首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of specific axonal tracts for the guidance of growth cones was investigated by examining axonal outgrowth within the abnormal brain tracts of zebrafish cyclops mutants. Normally, the earliest differentiating neurons in the zebrafish brain establish a simple scaffold of axonal tracts. Later-developing axons follow cell-specific pathways within this axonal scaffold. In Cyclops embryos, this scaffold is perturbed due to the deletion of some ventromedial neurons that establish parts of the axonal scaffold and the development of an abnormal crease in the brain. In these mutant embryos, the growth cones projected by the neurons of the nucleus of the posterior commissure (nur PC) are deprived of the two tracts of axons that they sequentially follow to first extend ventrally, then posteriorly. These growth cones respond to the abnormal scaffold in several interesting ways. First, nuc PC growth cones initially always extend ventrally as in wild-type embryos. This suggests that for the first portion of their pathway the axons they normally follow are not required for proper navigation. Second, approximately half of the nuc PC growth cones follow aberrant longitudinal pathways after the first portion of their pathway. This suggests that for the longitudinal portion of the pathway, specific growth cone/axon interactions are important for guiding growth cones. Third, although approximately half of the nuc PC growth cones follow aberrant longitudinal pathways, the rest follow normal pathways despite the absence of the axons that they normally follow. This suggests that cues independent of these axons may be capable of guiding nuc PC growth cones as well. These results suggest that different guidance cues or combinations of cues guide specific growth cones along different portions of their pathway. 1994 John Wiley & Sons, Inc.  相似文献   

2.
The fan-shaped array of filopodia is the first site of contact of a neuronal growth cone with molecules encountered during neuronal pathfinding. Filopodia are highly dynamic structures, and the “action radius” of a growth cone is strongly determined by the length and number of its filopodia. Since interactions of filopodia with instructive cues in the vicinity of the growth cone can have effects on growth cone morphology within minutes, it has to be assumed that a large part of the signaling underlying such morphological changes resides locally within the growth cone proper. In this study, we tested the hypothesis that two important growth cone parameters namely, the length and number of its filopodiaare regulated autonomously in the growth cone. We previously demonstrated in identified neurons from the snail Helisoma trivolvis that filopodial length and number are regulated by intracellular calcium. Here, we investigated filopodial dynamics and their regulation by the second-messenger calcium in growth cones which were physically isolated from their parent neuron by neurite transection. Our results show that isolated growth cones have longer but fewer filopodia than growth cones attached to their parent cell. These isolated growth cones, however, are fully capable of undergoing calcium-induced cytoskeletal changes, suggesting that the machinery necessary to perform changes in filopodial length and number is fully intrinsic to the growth cone proper. © 1998 John Wiley & Sons, Inc. J Neurobiol 34: 179–192, 1998  相似文献   

3.
Growth cone navigation is guided by extrinsic environmental proteins, called guidance cues. Many in vitro studies have characterized growth cone turning up and down gradients of soluble guidance cues. Although previous studies have shown that axonal elongation rates can be regulated by gradients of surface-bound molecules, there are no convincing demonstrations of growth cones turning to migrate up a surface-bound gradient of an adhesive ligand or guidance cue. In order to test this mode of axonal guidance, we used a photo-immobilization technique to create grids and gradients of an adhesive laminin peptide on polystyrene culture dish surfaces. Chick embryo dorsal root ganglia (DRGs) were placed on peptide grid patterns containing surface-bound gradients of the IKVAV-containing peptide. DRG growth cones followed a path of surface-bound peptide to the middle of a perpendicularly oriented gradient with a 25% concentration difference across 30 microm. The majority of growth cones turned and migrated up the gradient, turning until they were oriented directly up the gradient. Growth cones slowed their migration when they encountered the gradient, but growth cone velocity returned to the previous rate after turning up or down the gradient. This resembles in vivo situations where growth cones slow at a choice point before changing the direction of axonal extension. Thus, these results support the hypothesis that mechanisms of axonal guidance include growth cone orientation by gradients of surface-bound adhesive molecules and guidance cues.  相似文献   

4.
A defining characteristic of neuronal cell type is the growth of axons and dendrites into specific layers and columns of the brain. Although differences in cell surface receptors and adhesion molecules are known to cause differences in synaptic specificity, differences in downstream signaling mechanisms that determine cell type-appropriate targeting patterns are unknown. Using a forward genetic screen in Drosophila, we identify the GTPase effector Genghis khan (Gek) as playing a crucial role in the ability of a subset of photoreceptor (R cell) axons to innervate appropriate target columns. In particular, single-cell mosaic analyses demonstrate that R cell growth cones lacking Gek function grow to the appropriate ganglion, but frequently fail to innervate the correct target column. Further studies reveal that R cell axons lacking the activity of the small GTPase Cdc42 display similar defects, providing evidence that these proteins regulate a common set of processes. Gek is expressed in all R cells, and a detailed structure-function analysis reveals a set of regulatory domains with activities that restrict Gek function to the growth cone. Although Gek does not normally regulate layer-specific targeting, ectopic expression of Gek is sufficient to alter the targeting choices made by another R cell type, the targeting of which is normally Gek independent. Thus, specific regulation of cytoskeletal responses to targeting cues is necessary for cell type-appropriate synaptic specificity.  相似文献   

5.
In the mammalian cortex, the initial formation of synaptic connections is followed by a prolonged period during which synaptic circuits are functional, but retain an elevated capacity for activity‐dependent remodeling and functional plasticity. During this period, synaptic terminals appear fully mature, morphologically and physiologically. We show here, however, that synaptic terminals during this period are distinguished by their simultaneous accumulation of multiple growth‐associated proteins at levels characteristic of axonal growth cones, and proteins involved in synaptic transmitter release at levels characteristic of adult synapses. We show further that newly formed synapses undergo a switch in the dynamic S‐palmitoylation of proteins early in the critical period, which includes a large and specific decrease in the palmitoylation of GAP‐43 and other major substrates characteristic of growth cones. Previous studies have shown that a similar reduction in ongoing palmitoylation of growth cone proteins is sufficient to stop advancing axons in vitro, suggesting that a developmental switch in protein S‐palmitoylation serves to disengage the molecular machinery for axon extension in the absence of local triggers for remodeling during the critical period. Only much later does a decline in the availability of major growth cone components mark the molecular maturation of cortical synapses at the close of the critical period. © 1999 John Wiley & Sons, Inc. J Neurobiol 39: 423–437, 1999  相似文献   

6.
During the development of neural networks, what sets synaptogenic interactions apart from nonsynaptogenic interactions is not well understood at the subcellular level. Using a combination of intracellular dye injection and electron microscopy, we show that a specific motoneuron (RP3) and its synaptic partners (muscles 6 and 7), both often bearing microprocesses, develop intimate membrane contact sites characterized by junctional structures, prior to their initiating synaptogenesis in Drosophila embryos. Other motoneuron growth cones that extend alongside the RP3 growth cone to innervate surrounding muscles do not form such contacts with muscles 6 and 7. We also examined how specific target recognition molecules affect the development of these ultrastructural associations between synaptic partner cells. When Fasciclin III (Fas3), a “positive” target recognition molecule for RP3, is ectopically expressed in neighboring muscles, the RP3 growth cone ectopically develops membrane contact sites with Fas3‐misexpressing muscles with which it would not normally associate. In contrast, when Toll, a “negative” target recognition molecule normally expressed by a subset of muscles that surrounds muscles 6 and 7, is misexpressed on muscles 6 and 7, the RP3 growth cone fails to exhibit its normal close contact with these muscles. We propose that the formation of close membrane associations and junctional structures can be regulated under the influence of synaptic target recognition molecules and signifies the beginning of subcellular events during synaptic target recognition. © 2000 John Wiley & Sons, Inc. J Neurobiol 43: 448–459, 2000  相似文献   

7.
Regulation of growth cone actin dynamics by ADF/cofilin.   总被引:9,自引:0,他引:9  
Nervous system development is reliant on neuronal pathfinding, the process in which axons are guided to their target cells by specific extracellular cues. The ability of neurons to extend over long distances in response to environmental guidance signals is made possible by the growth cone, a highly motile structure found at the end of neuronal processes. Growth cones detect directional cues and respond with either attractive or repulsive movements. The motility of growth cones is dependent on rapid reorganization of the actin cytoskeleton, presumably mediated by actin-associated proteins under the control of incoming guidance signals. This article reviews how one such family of proteins, the ADF/cofilins, are emerging as key regulators of growth cone actin dynamics. These proteins are essential for rapid actin turnover in a variety of different cell types. ADF/cofilins are heavily co-localized with actin in growth cones and are necessary for neurite outgrowth. ADF/cofilin activities are regulated through reversible phosphorylation by LIM kinases and slingshot phosphatases. LIM kinases are downstream effectors of the Rho GTPases Rho, Rac, and Cdc42. Growing evidence suggests that extracellular guidance cues may locally alter actin dynamics by regulating the activity of LIM kinase and ADF/cofilin phosphatases via the Rho GTPases. In this way, ADF/cofilins and their upstream effectors may be pivotal to our understanding of how guidance information is translated into physical alterations of the growth cone actin cytoskeleton.  相似文献   

8.
Repulsive guidance cues can either collapse the whole growth cone to arrest neurite outgrowth or cause asymmetric collapse leading to growth cone turning. How signals from repulsive cues are translated by growth cones into this morphological change through rearranging the cytoskeleton is unclear. We examined three factors that are able to induce the collapse of extending Helisoma growth cones in conditioned medium, including serotonin, myosin light chain kinase inhibitor, and phorbol ester. To study the cytoskeletal events contributing to collapse, we cultured Helisoma growth cones on polylysine in which lamellipodial collapse was prevented by substrate adhesion. We found that all three factors that induced collapse of extending growth cones also caused actin bundle loss in polylysine-attached growth cones without loss of actin meshwork. In addition, actin bundle loss correlated with specific filamentous actin redistribution away from the leading edge that is characteristic of repulsive factors. Finally, we provide direct evidence using time-lapse studies of extending growth cones that actin bundle loss paralleled collapse. Taken together, these results suggest that actin bundles could be a common cytoskeletal target of various collapsing factors, which may use different signaling pathways that converge to induce growth cone collapse.  相似文献   

9.
Regulation of growth cone actin filaments by guidance cues   总被引:16,自引:0,他引:16  
The motile behaviors of growth cones at the ends of elongating axons determine pathways of axonal connections in developing nervous systems. Growth cones express receptors for molecular guidance cues in the local environment, and receptor-guidance cue binding initiates cytoplasmic signaling that regulates the cytoskeleton to control growth cone advance, turning, and branching behaviors. The dynamic actin filaments of growth cones are frequently targets of this regulatory signaling. Rho GTPases are key mediators of signaling by guidance cues, although much remains to be learned about how growth cone responses are orchestrated by Rho GTPase signaling to change the dynamics of polymerization, transport, and disassembly of actin filaments. Binding of neurotrophins to Trk and p75 receptors on growth cones triggers changes in actin filament dynamics to regulate several aspects of growth cone behaviors. Activation of Trk receptors mediates local accumulation of actin filaments, while neurotrophin binding to p75 triggers local decrease in RhoA signaling that promotes lengthening of filopodia. Semaphorin IIIA and ephrin-A2 are guidance cues that trigger avoidance or repulsion of certain growth cones, and in vitro responses to these proteins include growth cone collapse. Dynamic changes in the activities of Rho GTPases appear to mediate responses to these cues, although it remains unclear what the changes are in actin filament distribution and dynamic reorganization that result in growth cone collapse. Growth cones in vivo simultaneously encounter positive and negative guidance cues, and thus, growth cone behaviors during axonal pathfinding reflect the complex integration of multiple signaling activities.  相似文献   

10.
Growth cones are highly motile structures found at the leading edge of developing and regenerating nerve processes. Their role in axonal pathfinding has been well established and many guidance cues that influence growth cone behavior have now been identified. Many studies are now providing insights into the transduction and integration of signals in the growth cone, though a full understanding of growth cone behavior still eludes us. This review focuses on recent studies adding to the growing body of literature on growth cone behavior, focusing particularly on the level of autonomy the growth cone possesses and the role of local protein synthesis.  相似文献   

11.
Axons follow highly stereotyped and reproducible trajectories to their targets. In this review we address the properties of the first pioneer neurons to grow in the developing nervous system and what has been learned over the past several decades about the extracellular and cell surface substrata on which axons grow. We then discuss the types of guidance cues and their receptors that influence axon extension, what determines where cues are expressed, and how axons respond to the cues they encounter in their environment.This article provides an overview of how growth cones respond to the cellular substrata and molecular cues they encounter as they extend through the developing nervous system. It elaborates on the primer by Kolodkin and Tessier-Lavigne (2010) and touches on many of the topics covered in greater detail in the articles that follow. The first sections describe how axons extend in a directed manner, the substrata on which they grow, interactions between pioneer and follower axons, and growth cone behaviors in emerging tracts and at decision points. The subsequent sections discuss examples of specific cues, their distributions, how their distributions are determined, and how growth cones integrate multiple cues during pathfinding.  相似文献   

12.
The developmental regulation of the N-type calcium channel during synaptogenesis was studied using cultured rat hippocampal neurons to elucidate the roles of extrinsic versus intrinsic cues in the expression and distribution of this channel. Prior to synapse formation, α1B and β3 subunits of the N-type calcium channel were distributed diffusely throughout neurites, growth cones, and somata. As synaptogenesis proceeded, the subunit distributions became punctate and colocalized with the synaptic vesicle protein synaptotagmin. Isolated neurons were also examined to test for the requirement of extrinsic cues that control N-type calcium channel expression and distribution. These neurons expressed N-type calcium channel subunits, but their distributions remained diffuse. Functional ω-conotoxin GVIA-sensitive channels were expressed in isolated neurons, although the distribution of α1B subunits was diffuse. The distribution of the α1B subunit and synaptotagmin only became punctate when neuron-neuron contact was allowed. Thus, the expression of functional N-type calcium channels is the result of an intrinsic program while extrinsic regulatory cues mediated by neuron-neuron contact are required to control their distribution during synaptogenesis. © 1998 John Wiley & Sons, Inc. J Neurobiol 35: 198–208, 1998  相似文献   

13.
Lipid rafts mediate chemotropic guidance of nerve growth cones   总被引:10,自引:0,他引:10  
Guirland C  Suzuki S  Kojima M  Lu B  Zheng JQ 《Neuron》2004,42(1):51-62
Axon guidance requires signal transduction of extracellular cues through the plasma membrane for directional motility. Here we present evidence that cholesterol- and sphingolipid-enriched membrane microdomains (lipid rafts) mediate specific guidance responses of nerve growth cones. Disruption of lipid rafts by various approaches targeting cholesterol or gangliosides selectively abolished growth cone attraction and repulsion in BDNF and netrin-1 gradients, respectively, without affecting glutamate-induced attraction. Interestingly, local raft disruption on one side of the growth cone in bath BDNF or netrin-1 produced opposite turning responses to that induced by the gradients. Raft manipulation also blocked Semaphorin 3A-induced growth cone repulsion, inhibition, and collapse. Finally, guidance responses appeared to involve raft-dependent activation of p42/p44 MAPK and ligand-induced receptor recruitment to lipid rafts. Together with the observation of asymmetric receptor-raft associations at the growth cone in guidance gradients, our findings indicate that localized signaling through membrane rafts plays a role in mediating guidance actions of extracellular cues on developing axons.  相似文献   

14.
Proper neural circuitry requires that growth cones, motile tips of extending axons, respond to molecular guidance cues expressed in the developing organism. However, it is unclear how guidance cues modify the cytoskeleton to guide growth cone pathfinding. Here, we show acute treatment with two attractive guidance cues, nerve growth factor (NGF) and netrin‐1, for embryonic dorsal root ganglion and temporal retinal neurons, respectively, results in increased growth cone membrane protrusion, actin polymerization, and filamentous actin (F‐actin). ADF/cofilin (AC) family proteins facilitate F‐actin dynamics, and we found the inactive phosphorylated form of AC is decreased in NGF‐ or netrin‐1‐treated growth cones. Directly increasing AC activity mimics addition of NGF or netrin‐1 to increase growth cone protrusion and F‐actin levels. Extracellular gradients of NGF, netrin‐1, and a cell‐permeable AC elicit attractive growth cone turning and increased F‐actin barbed ends, F‐actin accumulation, and active AC in growth cone regions proximal to the gradient source. Reducing AC activity blunts turning responses to NGF and netrin. Our results suggest that gradients of NGF and netrin‐1 locally activate AC to promote actin polymerization and subsequent growth cone turning toward the side containing higher AC activity. © 2010 Wiley Periodicals, Inc. Develop Neurobiol 70: 565–588, 2010  相似文献   

15.
The activity of filopodia and lamellipodia determines the advance, motility, adhesion, and sensory capacity of neuronal growth cones. The shape and dynamics of these highly motile structures originate from the continuous reorganization of the actin cytoskeleton in response to extracellular signals. The small GTPases, Rac1, Rho, and CDC42, regulate the organization of actin filament structures in nonneuronal cells; yet, their role in growth cone motility and neurite outgrowth is poorly understood. We investigated in vitro the function of Rac1 in neurite outgrowth and differentiation by introducing purified recombinant mutants of Rac1 into primary chick embryo motor neurons via trituration. Endogenous Rac1 was expressed in growth cone bodies as well as in the tips and shafts of filopodia, where it often colocalized with actin filament structures. The introduction of constitutively active Rac1 resulted in an increase in rhodamine–phalloidin staining, presumably from an accumulation of actin filaments in growth cones, while dominant negative Rac1 caused a decrease in rhodamine–phalloidin staining. Nevertheless, both Rac1 mutants retarded growth cone advance, and hence attenuated neurite outgrowth and inhibited differentiation of neurites into axons and dendrites on laminin and fibronectin. In contrast, on poly-D -lysine, neither Rac1 mutant affected growth cone advance, neurite outgrowth, or neurite differentiation despite inducing similar changes in the amount of rhodamine–phalloidin staining in growth cones. Our data demonstrate that Rac1 regulates actin filament organization in neuronal growth cones and is pivotal for β1 integrin–mediated growth cone advance, but not for growth on poly-D lysine. © 1998 John Wiley & Sons, Inc. J Neurobiol 37: 524–540, 1998  相似文献   

16.
It has been recognized for a long time that the neuronal cytoskeleton plays an important part in neurite growth and growth cone pathfinding, the mechanism by which growing axons find an appropriate route through the developing embryo to their target cells. In the growth cone, many intracellular signaling pathways that are activated by guidance cues converge on the growth cone cytoskeleton and regulate its dynamics. Most of the research effort in this area has focussed on the actin, microfilament cytoskeleton of the growth cone, principally because it underlies growth cone motility, the extension and retraction of filopodia and lamellipodia, and these structures are the first to encounter guidance cues during growth cone advance. However, more recently, it has become apparent that the microtubule cytoskeleton also has a role in growth cone pathfinding and is also regulated by guidance cues operating through intracellular signaling pathways via engagement with cell membrane receptors. Furthermore, recent work has revealed an interaction between these two components of the growth cone cytoskeleton that is probably essential for growth cone turning, a fundamental growth cone behavior during pathfinding. In this short review I discuss recent experiments that uncover the function of microtubules in growth cones, how their behavior is regulated, and how they interact with the actin filaments.  相似文献   

17.
The accessibility and simplicity of the zebrafish embryo have allowed researchers to make a detailed characterization of pathfinding by identifiable growth cones. The growth cones follow precise cell-specific pathways to their targets. Analyses of pathfinding in mutant and experimentally manipulated wild type embryos have shown that growth cones accomplish this by interacting with specific cellular cues in their environment, many of which are likely to be redundant.  相似文献   

18.
Touch and go: guidance cues signal to the growth cone cytoskeleton   总被引:9,自引:0,他引:9  
Growth cones, the highly motile tips of growing axons, guide axons to their targets by responding to molecular cues. Growth cone behaviors such as advancing, retracting, turning and branching are driven by the dynamics and reorganization of the actin and microtubule cytoskeleton through signaling pathways linked to guidance cue receptors. Actin filaments play a major part in growth cone motility, and because of their peripheral locations were thought to be the primary target of molecular cues. However, recent studies have shown that dynamic microtubules can penetrate the growth cone periphery where guidance molecules can influence them directly. Moreover, guidance cues can regulate growth cone steering by modulating dynamic actin-microtubule interactions.  相似文献   

19.
Neuronal growth cones are capable of sophisticated discrimination of environmental cues, on cell surfaces and in the extracellular matrix, to accomplish navigation during development (generation) and following nervous system injury (regeneration). Choices made by growth cones are commonly examined using tissue culture paradigms in which molecules of interest are purified and substratum‐bound. From observations of growth cone behaviors using these paradigms, assertions are made about choices neuronal growth cones may make in vivo. However, in many cases, the binding, interactions, and conformations of these molecules have not been determined. In the present study, we investigated the binding characteristics of two commonly studied outgrowth regulatory molecules: chondroitin sulfate proteoglycans (CSPGs), which are typically inhibitory to neurite outgrowth during development and following nervous system injury, and laminin, which is typically outgrowth promoting for many neuronal types. Using a novel combination of radiolabeling and quantitative fluorescence, we determined the precise concentrations of CSPGs and laminin‐1 that were bound separately and together in a variety of choice assays. For identically prepared cultures, we correlated neurite outgrowth behaviors with binding characteristics. The data support our working hypothesis that neuronal growth cones are guided by the ratio of outgrowth‐promoting to outgrowth‐inhibiting influences in their environment, i.e., they summate local molecular cues. The response of growth cones to these molecular combinations is most likely mediated by integrins and subsequent activation of signal transduction cascades in growth cones. © 2002 Wiley Periodicals, Inc. J Neurobiol 51: 285–301, 2002  相似文献   

20.
The growth cone, a terminal structure on developing and regenerating axons, is specialized for motility and guidance functions. In vivo the growth cone responds to environmental cues to guide the axon to its appropriate target. These cues are thought to be responsible for position-specific morphological changes in the growth cone, but the molecules that control growth cone behavior are poorly characterized. We used scanning electron microscopy to analyze the morphology of retinal ganglion cell growth cones in vitro on different adhesion molecules that axons normally encounter in vivo. L1/8D9, N-cadherin, and laminin each induced distinctive morphological characteristics in growth cones. Growth cones elaborated lamellipodial structures in response to the cell adhesion molecules L1/8D9 and N-cadherin, whereas laminin supported filopodial growth cones with small veils. On L1/8D9, the growth cones were larger and produced more filopodia. Filopodial associations between adjacent growth cones and neurites were frequent on L1/8D9 but were uncommon on laminin or N-cadherin. These results demonstrate that different adhesion molecules have profoundly different effects on growth cone morphology. This is consistent with previous reports suggesting that changes in growth cone morphology in vivo occur in response to changes in substrate composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号