首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: The l - and d -enantiomers of the sulphur-containing amino acids (SAAs)—homocysteate, homocysteine sulphinate, cysteate, cysteine sulphinate, and S-sulphocysteine—stimulated [3H]noradrenaline release from rat hippocampal slices in a concentration-dependent manner. The relative potencies of the l -isomers (EC50 values of 1.05–1.96 mM) were of similar order to that of glutamate (1.56 mM), which was 10-fold lower than that of NMDA (0.15 mM), whereas the d -isomers exhibited a wider range of potencies (0.75 to >5 mM). All stimulatory effects of the SAAs were significantly inhibited by the voltage-sensitive Na+ channel blocker tetrodotoxin (55–71%) and completely blocked by addition of Mg2+ or Co2+ to the incubation medium. All SAA-evoked responses were concentration-dependently antagonized by the selective NMDA receptor antagonist d -(?)-2-amino-5-phosphonopentanoic acid (IC50 values of 3.2–49.5 µM). 6-Cyano-7-nitroquinoxaline-2,3-dione (CNQX), a non-NMDA receptor antagonist, at 100 µM inhibited the [3H]noradrenaline release induced by glutamate and NMDA (65 and 76%, respectively) and by all SAAs studied (65–85%), whereas 10 µM CNQX only inhibited the effects of S-sulpho-l -cysteine and l - and d -homocysteate (33, 32, and 44%, respectively). However, the more selective AMPA/kainic acid receptor antagonist 6-nitro-7-sulphamoylbenzo(f)quinoxaline-2,3-dione (100 µM), which did not antagonize the [3H]noradrenaline release induced by glutamate and NMDA, reduced only the S-sulpho-l -cysteine-evoked response (25%). Thus, the stimulation of Ca2+-dependent[3H]noradrenaline release from hippocampal slices elicited by the majority of the SAAs appears to be mediated by the NMDA receptor.  相似文献   

2.
Abstract: The N-methyl-d -aspartate (NMDA) receptor possesses two distinct amino acid recognition sites, one for glutamate and one for glycine, which appear to be allosterically linked. Using rat cortex/hippocampus P2 membranes we have investigated the effect of glutamate recognition site ligands on [3H]glycine (agonist) and (±)4-trans-2-car-boxy-5,7-dichloro-4-[3H]phenylaminocarbonylamino-1,2,3,4-tetrahydroquinoline ([3H]l -689,560; antagonist) binding to the glycine site and the effect of glycine recognition site ligands on l -[3H]glutamate (agonist), dl -3-(2-carboxypiperazin-4-yl)-[3H]propyl-1 -phosphonate ([3H]-CPP; “C-7” antagonist), and cis-4-phosphonomethyl-2-[3H]piperidine carboxylate ([3H]CGS-19755; “C-5” antagonist) binding to the glutamate site. “C-7” glutamate site antagonists partially inhibited [3H]l -689,560 binding but had no effect on [3H]glycine binding, whereas “C-5” antagonists partially inhibited the binding of both radioligands. Glycine, d -serine, and d -cycloserine partially inhibited [3H]CGS-19755 binding but had little effect on l -[3H]-glutamate or [3H]CPP binding, whereas the partial agonists (+)-3-amino-1-hydroxypyrrolid-2-one [(+)-HA-966], 3R-(+)cis-4-methyl-HA-966 (l -687,414), and 1-amino-1-carboxycyclobutane all enhanced [3H]CPP binding but had no effect on [3H]CGS-19755 binding, and (+)-HA-966 and l -687,414 inhibited l -[3H]glutamate binding. The association and dissociation rates of [3H]l -689,560 binding were decreased by CPP and d -2-amino-5-phosphonopentanoic acid (“C-5”). Saturation analysis of [3H]l -689,560 binding carried out at equilibrium showed that CPP had little effect on the affinity or number of [3H]l -689,560 binding sites. These results indicate that complex interactions occur between the glutamate and glycine recognition sites on the NMDA receptor. In addition, mechanisms other than allosterism may underlie some effects, and the possibility of a steric interaction between CPP and [3H]l -689,560 is discussed.  相似文献   

3.
A series of 3-(4-piperidinyl)- and 3-(8-aza-bicyclo[3.2.l]oct-3-yl)-2-phenyl-1H-indoles have been prepared and evaluated as ligands for the h5-HT2A receptor. 3-(8-Phenethyl-8-aza-bicyclo[3.2.l]oct-3-yI)-2-phenyl-1H-indole is a high-affinity (1.2 nM), selective (>800 fold over h5-HT2C and hD2 receptors) antagonist at the h5-HT2A receptor with oral bioavailability in rats.  相似文献   

4.
Abstract: We have suggested recently the existence of three subtypes of B2 bradykinin receptors in tissues of guinea pigs. We have classified these B2 bradykinin receptors into B2a, B2b, and B2c subtypes depending on their affinity for various bradykinin antagonists. Because the actions of bradykinin in different cell systems appear to be both dependent on and independent of G proteins, we sought to determine whether the binding of [3H]bradykinin to the B2 subtypes is sensitive to guanine nucleotides and, therefore, possibly coupled to G proteins. In the ileum, where we have demonstrated B2a and B2b subtypes, specific [3H]bradykinin binding was reduced with GDP (100 μM) and the nonmetabolized analogue of GTP, guanyl-5′-yl-imidodiphosphate (GppNHp; 100 μM). Competition studies with bradykinin and with [Hyp3]-bradykinin, which shows approximately 20-fold greater selectivity for the B2a subtype than bradykinin, were performed in the presence or absence of GppNHp (100 μM). The competition experiments demonstrated that binding to the B2a subtype, which has higher affinity for [Hyp3]-bradykinin and bradykinin than the B2b subtype, was lost in the presence of GppNHp, whereas binding to the B2b subtype was unaffected. In contrast, GppNHp (100 μM) and GDP (100 μM) failed to alter specific [3H]bradykinin binding to B2b and B2c subtypes in lung. [3H]Bradykinin binding was unaffected by AMP, ADP, ATP, and GMP (100 μM each). Based on this evidence, we suggest that the B2a bradykinin subtype is coupled to G proteins. The B2b and B2c subtypes are either not coupled to G proteins, or may be coupled to the Go-type GTP binding proteins, which have been suggested to be less sensitive to guanine nucleotides. These data provide further evidence for three subtypes of B2-type bradykinin receptors in guinea pig.  相似文献   

5.
Two bombsin peptides, GRPR agonist [Aca-QWAVGHLM-NH2] and antagonist [fQWAVGHL-NHEthyl] were evaluated. We employed the highly sensitive Waters Q-Tof Premier MS coupled with a UPLC system to identify the metabolites produced by rat hepatocytes or PC-3 human prostate cancer cells; and we utilized the AB/MDS 4000 Q-Trap LC/MS/MS system with highly sensitive quantitative and qualitative performance, to quantitatively analyze the internalization of GRPR agonist and antagonist in PC-3 cells. The major metabolites of both GRPR agonist and antagonist were the result of peptide bond hydrolysis between W and A which was demonstrated by observation of the N-terminal fragment m/z 446 (Aca-QW-OH) for agonist and m/z 480 (fQW-OH) for antagonist. Both peptides were also hydrolyzed between A and V which formed peaks m/z 517 [Aca-QWA-OH] and m/z 555 (VGHLM-NH2) for the agonist and m/z 551 [fQWA-OH] and m/z 452 (VGHL-NHEthyl) for the antagonist. The peptide agonist also formed a unique metabolite that resulted from hydrolysis of the C-terminal amide. The antagonist showed significantly slower metabolism as compared to the agonist in both rat hepatocytes and PC-3 cells. The antagonist also showed significantly lower PC-3 cell internalization rate than that of the agonist. In conclusion, the metabolism profiles of both GRPR agonist and antagonist peptides were identified by LC/MS. The antagonist peptide was more stable than the agonist peptide in rat hepatocyte incubation. One major factor could be the hydrolysis-resistant C-terminal L-NHEthyl group compared with the unsubstituted amide of the agonist. Another factor could be different amino acid sequences of the agonist and antagonist that may also influence the enzymatic hydrolysis. The antagonist ligand is potentially more useful for receptor-targeted imaging due primarily to its higher metabolic stability.  相似文献   

6.

The title compound, C6H4N4S2·C3H7NO, crystallizes in the monoclinic space group C 2/c with a = 26.673(5), b = 5.397(1), c = 16.522(3) Å, β = 95.49(3)°, Z = 8, R = 0.0461 for 1891 reflections with I > 2σ(I) and 174 parameters (4 restraints). Single pteridine-2,4(1 H,3 H)-dithione and dimethylformamide molecules are packed via N-H···O and N-H···N hydrogen bonds into centrosymmetric clusters containing two molecules of each class; these are roughly planar and placed into two different sets of planes -both containing the [−1,0,2] direction- mutually angled by 77.8°. Despite the distance between two neighbor planes in each set is ca. 3.4 Å, the analysis of π,π-stacking interactions shows too large slippage distance between aromatic rings from contiguous planes. Additional σ-π interactions between S2, S4 and O1S atoms and pyrazine or pyrimidine rings from adjacent molecules are present. The structure for the cluster [DTLM-DMF]2 has been simulated by using the density functionals B1B95 (6-31 G(d) and 6-31+G(d) basis sets) and M06-2X (6-31 G(d) basis set). As a result, the M06-2X/6-31 G(d) approach provides the best agreement with the experimental XRD data. For a better evaluation of the intermolecular interactions, the superposition of two dimeric adducts [DTLM-DMF]2 has been modelized. The binding capability of DTLM ligand was simulated on systems containing two metal-binding modes to palladium (N5-S4 and N1-S2) with different chelate size. The analysis of the frontier orbitals points out that the link with the metallic centers will take place through the sulfur atoms.

  相似文献   

7.
Abstract

A detailed NMR study is carried out in acetonitrile/water solutions on three novel cyclic bradykinin antagonist analogues, BKM-824, BKM-870, and BKM-872, to examine their solution structures, and to correlate the structures with bradykinin antagonist and anti-cancer activities. The solution structures of the cyclic peptides are correlated with the structural data for known linear bradykinin antagonists. The sequences are: BKM-824 c[Ava-Igl-Ser-DF5F-Oic- Arg] where Ava is 5-aminovaleric acid, Igl is α-(2-indanyl)glycine, F5F is pentafluorophenylalanine, and Oic is (2S,3aS,7aS)-octahydroindole-2-carboxylic acid; BKM-870; c[DArg-Arg-Add-DF5F-Oic-Arg] where Add is 12-aminododecanoic acid; and BKM-872; c[DArg-Arg-Eac-Ser-DF5F-Oic-Arg] where Eac is 6-aminocaproic acid. BKM-824 was the only peptide within this series that possessed a discernable solution structure. The NMR data indicate the presence of a type I β-turn between residues F5F4 and Ava1, a C-terminal-like end. Molecular dynamics calculations show that a type I β-turn from DF5F4 to Ava1 does exist although the turn was somewhat distorted. This result differs from the structures seen in linear bradykinin antagonists, which usually possess a type II II′β-turn at the C-terminal end and the presence of a defined turn is correlated with bradykinin antagonist activity. There is no solution structure for BKM-870 and BKM-872 but a correlation between the primary sequence Argterminal-DArg1-Arg2-long chain aliphatic amino acid and anti-cancer activity is evident.  相似文献   

8.
It has been suggested that low concentrations of angiotensin II cause vasoconstriction whereas high concentrations evoke vasodilation. Thus, this work aimed to functionally characterize the mechanisms underlying the relaxation induced by angiotensin II at high concentrations in isolated rat carotid rings. Experiments using standard muscle bath procedures showed that angiotensin II (0.01-3 μM) concentration dependently induces relaxation of phenylephrine-pre-contracted rings. No differences between intact or denuded endothelium were found. The angiotensin II-induced relaxation was strongly inhibited by saralasin, the non-selective antagonist of angiotensin II receptors but not by the selective antagonists of AT1 and AT2 receptors, losartan and PD123319, respectively. However, A-779, a selective angiotensin-(1-7) receptor antagonist, reduced the relaxation induced by angiotensin II. Administration of exogenous angiotensin-(1-7) on pre-contracted tissues produced concentration-dependent relaxation, which was also inhibited by A-779. HOE-140, the selective antagonist of the bradykinin in B2 receptor did not produce any significant effect on angiotensin II-induced relaxation. Pre-incubation of denuded-rings with N G-nitro-l-arginine methyl ester (l-NAME) or 1H-[1,2,4] Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) reduced angiotensin II-induced relaxation. On the other hand, neither indomethacin nor tetraethylammonium (TEA) produced any significant effect. The major new finding of this work is that high concentrations of angiotensin II induce relaxation of the rat carotid via activation of the NO-cGMP pathway through a mechanism that seems to be partially dependent on activation of angiotensin-(1-7) receptors.  相似文献   

9.
Extensive proton magnetic resonance experiments were carried out on three bradykinin peptide antagonists B-9430, B-9436, and B-9858 in aqueous solutions as well as in sodium dodecylsulphate micelles (B-9430 and B-9436) and CD3OH/H2O (60%/40%) mixtures for B-9858. All three peptides showed no observable secondary structure in aqueous solution. However, in their respective structure-inducing solvents, B-9430 (B1 and B2 receptor antagonist) and B-9436 (a B2 receptor antagonist) exhibit a type II β-turn involving residues 2–5, and B-9430 also exhibits a type II′ β-turn involving residues 6–9 (in sodium dodecylsulfate micellar solutions), whereas B-9858, a B1-specific receptor antagonist, exhibits only a type II β-turn involving residues 2–5 (in CD3OH/H2O solutions). Simulated annealing calculations on B-9858 confirm the experimental conclusions based on the nmr data. In addition, simulated annealing of the (2S, 3aS, 7aS)-octahydroindole-2-carboxylic acid (Oic residue), which is present in two of the three decapeptides studied, show that the one-chair conformation of the six-membered ring predominates, in agreement with the experimental data. The activities of these peptides are compared with their secondary structures and the specific receptor activity appears to depend on the presence of specific amino acid residues, such as N-(2-indanyl)glycine (Nig) and D[α-(2-indanyl)glycine] (D-Igl) as well as on elements of secondary structure. © 1997 John Wiley & Sons, Inc. Biopoly 42: 521–535, 1997  相似文献   

10.
A systematic comparison of 4-[18F]fluorobenzaldehyde-O-(2-{2-[2-(pyrrol-2,5-dione-1-yl)ethoxy]-ethoxy}-ethyl)oxime ([18F]FBOM) and 4-[18F]fluorobenzaldehyde-O-[6-(2,5-dioxo-2,5-dihydro-pyrrol-1-yl)-hexyl]oxime ([18F]FBAM) as prosthetic groups for the mild and efficient 18F labeling of cysteine-containing peptides and proteins with the amine-group reactive acylation agent, succinimidyl-4-[18F]fluorobenzoate ([18F]SFB), is described. All three prosthetic groups were prepared in a remotely controlled synthesis module. Synthesis of [18F]FBOM and [18F]FBAM was accomplished via oxime formation through reaction of appropriate aminooxy-functionalized labeling precursors with 4-[18F]fluorobenzaldehyde. The obtained radiochemical yields were 19% ([18F]FBOM) and 29% ([18F]FBAM), respectively. Radiolabeling involving [18F]FBAM and [18F]FBOM was exemplified by the reaction with cysteine-containing tripeptide glutathione (GSH), a cysteine-containing dimeric neurotensin derivative, and human native low-density lipoprotein (nLDL) as model compounds. Radiolabeling with the acylation agent [18F]SFB was carried out using a dimeric neurotensin derivative and nLDL. Both thiol-group reactive prosthetic groups show significantly better labeling efficiencies for the peptides in comparison with the acylation agent [18F]SFB. The obtained results demonstrate that [18F]FBOM is especially suited for the labeling of hydrophilic cysteine-containing peptides, whereas [18F]FBAM shows superior labeling performance for higher molecular weight compounds as exemplified for nLDL apolipoprotein constituents. However, the acylation agent [18F]SFB is the preferred prosthetic group for labeling nLDL under physiological conditions.  相似文献   

11.
Abstract: The cDNA NMDAR1 (NR1) encodes a single polypeptide that forms a receptor-channel complex with electrophysiological and pharmacological properties characteristic of the N-methyl-d -aspartate receptor. Homomeric NR1 recombinant receptors expressed in Xenopus oocytes show functional responses with low levels of conductance. In this study we have characterized, by radioligand binding techniques, the pharmacological properties of homomeric receptors of two human NR1 isoforms (NR1a and NR1e, which differ in their C-terminal region), transiently expressed in human embryonic kidney 293 cells. The glycine site antagonist (±)-4-(trans)-2-carboxy-5,7-dichloro-4-[3H]phenylaminocarbonylamino-1,2,3,4-tetrahydroquinoline ([3H]L-689,560) bound to NR1a- and NR1e-transfected cells with high affinity (KD = 3.29 and 1.61 nM, respectively). Bmax values for NR1a- and NR1e-transfected cells were 3.82 and 1.69 pmol/mg of protein, respectively, and Hill coefficients were close to unity. Ki values for glycine site antagonists inhibiting [3H]L-689,560 binding to NR1e-transfected cells were similar to those observed with rat brain membranes. Affinity values for agonists and partial agonists were four- to 16-fold weaker, indicating that the glycine site of homomeric NR1 receptors is in an antagonist-preferring state. Ki values obtained with NR1a-transfected cells were approximately twofold lower than those obtained with NR1e-transfected cells. High-affinity binding to NR1-transfected cells was not observed with the transmitter recognition site radioligands l -[3H]glutamate and d,l -(ε)-2-[3H]amino-4-propyl-5-phosphono-3-pentanoic acid ([3H]CGP-39653) or the ion-channel radioligand [3H]dizocilpine ([3H]MK-801). These results indicate that although transfection of mammalian cells with homomeric NR1 recombinant receptors does not appear to result in functional receptors, a glycine binding site is formed that may have a physiological role if present in vivo.  相似文献   

12.
Ligand-receptor affinity is classically demonstrated by measuring ligand binding density to a specific site on membrane preparations, and receptor function is studied by measuring calcium flux, cell by cell, using microspectrofluorimetry. In order to study these phenomena in a larger cell population, calcium flux was measured in MRC-5 cell line expressing the B2 receptor for bradykinin using an ACAS 570 scanning cytometer. Following incorporation of fluo3/AM, different ligands were studied, singly or in association with bradykinin. This study confirmed that only the B2 receptor is present on the plasma membrane of MRC-5 cells. Bradykinin binding to the B2 receptor was not modified by a B1 agonist (Des-Arg9-bradykinin) or by a B1 antagonist (Des-Arg9-[Leu8]-bradykinin) but was inhibited by a B2 agonist ([Hyp3]-bradykinin) and a B2 antagonist (HOE 140). The source of free calcium was also studied in comparison with ionomycin. The intensity of the calcium peak after binding of bradykinin is independent of the concentration of extracellular calcium. Preincubation with diltiazem or TMB-8 did not modify calcium flux indicating that transduction of the signal after bradykinin binding in this cell line is independent of voltage-dependent channels and does not require mobilization of intracellular calcium blocked by TMB-8. In conclusion, scanning cytometry can be used to study ligand-receptor binding and to obtain results rapidly from multiple cells. Recording of individual cell variations and kinetics enables identification of active agonists or antagonists and consequently the selection of new compounds.Abbreviations 9AA 9 amino acids - CCD charged-coupled device - DMEM Dulbecco's Modified Eagle's Medium - EDTA ethylenediamine tetraacetic acid - EGTA ethylene glycol-bis (-amino-ethyl ether)N,N,N,N-tetraacetic acid - FCS Fetal Calf Serum - GTP guanosine triphosphate - HBSS Hank's Buffer Salt Solution - IP3 inositol triphosphate  相似文献   

13.
Vasopressin and bradykinin bind to receptors coupled to GTP-binding proteins and rapidly induce polyphosphoinositide breakdown leading to Ca2+ mobilization and activation of protein kinase C. Both peptides are known to induce mitogenesis in the presence of growth factors that act through receptors with intrinsic tyrosine kinase activity. Surprisingly, addition of a combination of vaso-pressin and bradykinin to Swiss 3T3 cells synergistically stimulates DNA synthesis in the absence of any other growth factors. This effect is induced at nanomolar concentrations of the peptides and could be inhibited by addition of specific receptor antagonists or broad spectrum neuropeptide antagonists. Bradykinin, which stimulates transient activation of protein kinase C, induces DNA synthesis in synergy with substances that cause long-term activation of protein kinase C, like vasopression or phorbol 12, 13-dibutyrate. Down-regulation of protein kinase C inhibited the induction of mitogenesis by the combination of vasopressin and bradykinin, thus demonstrating the importance of long-term activation of this enzyme for DNA synthesis. Analysis of tyrosine phosphorylated proteins of Mr = 110,000–130,000 and Mr = 70,000–80,000 revealed a biphasic response after stimulation with bradykinin, whereas the response induced by vasopressin declined after the initial maximum. The combination of bradykinin with vasopressin caused an enhanced and prolonged increase in tyrosine phosphorylation of these proteins as compared with the individual peptides. Inhibition of tyrosine phosphorylation by tyrphostin was paralleled by inhibition of DNA synthesis. Together, these results demonstrate synergistic stimulation of DNA synthesis by bradykinin and vasopressin via prolonged stimulation of multiple signaling pathways and imply that the interactive effects of Ca2+ -mobilizing peptides on mitogenesis may be more general than previously thought. © 1994 Wiley-Liss, Inc.  相似文献   

14.
The conformation of two agonist–antagonist pairs of bradykinin (Arg1-Pro2-Pro3-Gly4-Phe5-Ser6-Pro7-Phe8-Arg9) analogues were studied in CD3OH/H2O solution by 1H-nmr techniques. The first agonist peptide studied, D -Arg0-Arg1-Pro2-Hyp3-Gly4-Thi5-Ser6-Pro7-Thi8-Arg9, differs from the bradykinin sequence by the addition of D -Arg0, the replacement of the Phe moieties in positions 5 and 8 by Thi (Thi = β-(2-thienyl)-L -alanine), and Hyp3 (Hyp = L -4-hydroxy-L -proline) in position 3. In the corresponding antagonist sequence, Pro7 is replaced by D -Phe7. The second agonist–antagonist pair studied does not contain the D -Arg0 residue, which is present only to slow down the rate of metabolism. Based on complete resonance assignments from two-dimensional total correlation spectroscopy and rotating frame nuclear Overhauser effect spectroscopy spectra at 500 MHz, the peptides were analyzed in terms of intraresidue, sequential, and medium-range nuclear Overhauser effects, amide proton temperature coefficients, and vicinal coupling constants. Both agonist peptides show clear evidence for the existence of a type I β-turn comprising the C-terminal residues Ser6-Pro7-Thi8-Arg9 in fast conformational equilibrium with extended structures throughout. Although the conformational space is dominated by extended structures, the presence of the β-turn is spectroscopically clearly discernible. The two antagonist peptides, on the other hand, do not show evidence of turn formation but rather the presence of an extended conformation with some irregularities in the N-terminal region of the peptide. While the existence of a turn at the C-terminal end of bradykinin and its analogues with agonist activity has been predicted by empirical calculations and measurements in very apolar solvents, this study, for the first time, provides evidence based on physical data in a polar solvent environment that the turn is present, that it is type I and that it is essential for agonist activity. In the particular solvent used in these studies, the Pro7 to D -Phe7 substitution precluded the formation of the turn for the C-terminal residues of the antagonist. © 1993 John Wiley & Sons, Inc.  相似文献   

15.
Effects of 5-hydroxytryptophan on serotonin in nerve endings   总被引:1,自引:1,他引:0  
—Preparations of synaptosomes (P2) from the telencephalon and from the diencephalon plus optic lobes of the pigeon and from the telencephalon of the rat were used to study the effects of 5-hydroxytryptophan (5-HTP) on (a) the levels of serotonin (5-HT) in nerve endings and (b) the release of 5-HT from nerve endings. The levels of 5-HT were significantly higher (3.21 × 0.35 nmol/g original tissue weight) in the P2 fraction isolated from the telencephalon of pigeons given intramuscular injections of 50mg/kg of d ,l -5-HTP in comparison to control values (1.42 ± 0.07). A similar twofold increase was observed with the P2 fraction isolated from the diencephalon plus optic lobes. In addition, the levels of 5-HTP and 5-hydroxyindoleacetic acid also increased significantly in these P2 fractions isolated from pigeons given d ,l -5-HTP injections in comparison to values obtained for pigeons given saline injections. In vitro studies using preparations of synaptosomes (from both pigeon and rat) labelled with [3H]5-HT indicated that 0.10 mil l -5-HTP increased the release of [3H]5-HT twofold over control values. A concentration as low as 0.001 mm l -5-HTP was tested on the P2 fraction from the telencephalon of the pigeon and was found to significantly increase the release of [3H]5-HT over control values. This effect by l -5-HTP was blocked if a decarboxylase inhibitor was added to the medium. l -5-HTP at a concentration of 1.5 mm had no apparent effect on the release of [3H]norepinephrine or [3H]dopamine from synaptosomes prepared from the telencephalon of the rat or pigeon. The results are discussed in terms of the role of serotonin in producing certain types of behavioral depressions exhibited by pigeons and rats given injections of 5-HTP.  相似文献   

16.
Abstract: The human neuroblastoma cell line SH-SY5Y, maintained at confluence for 14 days, released [3H]-noradrenaline ([3H]NA) when stimulated with either the muscarinic receptor agonist methacholine or bradykinin. The major fraction of release was rapid, occurring in <10 s, whereas nicotine-evoked release was slower. When the extracellular [Ca2+] ([Ca2+]e) was buffered to ~50–100 nM, release evoked by nicotine was abolished, whereas that in response to methacholine or bradykinin was reduced by ~50% with EC50 values of ?5.46 ± 0.05 M and ?7.46 ± 0.06 M (log10), respectively. Methacholine and bradykinin also produced rapid elevations of both inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] and intracellular free [Ca2+] ([Ca2+]i). These elevations were reduced at low [Ca2+]e and under these conditions the EC50 values for peak elevation of [Ca2+]i were ?6.00 ± 0.14 M for methacholine and ?7.95 ± 0.34 M for bradykinin (n = 3 for all EC50 determinations). At low [Ca2+]e, depletion of nonmitochondrial intracellular Ca2+ stores with the Ca2+-ATPase inhibitor thapsigargin produced a transient small elevation of [Ca2+]i and a minor release of [3H]NA. At low [Ca2+]e, thapsigargin abolished elevation of [Ca2+]i in response to methacholine and bradykinin and completely inhibited their stimulation of [3H]NA release. It is proposed, therefore, that Ca2+ release from Ins(1,4,5)P3-sensitive stores is a major trigger of methacholine- and bradykinin-evoked [3H]NA release in SH-SY5Y cells.  相似文献   

17.
12-Aza-prostaglandin (PG) analogues containing the pyrrolidine-2,4-dione ring system have been synthesized from ,2-disubstituted glycine esters via cyclisation of their -ethoxycarbonylacetyl derivatives. 5-(6-Carboxyhexyl)-1-octylpyrrolidine-2,4-dione (5) had little or no PG-like activity on superfused intestinal or vascular smooth muscle preparations but it selectively antagonised smooth muscle responses to PGE2, PGE1, PGF and PGA2in vitro. At a concentration of 10−5 g/ml it reduced responses of the rat stomach strip to PGE2 by over 80% but did not affect responses of this tissue to acetylcholine, 5-hydroxytryptamine (5-HT) or bradykinin. Polyphloretin phosphate (PPP), the known PG antagonist, had a similar effect at the same concentration (10−5 g/ml).5-(6-Carboxyhexyl)-1-(3-hydroxyoctyl)pyrrolidine-2,4-dione (12) had the same profile of activity on superfused smooth muscle preparations as PGE2 or PGA2. On intravenous injection into anaesthetised rats it caused dose-dependent falls in arterial blood pressure with associated tachycardias, which is typical of the response to PGE2. The smooth muscle activity of (12) was not reduced by passage through isolated perfused guinea-pig lungs nor was its potency as a vasodepressor increased when given intra-arterially to rats. These results suggest that, unlike PGE2, this analogue is not removed by the pulmonary circulation.  相似文献   

18.
Abstract: Adenosine transport inhibitors as enhancers of extracellular levels of endogenous adenosine would, presumably, only be effective if, for example, (1) the inhibitors block influx to a greater degree than efflux (release) of intracellular adenosine or (2) the inhibitors block equally well the influx and efflux of adenosine, but significant amounts of adenosine are formed as a result of dephosphorylation of released adenine nucleotides. Limited information is available regarding the directional symmetry of adenosine transporters in neural cells. Using rat brain crude P2 synaptosomal preparations preloaded with l -[3H]adenosine, our objectives here were to determine (1) if l -[3H]adenosine, a substrate for adenosine transporters that is more metabolically stable than physiological d -adenosine, was being released from synaptosomal preparations, (2) the optimal conditions necessary to observe the release, and (3) the degree to which this release was mediated by efflux through bidirectional nucleoside transporters. l -[3H]Adenosine release was found to be concentration and time dependent, temperature sensitive, and linear with synaptosomal protein. l -[3H]Adenosine release was inhibited dose-dependently by dipyridamole, nitrobenzylthioinosine, and dilazep; at concentrations of 100 µM inhibition was at least 40% for dipyridamole, 52% for nitrobenzylthioinosine, and 49% for dilazep. After loading with l -[3H]adenosine alone or l -[3H]adenosine plus unlabeled l -adenosine, d -adenosine, or uridine, l -[3H]-adenosine release was inhibited 42% by l -adenosine, 69% by uridine, and 81% by d -adenosine. The inhibition of l -[3H]adenosine release from the synaptosomal preparations by substrates for or inhibitors of nucleoside transporters suggests that a portion of the release was mediated by nucleoside transporters. This experimental system may prove useful for evaluating the effects of pharmacological agents on bidirectional transport of adenosine.  相似文献   

19.
Abstract: The functional efficacies of inhibitors of l -glutamate uptake for altering second messenger formation in baby hamster kidney cells expressing subtypes mGluR1a, mGluR2, and mGluR4 of the metabotropic glutamate receptor family were examined. l -Serine-O-sulfate was an agonist at mGluR1a (EC50 = 70 µM), mGluR2 (EC50 = 25 µM), and mGluR4 (EC50 = 324 µM). l -Cysteine sulfinate, 1-aminocyclobutane-trans-1,3-dicarboxylate, l -cysteine, and dl -threo-3-methylaspartate stimulated phosphoinositide hydrolysis in mGluR1a cells with EC50 values of 43, 64, 463, and 488 µM, respectively, and displaced l -[3H]glutamate binding from membranes prepared from these cells with respective IC50 values of 48, 44, 79, and 139 µM. However, d -aspartate,l -trans-pyrrolidine-2,4-dicarboxylate, l -threo-3-hydroxyaspartate, and l -aspartate-β-hydroxamate stimulated phosphoinositide hydrolysis in mGluR1a cells (respective EC50 values of 73, 54, 57, and 430 µM) but did not displace l -[3H]glutamate binding. These compounds inhibited Na+-dependent l -glutamate uptake into baby hamster kidney cells with IC50 values similar to those for stimulation of phosphoinositide hydrolysis in mGluR1a cells. Phosphoinositide hydrolysis in mGluR1a cells, as stimulated by inhibitors of (or substrates for) this l -glutamate transporter, was significantly attenuated in the presence of l -glutamate decarboxylase (EC 4.1.1.15) or l -alanine aminotransferase (EC 2.6.1.2). Furthermore, incubation with 1 mMl -trans-pyrrolidine-2,4-dicarboxylate for 30 min increased the basal levels of free glutamate (1.5 ± 0.2 µM) in the assay buffer four- to fivefold as measured by HPLC analysis. Thus, heteroexchange with endogenous l -glutamate may lead to erroneous estimations of the functional efficacies at mGluR1a.  相似文献   

20.
Samples of quinonoid-l -erythrodihydrobiopterin (q-BH2) and quinonoid-6-methyl-dihydro-pterin (q-6-MPH2) were prepared by oxidation of l -erythro-5,6,7,8-tetrahydrobiopterin (BH4) and 5,6,7,8-tetrahydro-6-methylpterin (6-MPH4) and separated from D-erythro-7,8-dihydrobiopterin (7,8-BH2) and 6-methyl-7,8-dihydropterin (7,8-6-MPH2) as well as from the tetrahydropterins on phosphocellulose column by high-pressure liquid chromatography. The quinonoid dihydropterins were identified and quantitated by scan of their ultraviolet absorption and fluorescence emission spectra through their rearrangement to their 7,8-tautomer and also by gas chromatography of their rapidly synthesized trimethylsilyl derivative. Identification was also achieved by the enzymatic reduction of [3H]q-BH2to [3H]BH4 by dihydrofolate reductase (DHFR). Direct proof for the enzymatic synthesis of the q-BH2 from GTP or from 2-amino-6-(5′-triphosphoribosyl)-amino-5- or -6-formamido-6-hydroxypyrimi-dine (FPyd-P3) was obtained by isolation of the compound which was identical in all respects to the q-BH2 obtained by chemical synthesis from BH4. The reduction of enzymatically synthesized q-BH2 by dihydropteridine reductase (DHPR) to BH4 was not inhibited by methotrexate (MTX). When the enzymatically synthesized q-BH2 was converted to 7,8-BH2, it was reduced only by DHFR. This reduction, however, was inhibited by MTX. On the biosynthetic pathway from GTP to dihydrobiopterin, the enzyme responsible for the appearance of the quinonoid structure is the d -erythro-dihydroneopterin triphosphate synthetase, the product of which (quinonoid d -erythro-dihydroneopterin triphosphate) is converted to quinonoid dihydrobiopterin by l -erythro-dihydrobiopterin synthetase. Experiments in vivo established that DHFR does not participate in the reduction of dihydrobiopterin to tetra-hydrobiopterin when the former is synthesized from GTP de novo. MTX at 5 × 10?6M exerted no inhibition on the reduction of the biosynthetic dihydrobiopterin to tetrahydrobiopterin in vivo, yet completely inhibited the reduction of intraventricularly injected tritiated dihydrofolate ([3H]FH2) to tritiated tetrahydrofolate ([3H]FH4).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号