首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
2.
In the mouse Igf2/H19 imprinted locus, differential methylation of the imprinting control region (H19 ICR) is established during spermatogenesis and is maintained in offspring throughout development. Previously, however, we observed that the paternal H19 ICR, when analyzed in yeast artificial chromosome transgenic mice (YAC-TgM), was preferentially methylated only after fertilization. To identify the DNA sequences that confer methylation imprinting, we divided the H19 ICR into two fragments (1.7 and 1.2 kb), ligated them to both ends of a λ DNA fragment into which CTCF binding sites had been inserted, and analyzed this in YAC-TgM. The maternally inherited λ sequence, normally methylated after implantation in the absence of H19 ICR sequences, became hypomethylated, demonstrating protective activity against methylation within the ICR. Meanwhile, the paternally inherited λ sequence was hypermethylated before implantation only when a 1.7-kb fragment was ligated. Consistently, when two subfragments of the H19 ICR were individually investigated for their activities in YAC-TgM, only the 1.7-kb fragment was capable of introducing paternal allele-specific DNA methylation. These results show that postfertilization methylation imprinting is conferred by a paternal allele-specific methylation activity present in a 1.7-kb DNA fragment of the H19 ICR, while maternal allele-specific activities protect the allele from de novo DNA methylation.  相似文献   

3.
4.
The H19 gene is imprinted with preferential expression from the maternal allele. The putative imprinting control region for this locus is hypermethylated on the repressed paternal allele. Although maternal-specific expression of H19 is observed in mouse blastocysts that develop in vivo, biallelic expression has been documented in embryos and embryonic stem cells experimentally manipulated by in vitro culture conditions. In this study the effect of culture on imprinted H19 expression and methylation was determined. After culture of 2-cell embryos to the blastocyst stage in Whitten's medium, the normally silent paternal H19 allele was aberrantly expressed, whereas little paternal expression was observed following culture in KSOM containing amino acids (KSOM+AA). Analysis of the methylation status of a CpG dinucleotide located in the upstream imprinting control region revealed a loss in methylation in embryos cultured in Whitten's medium but not in embryos cultured in KSOM+AA. Thus, H19 expression and methylation were adversely affected by culture in Whitten's medium, while the response of H19 to culture in KSOM+AA approximated more closely the in vivo situation. It is unlikely that biallelic expression of H19 following culture in Whitten's medium is a generalized effect of lower methylation levels, since the amount of DNA methyltransferase activity and the spatial distribution of Dnmt1 protein were similar in in vivo-derived and cultured embryos. Moreover, imprinted expression of Snrpn was maintained following culture in either medium, indicating that not all imprinted genes are under the same stringent imprinting controls. The finding that culture conditions can dramatically, but selectively, affect the expression of imprinted genes provides a model system for further study of the linkage between DNA methylation and gene expression.  相似文献   

5.
The mouse H19 gene is expressed exclusively from the maternal allele. The imprinted expression of the endogenous gene can be recapitulated in mice by using a 14-kb transgene encompassing 4 kb of 5'-flanking sequence, 8 kb of 3'-flanking sequence, which includes the two endoderm-specific enhancers, and an internally deleted structural gene. We have generated multiple transgenic lines with this 14-kb transgene and found that high-copy-number transgenes most closely follow the imprinted expression of the endogenous gene. To determine which sequences are important for imprinted expression, deletions were introduced into the transgene. Deletion of the 5' region, where a differentially methylated sequence proposed to be important in determining parental-specific expression is located, resulted in transgenes that were expressed and hypomethylated, regardless of parental origin. A 6-kb transgene, which contains most of the differentially methylated sequence but lacks the 8-kb 3' region, was not expressed and also not methylated. These results indicate that expression of either the H19 transgene or a 3' DNA sequence is key to establishing the differential methylation pattern observed at the endogenous locus. Finally, methylation analysis of transgenic sperm DNA from the lines that are not imprinted reveals that the transgenes are not capable of establishing and maintaining the paternal methylation pattern observed for imprinted transgenes and the endogenous paternal allele. Thus, the imprinting of the H19 gene requires a complex set of elements including the region of differential methylation and the 3'-flanking sequence.  相似文献   

6.
Aberrant methylation at the H19 paternal imprinted gene has been identified in different cohorts of infertile males. The causes of H19 methylation errors are poorly understood. In this study, we investigated the methylation status of the H19 gene in semen DNA samples from infertile males affected by MTHFR gene promoter hypermethylation. DNA from normal and abnormal semen samples harbouring MTHFR gene promoter hypermethylated, hmMTHFR-nor and hmMTHFR-abn, and without MTHFR methylation, MTHFR-nor and MTHFR-abn, were investigated for methylation status in the H19 locus using bisulfite-treated DNA PCR, followed by cloning and sequencing. The prevalence of H19 hypomethylated clones was 20% in hmMTHFR-nor and 0% in MTHFR-nor semen samples (p < 0.05), and 28% in hmMTHFR-abn compared with 16% in MTHFR-abn semen samples (p > 0.05). These results underscore the association between H19 methylation defects and hypermethylation of the MTHFR gene promoter in normal semen samples and suggest that aberrant methylation at H19 may occur in the normal sperm of infertile males affected by MTHFR gene dysfunction. These findings provide new insights into the mechanisms causing abnormal methylation in imprinted genes and, in turn, male infertility.  相似文献   

7.
《Epigenetics》2013,8(4):241-247
A subset of mammalian genes exhibits genomic imprinting, whereby one parental allele is preferentially expressed. Differential DNA methylation at imprinted loci serves both to mark the parental origin of the alleles and to regulate their expression. In mouse, the imprinted gene Rasgrf1 is associated with a paternally methylated imprinting control region which functions as an enhancer blocker in its unmethylated state. Because Rasgrf1 is imprinted in a tissue-specific manner, we investigated the methylation pattern in monoallelic and biallelic tissues to determine if methylation of this region is required for both imprinted and non-imprinted expression. Our analysis indicates that DNA methylation is restricted to the paternal allele in both monoallelic and biallelic tissues of somatic and extraembryonic lineages. Therefore, methylation serves to mark the paternal Rasgrf1 allele throughout development, but additional factors are required for appropriate tissue-specific regulation of expression at this locus.  相似文献   

8.
9.
Parental genomes have reciprocal phenotypic effects during development in the mouse because they are programmed (imprinted) with germ line-specific epigenetic modifications. These epigenetic modifications are inherited after fertilisation and they determine whether the maternal or the paternal allele of an 'imprinted' gene is expressed. Four such imprinted genes have so far been identified; the paternal genes of Igf2, and Snrpn, and the maternal genes of Igf2r and H19 are preferentially expressed during development. Igf2 and H19 are closely linked on chromosome 7 and show remarkably similar temporal and spatial patterns of expression. A mechanistic, and possibly a functional link may exist in the reciprocal imprinting of H19 and Igf2. The paternal H19 gene is apparently repressed by DNA methylation in the promoter region. This modification is not inherited from sperm but introduced after fertilisation. The nature of the primary germ line imprint therefore remains to be determined.  相似文献   

10.
The H19 imprinted gene is silenced when paternally inherited and active only when inherited maternally. This is thought to involve a cis-acting control region upstream of H19 that is responsible for regulating a number of functions including DNA methylation, asynchronous replication of parental chromosomes and an insulator. Here we report on the function of a 1.2 kb upstream element in the mouse, which was previously shown to function as a bi-directional silencer in Drosophila. The cre-loxP-mediated targeted deletion of the 1.2 kb region had no effect on the maternal allele. However, there was loss of silencing of the paternal allele in many endodermal and other tissues. The pattern of expression was very similar to the expression pattern conferred by the enhancer elements downstream of H19. We could not detect an effect on the expression of the neighbouring imprinted Igf2 gene, suggesting that the proposed boundary element insulating this gene from the downstream enhancers was unaffected. Despite derepression of the paternal H19 allele, the deletion surprisingly did not affect the differential DNA methylation of the locus, which displayed an appropriate epigenetic switch in the parental germlines. Furthermore, the characteristic asynchronous pattern of DNA replication at H19 was also not disrupted by the deletion, suggesting that the sequences that mediate this were also intact. The silencer is therefore part of a complex cis-regulatory region upstream of the H19 gene and acts specifically to ensure the repression of the paternal allele, without a predominant effect on the epigenetic switch in the germline.  相似文献   

11.
Igf2 (insulin‐like growth factor 2) and H19 genes are imprinted in mammals; they are expressed unevenly from the two parental alleles. Igf2 is a growth factor expressed in most normal tissues, solely from the paternal allele. H19 gene is transcribed (but not translated to a protein) from the maternal allele. Igf2 protein is a growth factor particularly important during pregnancy, where it promotes both foetal and placental growth and also nutrient transfer from mother to offspring via the placenta. This article reviews epigenetic regulation of the Igf2/H19 gene‐cluster that leads to parent‐specific expression, with current models including parental allele‐specific DNA methylation and chromatin modifications, DNA‐binding of insulator proteins (CTCFs) and three‐dimensional partitioning of DNA in the nucleus. It is emphasized that key genomic features are conserved among mammals and have been functionally tested in mouse. ‘The enhancer competition model’, ‘the boundary model’ and ‘the chromatin‐loop model’ are three models based on differential methylation as the epigenetic mark responsible for the imprinted expression pattern. Pathways are discussed that can account for allelic methylation differences; there is a recent study that contradicts the previously accepted fact that biallelic expression is accompanied with loss of differential methylation pattern.  相似文献   

12.
A mouse line carrying a lacZ transgene driven by the human EEF1A1/EF1alpha promoter was established. Although the promoter is known to show ubiquitous activity, only paternal transgene alleles were expressed, resulting in a transgene imprinting. At mid‐gestation, the promoter sequence was differentially methylated, hypomethylated for paternal and hypermethylated for maternal alleles. In germline, the promoter was a typical differentially methylated region. After fertilization, however, both alleles were hypermethylated. Thus, the differential methylation of the promoter required for transgene imprinting was re‐established during later embryonic development independently of the germline differential methylation. Furthermore, also a retroelement promoter closely‐flanking imprinted transgene and its wild type counterpart displayed similar differential methylation during early development. The retroelement promoter was methylated differentially also in germline, but in an opposite pattern to the embryonic differential methylation. These results suggest that there might be an unknown epigenetic regulation inducing transgene imprinting independently of DNA methylation in the transgene insertion site. Then, besides CpG dinucleotides, non‐CpG cytosines of the retroelement promoter were highly methylated especially in the transgene‐active mid‐gestational embryos, suggesting that an unusual epigenetic regulation might protect the active transgene against de novo methylation occurring generally in mid‐gestational embryo.  相似文献   

13.
14.
Epigenetic Resetting of a Gene Imprinted in Plant Embryos   总被引:1,自引:0,他引:1  
Genomic imprinting resulting in the differential expression of maternal and paternal alleles in the fertilization products has evolved independently in placental mammals and flowering plants. In most cases, silenced alleles carry DNA methylation [1]. Whereas these methylation marks of imprinted genes are generally erased and reestablished in each generation in mammals [2], imprinting marks persist in endosperms [3], the sole tissue of reported imprinted gene expression in plants. Here we show that the maternally expressed in embryo 1 (mee1) gene of maize is imprinted in both the embryo and endosperm and that parent-of-origin-specific expression correlates with differential allelic methylation. This epigenetic asymmetry is maintained in the endosperm, whereas the embryonic maternal allele is demethylated on fertilization and remethylated later in embryogenesis. This report of imprinting in the plant embryo confirms that, as in mammals, epigenetic mechanisms operate to regulate allelic gene expression in both embryonic and extraembryonic structures. The embryonic methylation profile demonstrates that plants evolved a mechanism for resetting parent-specific imprinting marks, a necessary prerequisite for parent-of-origin-dependent gene expression in consecutive generations. The striking difference between the regulation of imprinting in the embryo and endosperm suggests that imprinting mechanisms might have evolved independently in both fertilization products of flowering plants.  相似文献   

15.
The SNRPN gene is known to be expressed exclusively from the paternal allele and to map to the critical region for the neurobehavioral disorder, Prader-Willi syndrome (PWS). As a means to investigate the mechanism of imprinting for the SNRPN gene, we have sought to recapitulate the imprinted expression of the endogenous gene. Using an 85-kb murine Snrpn clone, containing 33 kb of 5′ and 30 kb of 3′ flanking DNA, we obtained two intact transgenic lines. One line, containing two copies of the Snrpn transgene, recapitulated the imprinted expression pattern of the endogenous locus, whereas the other transgenic line, containing a single copy, was expressed upon both maternal and paternal inheritance. This suggests that a 6.6-kb region of maternal-specific DNA methylation that we have identified may be sufficient to confer imprinted expression, but not in a copy-number independent manner. Finally, we produced five lines of transgenic mice using a 76-kb human SNRPN clone containing 45 kb and 7 kb of 5′ and 3′ flanking DNA, respectively. We found all the lines were expressed upon both maternal and paternal inheritance, regardless of copy number, suggesting that the imprinting machinery in mouse and human may have diverged. Received: 11 November 1998 / Accepted: 29 January 1999  相似文献   

16.
Expression of coregulated imprinted genes, H19 and Igf2, is monoallelic and parent-of-origin-dependent. Like most imprinted genes, H19 and Igf2 are regulated by a differentially methylated imprinting control region (ICR). CTCF binding sites and DNA methylation at the ICR have previously been identified as key cis-acting elements required for proper H19/Igf2 imprinting. Here, we use mouse models to elucidate further the mechanism of ICR-mediated gene regulation. We specifically address the question of whether sequences outside of CTCF sites at the ICR are required for paternal H19 repression. To this end, we generated two types of mutant ICRs in the mouse: (i) deletion of intervening sequence between CTCF sites (H19ICR?IVS), which changes size and CpG content at the ICR; and (ii) CpG depletion outside of CTCF sites (H19ICR-8nrCG), which only changes CpG content at the ICR. Individually, both mutant alleles (H19ICR?IVS and H19ICR-8nrCG) show loss of imprinted repression of paternal H19. Interestingly, this loss of repression does not coincide with a detectable change in methylation at the H19 ICR or promoter. Thus, neither intact CTCF sites nor hypermethylation at the ICR is sufficient for maintaining the fully repressed state of the paternal H19 allele. Our findings demonstrate, for the first time in vivo, that sequence outside of CTCF sites at the ICR is required in cis for ICR-mediated imprinted repression at the H19/Igf2 locus. In addition, these results strongly implicate a novel role of ICR size and CpG density in paternal H19 repression.  相似文献   

17.
18.
Paternal repression of the imprinted H19 gene is mediated by a differentially methylated domain (DMD) that is essential to imprinting of both H19 and the linked and oppositely imprinted Igf2 gene. The mechanisms by which paternal-specific methylation of the DMD survive the period of genome-wide demethylation in the early embryo and are subsequently used to govern imprinted expression are not known. Methyl-CpG binding (MBD) proteins are likely candidates to explain how these DMDs are recognized to silence the locus, because they preferentially bind methylated DNA and recruit repression complexes with histone deacetylase activity. MBD RNA and protein are found in preimplantation embryos, and chromatin immunoprecipitation shows that MBD3 is bound to the H19 DMD. To test a role for MBDs in imprinting, two independent RNAi-based strategies were used to deplete MBD3 in early mouse embryos, with the same results. In RNAi-treated blastocysts, paternal H19 expression was activated, supporting the hypothesis that MBD3, which is also a member of the Mi-2/NuRD complex, is required to repress the paternal H19 allele. RNAi-treated blastocysts also have reduced levels of the Mi-2/NuRD complex protein MTA-2, which suggests a role for the Mi-2/NuRD repressive complex in paternal-specific silencing at the H19 locus. Furthermore, DNA methylation was reduced at the H19 DMD when MBD3 protein was depleted. In contrast, expression and DNA methylation were not disrupted in preimplantation embryos for other imprinted genes. These results demonstrate new roles for MBD3 in maintaining imprinting control region DNA methylation and silencing the paternal H19 allele. Finally, MBD3-depleted preimplantation embryos have reduced cell numbers, suggesting a role for MBD3 in cell division.  相似文献   

19.
A approximately 2.4-kb imprinting control region (ICR) regulates somatic monoallelic expression of the Igf2 and H19 genes. This is achieved through DNA methylation-dependent chromatin insulator and promoter silencing activities on the maternal and paternal chromosomes, respectively. In somatic cells, the hypomethylated maternally inherited ICR binds the insulator protein CTCF at four sites and blocks activity of the proximal Igf2 promoter by insulating it from its distal enhancers. CTCF binding is thought to play a direct role in inhibiting methylation of the ICR in female germ cells and in somatic cells and, therefore, in establishing and maintaining imprinting of the Igf2/H19 region. Here, we report on the effects of eliminating ICR CTCF binding by severely mutating all four sites in mice. We found that in the female and male germ lines, the mutant ICR remained hypomethylated and hypermethylated, respectively, showing that the CTCF binding sites are dispensable for imprinting establishment. Postfertilization, the maternal mutant ICR acquired methylation, which could be explained by loss of methylation inhibition, which is normally provided by CTCF binding. Adjacent regions in cis-the H19 promoter and gene-also acquired methylation, accompanied by downregulation of H19. This could be the result of a silencing effect of the methylated maternal ICR.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号