共查询到20条相似文献,搜索用时 15 毫秒
1.
The efficacy of visual and non-visual feeding among pelagic striped bass Morone saxatilis larvae adapted to a turbid estuary was determined in the laboratory in clear water. Capture of Artemia salina (density 100 l−1) was significantly affected by the interaction between age of larvae (range: 8–25 days post-hatch, dph) and light intensity (range: 0–10·6 μmol s−1 m−2 at the water surface). Visual feeding by larvae aged 9–11 dph was highest in dim light (0·086–0·79 μmol s−1 m−2), with fish capturing up to 5 prey larva−1 h−1. As the larvae grew, prey capture in brighter light improved, associated with an increasing proportion of twin cone photoreceptors and improving ability of the retina to light- and dark-adapt. By age >22 dph, mean prey capture was greatest at highest light intensities (0·79 and 10·6 μmol s−1 m−2) exceeding 100 prey larva−1 h−1. Incidence of feeding larvae generally improved as the larvae grew, reaching >80% in all light intensities from 16 dph onwards. The lower threshold for visual feeding, between 0·0084 and 0·03 μmol s−1 m−2, remained constant as the larvae grew, despite an increasing density of rod photoreceptors. Below this threshold, non-visual feeding was evident at a low rate (<6 prey larva−1 h−1) that was independent of larval age. 相似文献
2.
I Fahrenfort R L Habets H Spekreijse M Kamermans 《The Journal of general physiology》1999,114(4):511-524
Processing of visual stimuli by the retina changes strongly during light/dark adaptation. These changes are due to both local photoreceptor-based processes and to changes in the retinal network. The feedback pathway from horizontal cells to cones is known to be one of the pathways that is modulated strongly during adaptation. Although this phenomenon is well described, the mechanism for this change is poorly characterized. The aim of this paper is to describe the mechanism for the increase in efficiency of the feedback synapse from horizontal cells to cones. We show that a train of flashes can increase the feedback response from the horizontal cells, as measured in the cones, up to threefold. This process has a time constant of approximately 3 s and can be attributed to processes intrinsic to the cones. It does not require dopamine, is not the result of changes in the kinetics of the cone light response and is not due to changes in horizontal cells themselves. During a flash train, cones adapt to the mean light intensity, resulting in a slight (4 mV) depolarization of the cones. The time constant of this depolarization is approximately 3 s. We will show that at this depolarized membrane potential, a light-induced change of the cone membrane potential induces a larger change in the calcium current than in the unadapted condition. Furthermore, we will show that negative feedback from horizontal cells to cones can modulate the calcium current more efficiently at this depolarized cone membrane potential. The change in horizontal cell response properties during the train of flashes can be fully attributed to these changes in the synaptic efficiency. Since feedback has major consequences for the dynamic, spatial, and spectral processing, the described mechanism might be very important to optimize the retina for ambient light conditions. 相似文献
3.
Carl J. Neumann 《Seminars in cell & developmental biology》2001,12(6):485-490
During the past 15 years, the zebrafish has become established as a genetic model organism to study vertebrate development. It is particularly well suited for the analysis of the retina, and several genetic screens have yielded a large number of mutants affecting retinal development. Most of these mutants still await thorough analysis and molecular characterization, but work on a handful of genes has already generated interesting results that shed some light on patterning mechanisms employed in the vertebrate retina. 相似文献
4.
We have isolated full-length cDNAs of chick Chx10 and Chx10-1, two members of the paired type homeobox/CVC gene family. A comparison of sequences suggests that Chx10 is closely related to Alx/Vsx-2 and Vsx-2 of zebrafish and goldfish, respectively; while Chx10-1 is closely related to Vsx-1 of zebrafish and goldfish. Chx10 and Chx10-1 are expressed in the early retinal neuroepithelium, but not in the pigment epithelium and lens. The expression of Chx10 is present in most retinal neuroblasts, while Chx10-1 exhibits a novel pattern along the nasotemporal border. In the differentiating retina, both Chx10 and Chx10-1 are restricted to bipolar cells and are maintained at a low level in bipolar cells of the mature retina. 相似文献
5.
We have isolated full-length cDNAs of chick Chx10 and Chx10-1, two members of the paired type homeobox/CVC gene family. A comparison of sequences suggests that Chx10 is closely related to Alx/Vsx-2 and Vsx-2 of zebrafish and goldfish, respectively; while Chx10-1 is closely related to Vsx-1 of zebrafish and goldfish. Chx10 and Chx10-1 are expressed in the early retinal neuroepithelium, but not in the pigment epithelium and lens. The expression of Chx10 is present in most retinal neuroblasts, while Chx10-1 exhibits a novel pattern along the nasotemporal border. In the differentiating retina, both Chx10 and Chx10-1 are restricted to bipolar cells and are maintained at a low level in bipolar cells of the mature retina. 相似文献
6.
A role for protein phosphorylation in the process of neurite outgrowth has been inferred from many studies of the effects of protein kinase inhibitors and activators on cultured neurotumor cells and primary neuronal cells from developing brain or ganglia. Here we re-examine this issue, using a culture system derived from a fully differentiated neuronal system undergoing axonal regeneration—the explanted goldfish retina following optic nerve crush. Of the relatively non-selective protein kinase inhibitors employed, H7, staurosporine and K252a were found to block neurite outgrowth, whereas HA1004 had no effect, a result which appears to rule out a critical role for protein kinase A. The more selective protein kinase C inhibitors, sphingosine, calphostin C and Ro-31-8220 were all inhibitory, as was prolonged treatment with phorbol ester and the protein phosphatase inhibitor okadaic acid. These results are in support of a role for protein kinase C in axonal regrowth. 相似文献
7.
In this study, we addressed the temporal sequence of photoreceptor fate determination in Xenopus laevis by examining a number of key events during early cone and rod development. We compared the relative timing and spatial pattern of cone and rod specification using a number of cell type-specific markers, including probes to a long wavelength-sensitive opsin which is expressed by the major cone subtype. Our results show that cones are initially more numerous, and can arise in less mature regions of the retina than rods, although both types of photoreceptors begin to express their respective opsins at about the same time. We applied these markers to an assay of cellular determination to identify the stages of embryonic development at which the earliest photoreceptor fates are induced in vivo. The relative birth order of the major cone and rod subtypes was revealed by simultaneous labeling with markers of cell proliferation and terminal differentiation. Although there is much temporal overlap between the periods of cone and rod genesis and determination in Xenopus, we could discern that the earliest cones are both born and determined before the first rods. Thus, even in the rapidly developing retina of Xenopus, photoreceptors achieve their identities in a sequential fashion, suggesting that the inductive cues which determine specific photoreceptor fates may also arise sequentially during development. © 1998 John Wiley & Sons, Inc. J Neurobiol 35: 227–244, 1998 相似文献
8.
Retinal specializations in the eyes of deep-sea teleosts 总被引:2,自引:0,他引:2
9.
10.
11.
Peter Engerer Leanne Godinho Peter Engerer Sachihiro C Suzuki Takeshi Yoshimatsu Prisca Chapouton Nancy Obeng Benjamin Odermatt Philip R Williams Thomas Misgeld Leanne Godinho 《The EMBO journal》2017,36(9):1134-1146
Conventionally, neuronal development is regarded to follow a stereotypic sequence of neurogenesis, migration, and differentiation. We demonstrate that this notion is not a general principle of neuronal development by documenting the timing of mitosis in relation to multiple differentiation events for bipolar cells (BCs) in the zebrafish retina using in vivo imaging. We found that BC progenitors undergo terminal neurogenic divisions while in markedly disparate stages of neuronal differentiation. Remarkably, the differentiation state of individual BC progenitors at mitosis is not arbitrary but matches the differentiation state of post-mitotic BCs in their surround. By experimentally shifting the relative timing of progenitor division and differentiation, we provide evidence that neurogenesis and differentiation can occur independently of each other. We propose that the uncoupling of neurogenesis and differentiation could provide neurogenic programs with flexibility, while allowing for synchronous neuronal development within a continuously expanding cell pool. 相似文献
12.
Ruxandra F. Sîrbulescu Iulian Ilieş Antonia G. Vitalo Krystal Trull Jenny Zhu Ian M. Traniello Günther K.H. Zupanc 《Developmental neurobiology》2015,75(1):39-65
Adult neurogenesis has been described in dozens of brain regions in teleost fish, with the largest number of new neurons being generated in the cerebellum. Here, we characterized the cerebellar neural stem/progenitor cells (NSPCs) in the brown ghost knifefish (Apteronotus leptorhynchus), an established model system of adult neurogenesis. The majority of the new cerebellar cells arise from neurogenic niches located medially, at the interface of the dorsal/ventral molecular layers and the granular layer. NSPCs within these niches give rise to transit‐amplifying progenitors which populate the molecular layer, where they continue to proliferate during their migration toward target areas in the granular layer. At any given time, the majority of proliferating cells are located in the molecular layer. Immunohistochemical staining revealed that the stem cell markers Sox2, Meis1/2/3, Islet1, and, to a lesser extent, Pax6, are widely expressed in all regions of the adult cerebellum. A large subpopulation of these NSPCs coexpress S100, GFAP, and/or vimentin, indicating astrocytic identity. This is further supported by the specific effect of the gliotoxin l ‐methionine sulfoximine, which leads to a targeted decrease in the number of GFAP+ cells that coexpress Sox2 or the proliferation marker PCNA. Pulse‐chase analysis of the label size associated with new cells after administration of 5‐bromo‐2′‐deoxyuridine demonstrated that, on average, two additional cell divisions occur after completion of the initial mitotic cycle. Overall numbers of NSPCs in the cerebellum niches increase consistently over time, presumably in parallel with the continuous growth of the brain. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 75: 39–65, 2015 相似文献
13.
14.
Thomas A. Reh 《Developmental neurobiology》1992,23(8):1067-1083
Progenitor cells isolated from early rat embryo retinas differentiate into phenotypes normally generated early in retinal development (e.g., ganglion cells), whereas progenitors isolated from postnatal retinas differentiate into later-generated retinal cell types (e.g., rod photoreceptors; Reh and Kljavin, J. Neurosci. 9:4179–4189; 1989; Adler and Hatlee, 1989; Science 243:391–393; Sparrow, Hicks, and Barnstable, 1990, Dev. Brain Res. 51:69–84). To determine whether this change in committment is intrinsic to the progenitor cells, or alternatively can be modified by interactions with their developing environment, I co-cultured mouse and rat retinal cells, from different developmental stages, and identified the resulting phenotypes with species-specific and cell class-specific antibodies. I found that the phenotypes into which mouse neuroepithelial cells differentiate depends on the phenotypes of the rat cells that surround them. Retinal precursor cells from embryonic day (E) 10–12 will adopt the rod photoreceptor phenotype only when close to cells expressing this phenotype. By contrast, when the E10–12 retinal progenitor cells are cultured with cells from the cerebral cortex, they differentiate primarily into large multipolar neurons, similar in their morphology and antigen expression to retinal ganglion cells. These results indicate that interactions among the cells of the developing retina are important in the determination of cell fate. © 1992 John Wiley & Sons, Inc. 相似文献
15.
16.
Mengfei Chen Shenghe Tian Nathan G. Glasgow Gregory Gibson Xiaoling Yang Christen E. Shiber James Funderburgh Simon Watkins Jon W. Johnson Joel S. Schuman Hongjun Liu 《Aging cell》2015,14(4):635-643
Current knowledge indicates that the adult mammalian retina lacks regenerative capacity. Here, we show that the adult stem cell marker, leucine‐rich repeat‐containing G‐protein‐coupled receptor 5 (Lgr5), is expressed in the retina of adult mice. Lgr5+ cells are generated at late stages of retinal development and exhibit properties of differentiated amacrine interneurons (amacrine cells). Nevertheless, Lgr5+ amacrine cells contribute to regeneration of new retinal cells in the adult stage. The generation of new retinal cells, including retinal neurons and Müller glia from Lgr5+ amacrine cells, begins in early adulthood and continues as the animal ages. Together, these findings suggest that the mammalian retina is not devoid of regeneration as previously thought. It is rather dynamic, and Lgr5+ amacrine cells function as an endogenous regenerative source. The identification of such cells in the mammalian retina may provide new insights into neuronal regeneration and point to therapeutic opportunities for age‐related retinal degenerative diseases. 相似文献
17.
The binding sites of 8-[3H]hydroxy-2-(di-n-propylamino)tetralin ([3H]DPAT) were characterized in the retina of goldfish in order to evaluate the selectivity of the ligand for serotonin1A (5HT1A) receptors. Specificity of the binding was performed in the presence of serotonergic and dopaminergic agonists and antagonists. Buspirone, spriroxatrine and 5-methoxy-N,N-dimethyltryptamine were potent inhibitors, followed by propranolol, citalopram, imipramine and desipramine. Serotonin was not a potent inhibitor, and its interaction with the binding sites of [3H]DPAT was complex. Nomifensine displayed an important inhibition, however, other dopamine uptake blockers, such as bupropion and GBR-12909, were less potent. Haloperidol was also a good inhibitor, but the D1 receptor agonist, SKF-38393, the D2 receptor antagonist, sulpiride, and dopamine did not inhibit the binding. GppNHp inhibited the binding in the micromolar range. The analysis of saturation experiments by isotopic dilution, using buspirone to determine nonspecific binding, revealed two sites. The number of binding sites defined by buspirone were higher than the ones defined by nomifesine. The specific binding, using buspirone for definition, was reduced by the intraocular injection of 6-hydroxydopamine. This investigation demonstrates that [3H]DPAT labels 5HT1A receptors in goldfish retina, but also interacts with a non-5HT receptor site. These receptors seem to be localized in dopaminergic neurons. 相似文献
18.
Nuclear DNA duplication in the absence of cell division (i.e. endoreplication) leads to somatic polyploidy in eukaryotic cells. In contrast to some invertebrate neurons, whose nuclei may contain up to 200,000-fold the normal haploid DNA amount (C), polyploid neurons in higher vertebrates show only 4C DNA content. To explore the mechanism that prevents extra rounds of DNA synthesis in these latter cells we focused on the chick retina, where a population of tetraploid retinal ganglion cells (RGCs) has been described. We show that differentiating chick RGCs that express the neurotrophic receptors p75 and TrkB while lacking retinoblastoma protein, a feature of tetraploid RGCs, also express p27Kip1. Two different short hairpin RNAs (shRNA) that significantly downregulate p27Kip1 expression facilitated DNA synthesis and increased ploidy in isolated chick RGCs. Moreover, this forced DNA synthesis could not be prevented by Cdk4/6 inhibition, thus suggesting that it is triggered by a mechanism similar to endoreplication. In contrast, p27Kip1 deficiency in mouse RGCs does not lead to increased ploidy despite previous observations have shown ectopic DNA synthesis in RGCs from p27Kip1−/− mice. This suggests that a differential mechanism is used for the regulation of neuronal endoreplication in mammalian versus avian RGCs. 相似文献
19.
The presence of serotonin 5-HT1A receptors and their physiological role were further characterized in the goldfish retina. The effects of the 5-HT6/7 receptor antagonists pimozide, fluphenazine and amoxapine, the 5-HT1A receptor antagonist WAY-100,135, and the alkylating agent N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline, on the 5-HT1A receptor agonist [3H]8-hydroxy-2-(di-n-propylamino)tetralin binding to retinal membranes, were evaluated. In addition, the effects of serotonin, 8-hydroxy-2-(di-n-propylamino)tetralin, WAY-100,135, the adenylate cyclase inhibitors SQ22536 and MDL12330A, and the cyclic AMP analog 8-bromoadenosine-3:5 cyclic monophosphate were also studied on neuritic outgrowth from retinal explants. WAY-100,135 but not 5-HT6/7receptor antagonists inhibited [3H]8-hydroxy-2-(di-n-propylamino)tetralin binding to retinal membranes N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline decreased [3H]8-hydroxy-2-(di-n-propylamino)tetralin binding sites up to 70%, while receptor turnover was similar to that reported in other tissues. Serotonin and 8-hydroxy-2-(di-n-propylamino)tetralin stimulated cyclic AMP production, both ex vivo and in vitro, and these increases were related to inhibition of neuritic outgrowth. The inhibitory effect was reduced by SQ22536 and by WAY-100,135, and was mimicked by 8-bromoadenosine-3:5cyclic monophosphate. This study supports previous findings about the role of serotonin as a regulator of axonal outgrowth during in vitro regeneration of the goldfish retina and demonstrates that this effect is mediated, at least in part, by 5-HT1A receptors through a mechanism which involves an increase of cyclic AMP levels. 相似文献
20.
A new method for karyological studies in teleost fishes 总被引:1,自引:0,他引:1
A simple method employing CoCl2 , is described which has application in the rapid preparation of fish chromosomes for research and teaching. The benefits of this method include low initial skill level, relatively inexpensive equipment and supplies, and the production of a high number of metaphase spreads. 相似文献