicle exocytosis via regulation of lipid-dependent protein effectors CAPS and Munc13.  相似文献   

10.
Spore formation in yeast is an unusual form of cell division in which the daughter cells are formed within the mother cell cytoplasm. This division requires the de novo synthesis of a membrane compartment, termed the prospore membrane, which engulfs the daughter nuclei. The effect of mutations in late-acting genes on sporulation was investigated. Mutation of SEC1, SEC4, or SEC8 blocked spore formation, and electron microscopic analysis of the sec4-8 mutant indicated that this inability to produce spores was caused by a failure to form the prospore membrane. The soluble NSF attachment protein 25 (SNAP-25) homologue SEC9, by contrast, was not required for sporulation. The absence of a requirement for SEC9 was shown to be due to the sporulation-specific induction of a second, previously undescribed, SNAP-25 homologue, termed SPO20. These results define a developmentally regulated branch of the secretory pathway and suggest that spore morphogenesis in yeast proceeds by the targeting and fusion of secretory vesicles to form new plasma membranes in the interior of the mother cell. Consistent with this model, the extracellular proteins Gas1p and Cts1p were localized to an internal compartment in sporulating cells. Spore formation in yeast may be a useful model for understanding secretion-driven cell division events in a variety of plant and animal systems.  相似文献   

11.
Phosphatidylinositol transfer proteins (PITP) function in signal transduction and in membrane traffic. Studies aimed at elucidating the mechanism of action of PITP have yielded a singular theme; the activity of PITP stems from its ability to transfer phosphatidylinositol (PI) from its site of synthesis to sites of cellular activity and to stimulate the local synthesis of phosphorylated forms of PI. The participation of various phosphoinositides in EGF signal transduction and in the trafficking of the EGF receptors is well documented. Using fluorescence lifetime imaging microscopy (FLIM) to measure fluorescence resonance energy transfer (FRET) between EGFP-PITP proteins and fluorescently labeled phospholipids, we report that PITPalpha and PITPbeta can dynamically interact with PI or PC at the plasma membrane when stimulated with EGF. Additionally, PITPbeta is localized at the Golgi, and EGF stimulation resulted in enhanced FRET. Inhibitors of the PLC and the Ras/MAP kinase pathway were both able to inhibit the EGF-stimulated interaction of PITPalpha with PI at the plasma membrane. The mobility of PITP proteins was determined by using fluorescence recovery after photobleaching (FRAP), and EGF stimulation reduced the mobility at the plasma membrane. We conclude that the dynamic behavior of PITPalpha and PITPbeta in vivo is a regulated process involving multiple mechanisms.  相似文献   

12.
Although phosphatidylinositol 4,5-bisphosphate (PIP2) regulates syndecan-4 function, the potential influence of syndecan-4 on PIP2 remains unknown. GFP containing PIP2-binding-PH domain of phospholipase Cδ (GFP-PHδ) was used to monitor PIP2. Syndecan-4 overexpression in COS-7 cells enhanced membrane translocation of GFP-PHδ, while the opposite was observed when syndecan-4 was knocked-down. PIP2 levels were higher in total phospholipids extracted from rat embryo fibroblasts expressing syndecan-4. Syndecan-4-induced membrane targeting of GFP-PHδ was further enhanced by phosphoinositide-3-kinase inhibitor, but not by phospholipase C (PLC) inhibitor. Besides, both ionomycin and epidermal growth factor caused dissociation of GFP-PHδ from plasma membrane, an effect that was significantly delayed by syndecan-4 over-expression. Collectively, these data suggest that syndecan-4 promotes plasma membrane retention of PIP2 by negatively regulating PLC-dependent PIP2 degradation.  相似文献   

13.
The metabolism of phosphatidylinositol-4,5-bisphosphate (PIP2) changed during the culture period of the thermoacidophilic red alga Galdieria sulphuraria. Seven days after inoculation, the amount of PIP2 in the cells was 910 ± 100 pmol g−1 fresh weight; by 12 d, PIP2 levels increased to 1200 ± 150 pmol g−1 fresh weight. In vitro assays indicated that phosphatidylinositol monophosphate (PIP) kinase specific activity increased from 75 to 230 pmol min−1 mg−1 protein between d 7 and 12. When G. sulphuraria cells were osmostimulated, transient increases of up to 4-fold could be observed in inositol-1,4,5-trisphosphate (IP3) levels within 90 s, regardless of the age of the cells. In d-12 cells, the increase in IP3 was preceded by a transient increase of up to 5-fold in specific PIP kinase activity, whereas no such increase was detected after osmostimulation of d-7 cells. The increase in PIP kinase activity before IP3 signaling in d-12 cells indicates that there is an additional pathway for regulation of phosphoinositide metabolism after stimulation other than an initial activation of phospholipase C. Also, the rapid activation of PIP2 biosynthesis in cells with already-high PIP2 levels suggests that the PIP2 present was not available for signal transduction. By comparing the response of the cells at d 7 and 12, we have identified two potentially distinct pools of PIP2.  相似文献   

14.
The influence of flight activity on the formation of secretory granules and the concomitant membrane recycling by the rans-Golgi network in the peptidergic neurosecretory adipokinetic cells of Locusta migratoria was investigated by means of ultrastructural morphometric methods. The patterns of labelling of the trans-Golgi network by the exogenous adsorptive endocytotic tracer wheat-germ agglutinin-conjugated horseradish peroxidase and by the endogenous marker enzyme acid phosphatase were used as parameters and were measured by an automatic image analysis system. The results show that endocytosed fragments of plasma membrane with bound peroxidase label were transported to the trans-Golgi network and used to build new secretory granules. The amounts of peroxidase and especially of acid phosphatase within the trans-Golgi network showed a strong tendency to be smaller in flight-stimulated cells than in non-stimulated cells. The amounts of acid phosphatase in the immature secretory granules originating from the trans-Golgi network were significantly smaller in stimulated cells. The number of immature secretory granules positive for acid phosphatase tended to be higher in stimulated cells. Thus, flight stimulation of adipokinetic cells for 1 h influences the functioning of the trans-Golgi network; this most probably results in a slight enhancement of the production of secretory granules by the trans-Golgi network.  相似文献   

15.
Summary Cytochemical localization of blood group ABH antigens was examined in secretory cells of human cervical glands by application of a post-embedding lectin-gold as well as immuno-gold labeling procedure using monoclonal antibodies. Blood group specific lectins such as Dolichos biflorus agglutinin (DBA), Helix pomatia agglutinin (HPA), Griffonia simplicifolia agglutinin I-B4 (GSAI-B4) and Ulex europaeus agglutinin-I (UEA-I) reacted with secretory granules but not with other cytoplasmic organellae such as nucleus and cell membrane. The reactivity of secretory granules with these lectins showed strict dependence on the blood group and secretor status of tissue donors. The binding patterns with these lectins were not homogeneous, but exhibited marked cellular and subcellular heterogeneity. Thus, for example, in blood group A individuals, some granules were stained strongly with DBA and others were weakly or not at all with the lectin. Such a heterogenous labeling with the lectin was observed even in the same cells. Similar results were obtained with UEA-I and GSAI-B4 staining in blood group O and B secretor individuals, respectively. Monoclonal antibodies likewise reacted specifically with the granules but they occasionally bound to some nucleus. The labeling pattern of the antibodies with the granules was essentially the same as those of lectins. However, difference was also observed between monoclonal antibody and lectin staining, that is, monoclonal anti-A antibody reacted weakly but consistently with granules from blood group A nonsecretors but DBA (HPA) did not; staining with UEA-I was observed in granules from the secretor individuals of any blood groups whereas monoclonal anti-H antibody reacted with granules from blood group O and some A secretor individuals but not from B and AB secretor individuals; GSAI-B4 reacted uniformly with granules throughout the cells whereas monoclonal anti-B antibody bound to limited number of granules in the same cells. This was confirmed by the double labeling experiments with the lectin and the antibody. These results suggest that the different types of antigens as to the binding ability for monoclonal antibodies and lectins are expressed on different granules in the same cell.  相似文献   

16.
The clitellar epithelium of the freshwater oligochaete, Tubifex hattai, is composed of four types of gland cells (Type I, II, III, and IV), in addition to the cells generally found in the epidermis of this worm. The possible function of these gland cells in cocoon formation was studied with the electron microscope. Type I cells discharge their secretory granules by means of compound exocytosis and provide the materials for the future cocoon membrane. Immediately after completion of the discharge from Type I cells, Type II and III cells simultaneously discharge their secretory granules by means of compound exocytosis. The secretions from Type II cells constitute a colloid in the cocoon lumen and probably cause structural modifications in the future cocoon membrane. The secretory products from Type III cells form the cocoon plug. Although the process of discharge of secretory granules from Type IV cells was not observed, the contribution of these cells to the cocoon formation, producing hoops on the outer surface of the future cocoon membrane and fixing its anterior ends on the clitellum, is inferred from a morphological comparison of the hoop and the structure of the secretory granules.  相似文献   

17.
SEC66 encodes the 31.5-kDa glycoprotein of the Sec63p complex, an integral endoplasmic reticulum membrane protein complex required for translocation of presecretory proteins in Saccharomyces cerevisiae. DNA sequence analysis of SEC66 predicts a 23-kDa protein with no obvious NH2-terminal signal sequence but with one domain of sufficient length and hydrophobicity to span a lipid bilayer. Antibodies directed against a recombinant form of Sec66p were used to confirm the membrane location of Sec66p and that Sec66p is a glycoprotein of 31.5 kDa. A null mutation in SEC66 renders yeast cells temperature sensitive for growth. sec66 cells accumulate some secretory precursors at a permissive temperature and a variety of precursors at the restrictive temperature. sec66 cells show defects in Sec63p complex formation. Because sec66 cells affect the translocation of some, but not all secretory precursor polypeptides, the role of Sec66p may be to interact with the signal peptide of presecretory proteins.  相似文献   

18.
SEC14p is required for protein transport from the yeast Golgi complex. We describe a quantitative analysis of yeast bulk membrane and Golgi membrane phospholipid composition under conditions where Golgi secretory function has been uncoupled from its usual SEC14p requirement. The data demonstrate that SEC14p specifically functions to maintain a reduced phosphatidylcholine content in Golgi membranes and indicate that overproduction of SEC14p markedly reduces the apparent rate of phosphatidylcholine biosynthesis via the CDP-choline pathway in vivo. We suggest that SEC14p serves as a sensor of Golgi membrane phospholipid composition through which the activity of the CDP-choline pathway in Golgi membranes is regulated such that a phosphatidylcholine content that is compatible with the essential secretory function of these membranes is maintained.  相似文献   

19.
Multiple PIP2 dependent molecular processes including receptor activated phospholipase C activity occur at the neuronal plasma membranes, yet levels of this lipid at the plasma membrane are remarkably stable. Although the existence of unique pools of PIP2 supporting these events has been proposed, the mechanism by which they are generated is unclear. In Drosophila photoreceptors, the hydrolysis of PIP2 by G-protein coupled phospholipase C activity is essential for sensory transduction of photons. We identify dPIP5K as an enzyme essential for PIP2 re-synthesis in photoreceptors. Loss of dPIP5K causes profound defects in the electrical response to light and light-induced PIP2 dynamics at the photoreceptor membrane. Overexpression of dPIP5K was able to accelerate the rate of PIP2 synthesis following light induced PIP2 depletion. Other PIP2 dependent processes such as endocytosis and cytoskeletal function were unaffected in photoreceptors lacking dPIP5K function. These results provide evidence for the existence of a unique dPIP5K dependent pool of PIP2 required for normal Drosophila phototransduction. Our results define the existence of multiple pools of PIP2 in photoreceptors generated by distinct lipid kinases and supporting specific molecular processes at neuronal membranes.  相似文献   

20.
Phosphatidylinositol (PI) 4,5-bisphosphate (PIP2) at the plasma membrane (PM) constitutively controls many cellular functions, and its hydrolysis via receptor stimulation governs cell signaling. The PI transfer protein Nir2 is essential for replenishing PM PIP2 following receptor-induced hydrolysis, but key mechanistic aspects of this process remain elusive. Here, we demonstrate that PI at the membrane of the endoplasmic reticulum (ER) is required for the rapid replenishment of PM PIP2 mediated by Nir2. Nir2 detects PIP2 hydrolysis and translocates to ER-PM junctions via binding to phosphatidic acid. With distinct phosphatidic acid binding abilities and PI transfer protein activities, Nir2 and its homolog Nir3 differentially regulate PIP2 homeostasis in cells during intense receptor stimulation and in the resting state, respectively. Our study reveals that Nir2 and Nir3 work in tandem to achieve different levels of feedback based on the consumption of PM PIP2 and function at ER-PM junctions to mediate nonvesicular lipid transport between the ER and the PM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号