首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
微孢子虫(Microsporidia)是一类专性细胞内寄生的单细胞真核生物,在科研、医疗、农业、商业等领域具有重要影响。由于其不具有某些典型的真核生物细胞结构,如线粒体、过氧化物酶体、高尔基体、鞭毛,曾将其归属于古真核生物谱系,认为其进化历程先于这些细胞器的起源,该假说也得到了一些生物化学和分子生物学研究证据的支持。然而,在最近十年里,通过更深入的研究,尤其是基于分子序列的系统进化分析,表明微孢子虫和真菌具有一定亲缘关系,并认为其结构的简约性恰好体现了微孢子虫营寄生生活的高度退化现象。目前对微孢子虫的系统进化仍存在各种不同意见,对其进化研究历史进行探讨有着重要意义。本文将按照时间顺序回顾微孢子虫进化分类研究过程中的各种研究成果,并讨论为什么微孢子虫独特的细胞和基因组特性会导致众多的学者在其进化分类问题上争执这么久。  相似文献   

2.
Microsporidia are obligate intracellular parasites of medical and commercial importance, characterized by a severe reduction, or even absence, of cellular components typical of eukaryotes such as mitochondria, Golgi apparatus and flagella. This simplistic cellular organization has made it difficult to infer the evolutionary relationship of Microsporidia to other eukaryotes, because they lack many characters historically used to make such comparisons. Eventually, it was suggested that this simplicity might be due to Microsporidia representing a very early eukaryotic lineage that evolved prior to the origin of many typically eukaryotic features, in particular the mitochondrion. This hypothesis was supported by the first biochemical and molecular studies of the group. In the last decade, however, contrasting evidence has emerged, mostly from molecular sequences, that show Microsporidia are related to fungi, and it is now widely acknowledged that features previously recognized as primitive are instead highly derived adaptations to their obligate parasitic lifestyle. The various sharply differing views on microsporidian evolution resulted in several radical reappraisals of their taxonomy. Here we will chronologically review the causes and consequences for these taxonomic revisions, with a special emphasis on why the unique cellular and genomic features of Microsporidia lured scientists towards the wrong direction for so long.  相似文献   

3.
Published data suggest that hydrogenosomes, organelles found in diverse anaerobic eukaryotes that make energy and hydrogen, were once mitochondria. As hydrogenosomes generally lack a genome, the conversion is probably one way. The sources of the key hydrogenosomal enzymes, pyruvate : ferredoxin oxidoreductase (PFO) and hydrogenase, are not resolved by current phylogenetic analyses, but it is likely that both were present at an early stage of eukaryotic evolution. Once thought to be restricted to a few unusual anaerobic eukaryotes, the proteins are intimately integrated into the fabric of diverse eukaryotic cells, where they are targeted to different cell compartments, and not just hydrogenosomes. There is no evidence supporting the view that PFO and hydrogenase originated from the mitochondrial endosymbiont, as posited by the hydrogen hypothesis for eukaryogenesis. Other organelles derived from mitochondria have now been described in anaerobic and parasitic microbial eukaryotes, including species that were once thought to have diverged before the mitochondrial symbiosis. It thus seems possible that all eukaryotes may eventually be shown to contain an organelle of mitochondrial ancestry, to which different types of biochemistry can be targeted. It remains to be seen if, despite their obvious differences, this family of organelles shares a common function of importance for the eukaryotic cell, other than energy production, that might provide the underlying selection pressure for organelle retention.  相似文献   

4.
Nuclear matrix of the most primitive eukaryote Archezoa   总被引:5,自引:0,他引:5  
Nuclearmatrixisaresidualframeworkofnucleusafterremovalofthenuclearmembranes,chromatinsandsolublesubstancesbysequentialextraction.Itisatripartitestructure,containingthefollowingthreeparts:(i)theresidualelementsofthenuclearenvelope,theporecomplexlamina;(ii)…  相似文献   

5.
Archamoebae: the ancestral eukaryotes?   总被引:8,自引:0,他引:8  
The archezoan phylum Archamoebae Cavalier-Smith, 1983 is here modified by adding a new order Phreatamoebida (presently containing only Phreatamoeba) and removing the family Entamoebidae. Entamoebidae are instead tentatively placed as a class Entamoebea together with the classes Heterolobosea, Percolomonadea and Pseudociliatea in the new protozoan phylum Percolozoa Cavalier-Smith, 1991. Thus emended the phylum Archamoebae is more homogeneous; it is more distinguished from the other two phyla of the primitively amitochondrial kingdom and superkingdom Archezoa (i.e. Metamonada and Microsporidia) by having kinetids with only a single flagellum and basal body and a flagellar root consisting of a cone of evenly spaced microtubules. This unikont character of the archamoebae suggests that they may be ancestral to the tetrakont Metamonada, from which the non-flagellate Microsporidia possibly evolved. Higher eukaryotes (superkingdom Metakaryota) probably evolved from a tetrakont metamonad by the symbiotic origin of mitochondria and peroxisomes. If so, the Archamoebae are the most primitive extant phylum of eukaryotes; if molecular phylogenetic studies confirm this idea, Archamoebae will deserve intensive study, which could reveal much about the origin of the eukaryote condition and also establish what is truly universal among eukaryotes. Archamoebae, like other Archezoa, lack mitochondria and peroxisomes and have no obvious Golgi dictyosomes. Their evolutionary significance is discussed and a detailed classification is presented in which the two earlier classes are merged into a single one: Pelobiontea Page, 1976 stat. nov., containing two orders Mastigamoebida Frenzel, 1892 (Syn. Rhizo-Flagellata Kent, 1880 non Rhizomastigida auct.) (including Mastigamoeba, Mastigina, Mastigella, Pelomyxa and probably a few other genera, which have one or more flagella or cilia (motile or immotile, 9 + 2 or otherwise) in the amoeboid trophic phase), and Phreatamoebida ord. nov. (including only Phreatamoeba in the new family Phreatamoebidae, which has alternating phases of non-flagellate amoebae and uniflagellate cells). Mastigamoebida are divided into three families: Mastigamoebidae Goldschmidt, 1907; Mastigellidae fam. nov.; Pelomyxidae Schulze, 1877. Archamoebae may be uni- or multi-nucleate and either gut parasites or (more usually) free-living in soil, freshwater, or marine habitats. Some can form cysts that would probably fossilize; the earliest (1450 My old) smooth-walled fossil cells large enough to be probable eukaryotes might therefore be archamoebal cysts.  相似文献   

6.
Several groups of parasitic protozoa, as represented by Giardia, Trichomonas, Entamoeba and Microsporida, were once widely considered to be the most primitive extant eukaryotic group―Archezoa. The main evidence for this is their 'lacking mitochondria' and possessing some other primitive features between prokaryotes and eukaryotes, and being basal to all eukaryotes with mitochondria in phylogenies inferred from many molecules. Some authors even proposed that these organisms diverged before the endosymbiotic origin of mitochondria within eukaryotes. This view was once considered to be very significant to the study of origin and evolution of eukaryotic cells (eukaryotes). However, in recent years this has been challenged by accumulating evidence from new studies. Here the sequences of DNA topoisomerase II in G. lamblia, T. vaginalis and E. histolytica were identified first by PCR and sequencing, then combining with the sequence data of the microsporidia Encephalitozoon cunicul and other eukaryotic groups of different evolutionary positions from GenBank, phylogenetic trees were constructed by various methods to investigate the evolutionary positions of these amitochondriate protozoa. Our results showed that since the characteristics of DNA topoisomerase II make it avoid the defect of 'long-branch attraction' appearing in the previous phylogenetic analyses, our trees can not only reflect effectively the relationship of different major eukaryotic groups, which is widely accepted, but also reveal phylogenetic positions for these amitochondriate protozoa, which is different from the previous phylogenetic trees. They are not the earliest-branching eukaryotes, but diverged after some mitochondriate organisms such as kinetoplastids and mycetozoan; they are not a united group but occupy different phylogenetic positions. Combining with the recent cytological findings of mitochondria-like organelles in them, we think that though some of them (e.g. diplomonads, as represented by Giardia) may occupy a very low evolutionary position, generally these organisms are not as extremely primitive as was thought before; they should be polyphyletic groups diverging after the endosymbiotic origin of mitochondrion to adapt themselves to anaerobic parasitic life.  相似文献   

7.
Microsporidia are small (1–20 μm) obligate intracellular parasites of a variety of eukaryotes, and they are serious opportunistic pathogens of immunocompromised patients [1]. Microsporidia are often assigned to the first branch in gene trees of eukaryotes [2] and [3], and are reported to lack mitochondria [2] and [4]. Like diplomonads and trichomonads, microsporidia are hypothesised to have diverged from the main eukaryotic stock prior to the event that led to the mitochondrion endosymbiosis [2] and [4]. They have thus assumed importance as putative relics of premitochondrion eukaryote evolution. Recent data have now revealed that diplomonads and trichomonads contain genes that probably originated from the mitochondrion endosymbiont [5], [6], [7], [8] and [9], leaving microsporidia as chief candidates for an extant primitively amitochondriate eukaryote group. We have now identified a gene in the microsporidium Vairimorpha necatrix that appears to be orthologous to the eukaryotic (symbiont-derived) Hsp70 gene, the protein product of which normally functions in mitochondria. The simplest interpretation of our data is that microporidia have lost mitochondria while retaining genetic evidence of their past presence. This strongly suggests that microsporidia are not primitively amitochondriate and makes feasible an evolutionary scenario whereby all extant eukaryotes share a common ancestor which contained mitochondria.  相似文献   

8.
Available data suggest that unusual organelles called hydrogenosomes, that make ATP and hydrogen, and which are found in diverse anaerobic eukaryotes, were once mitochondria. The evolutionary origins of the enzymes used to make hydrogen, pyruvate:ferredoxin oxidoreductase (PFO) and hydrogenase, are unresolved, but it seems likely that both were present at an early stage of eukaryotic evolution. Once thought to be restricted to a few unusual anaerobes, these proteins are found in diverse eukaryotic cells, including our own, where they are targeted to different cell compartments. Organelles related to mitochondria and hydrogenosomes have now been found in species of anaerobic and parasitic protozoa that were previously thought to have separated from other eukaryotes before the mitochondrial endosymbiosis. Thus it is possible that all eukaryotes may eventually be shown to contain an organelle of mitochondrial ancestry, bearing testimony to the important role that the mitochondrial endosymbiosis has played in eukaryotic evolution. It remains to be seen if members of this family of organelles share a common function essential to the eukaryotic cell, that provides the underlying selection pressure for organelle retention under different living conditions.  相似文献   

9.
Common infection strategies of pathogenic eukaryotes   总被引:1,自引:0,他引:1  
Pathogenic eukaryotes belong to several distinct phylogenetic lineages and have evolved the ability to colonize a range of hosts, including animals and plants. Pathogenic lifestyles have evolved repeatedly in eukaryotes, indicating that unique molecular processes are involved in host infection. However, evidence is now emerging that divergent eukaryotic pathogens might share common mechanisms of pathogenicity. The results from recent studies demonstrate that Plasmodium falciparum and Phytophthora infestans use equivalent host-targeting signals to deliver virulence adhesins and avirulence gene products into human and plant cells, respectively. Remodelling of host cells by different eukaryotic pathogens might therefore share some common features.  相似文献   

10.
We have sequenced the small ribosomal subunit RNA gene of the diplozoanTrepomonas agilis. This provides the first molecular information on a free-living archezoan. We have performed a phylogenetic analysis by maximum likelihood, parsimony, and distance methods for all available nearly complete archezoan small subunit ribosomal RNA genes and for representatives of all major groups of more advanced eukaryotes (metakaryotes). These show Diplozoa as the earliest-diverging eukaryotic lineage, closely followed by microsporidia.Trepomonas proves to be much more closely related toHexamita, and, to a lesser degree, toSpironucleus, than toGiardia. The close relationship between the free-livingTrepomonas on our trees and the parasitesHexamita inflata andSpironucleus refutes the idea that the early divergence of the amitochondrial Archezoa is an artefact caused by parasitism. The deep molecular divergence between the three phagotrophic genera with two cytostomes (Hexamita, Trepomonas, Spironucleus) and the saprotrophicGiardia that lacks cytostomes is in keeping with the classical evidence for a fundamental difference in the symmetry of the cytoskeleton between the two groups. We accordingly separate the two groups as two orders: Distomatida for those with two cytostomes/cytopharynxes and Giardiida ord. nov. forGiardia andOctomitus that lack these, and divide each order into two families. We suggest that this fundamental divergence in manner of feeding and in the symmetry of the cytoskeleton evolved in a free-living diplozoan very early indeed in the evolution of the eukaryotic cell, possibly very soon after the origin of the diplokaryotic state (having two nuclei linked together firmly by the cytoskeleton) and before the evolution of parasitism by distomatids and giardiids, which may have colonized animal guts independently. We discuss the possible relationship between the two archezoan phyla (Metamonada and Microsporidia) and the nature of the first eukaryotic cell in the light of our results and other recent molecular data.  相似文献   

11.
How many different forms of life exist and how they are evolutionarily related is one of the most challenging problems in biology. In 1962, Roger Y. Stanier and Cornelis B. van Niel proposed "the concept of a bacterium" and thus allowed (micro)biologists to divide living organisms into two primary groups: prokaryotes and eukaryotes. Initially, prokaryotes were believed to be devoid of any internal organization or other characteristics typical of eukaryotes, due to their minute size and deceptively simple appearance. However, the last few decades have demonstrated that the structure and function of the prokaryotic cell are much more intricate than initially thought. We will discuss here two characteristics of prokaryotic cells that were not known to Stanier and van Niel but which now allow us to understand the basis of many characteristics that are fully developed in eukaryotic cells: First, it has recently become clear that bacteria contain all of the cytoskeletal elements present in eukaryotic cells, demonstrating that the cytoskeleton was not a eukaryotic invention; on the contrary, it evolved early in evolution. Essential processes of the prokaryotic cell, such as the maintenance of cell shape, DNA segregation, and cell division, rely on the cytoskeleton. Second, the accumulation of intracellular storage polymers, such as polyhydroxyalkanoates (a property studied in detail by Stanier and colleagues), provides a clear evolutionary advantage to bacteria. These compounds act as a "time-binding" mechanism, one of several prokaryotic strategies to increases survival in the Earth's everchanging environments.  相似文献   

12.
Several groups of parasitic protozoa, as represented by Giardia, Trichomonas, En-tamoeba and Microsporida, were once widely considered to be the most primitive extant eukaryotic group—Archezoa. The main evidence for this is their ‘lacking mitochondria’ and possessing some other primitive features between prokaryotes and eukaryotes, and being basal to all eukaryotes with mitochondria in phylogenies inferred from many molecules. Some authors even proposed that these organisms diverged before the endosymbiotic origin of mitochondria within eukaryotes. This view was once considered to be very significant to the study of origin and evolution of eukaryotic cells (eukaryotes). However, in recent years this has been challenged by accumulating evidence from new studies. Here the sequences of DNA topoisomerase II in G. lamblia, T. vaginalis and E. histolytica were identified first by PCR and sequencing, then combining with the sequence data of the microsporidia Encephalitozoon cunicul and other eukaryotic groups of different evolutionary positions from GenBank, phylogenetic trees were constructed by various methods to investigate the evolutionary positions of these amitochondriate protozoa. Our results showed that since the characteristics of DNA topoisomerase II make it avoid the defect of ‘long-branch attraction’ appearing in the previous phylogenetic analyses, our trees can not only reflect effectively the relationship of different major eukaryotic groups, which is widely accepted, but also reveal phylogenetic positions for these amitochondriate protozoa, which is different from the previous phylogenetic trees. They are not the earliest-branching eukaryotes, but diverged after some mitochondriate organisms such as kinetoplastids and mycetozoan; they are not a united group but occupy different phylogenetic positions. Combining with the recent cytological findings of mitochondria-like organelles in them, we think that though some of them (e.g. diplomonads, as represented by Giardia) may occupy a very low evolutionary position, generally these organisms are not as extremely primitive as was thought before; they should be polyphyletic groups diverging after the endosymbiotic origin of mitochondrion to adapt themselves to anaerobic parasitic life.  相似文献   

13.
Early origin of foraminifera suggested by SSU rRNA gene sequences   总被引:11,自引:3,他引:8  
Foraminifera are one of the largest groups of unicellular eukaryotes with probably the best known fossil record. However, the origin of foraminifera and their phylogenetic relationships with other eukaryotes are not well established. In particular, two recent reports, based on ribosomal RNA gene sequences, have reached strikingly different conclusions about foraminifera's evolutionary position within eukaryotes. Here, we present the complete small subunit (SSU) rRNA gene sequences of three species of foraminifera. Phylogenetic analysis of these sequences indicates that they branch very deeply in the eukaryotic evolutionary tree: later than those of the amitochondrial Archezoa, but earlier than those of the Euglenozoa and other mitochondria-bearing phyla. Foraminifera are clearly among the earliest eukaryotes with mitochondria, but because of the peculiar nature of their SSU genes we cannot be certain that they diverged first, as our data suggest.   相似文献   

14.
Accumulating evidence suggests that unicellularArchezoa are the most primitive eukaryotes and their nuclei are of significance to the study of evolution of the eukaryotic nucleus. Nuclear matrix is an ubiquitous important structure of eukaryotic nucleus; its evolution is certainly one of the most important parts of the evolution of nucleus. To study the evolution of nuclear matrix, nuclear matrices ofArchezoa are investigated.Giardia lamblia cells are extracted sequentially. Both embedment-free section EM and whole mount cell EM of the extracted cells show that, like higher eukaryotes, this species has a residual nuclear matrix in its nucleus and rich intermediate filaments in its cytoplasm, and the two networks connect with each other to form a united network. But its nuclear matrix does not have nucleolar matrix and its lamina is not as typical as that of higher eukaryotes; Western blotting shows that lamina ofGiardia and two otherArchezoa Entanzoeba invadens andTrichomonas vaginali all contain only one polypeptide each which reacts with a mammalia anti-lamin polyclonal serum and is similar to lamin B (67 ku) of rnammiia in molecular weight. According to the results and references, it is suggested that nuclear matrix is an early acquisition of the eukaryotic nucleus, and it and the “eukaryotic chromatin” as a whole must have originated very early in the process of evolution of eukaryotic cell, and their origin should be an important prerequisite of the origin of eukaryotic nucleus: in the lamin (gene) family, B-type lamins (gene) should be the ancestral typz and that A-type lamins (gene) might derive therefrom.  相似文献   

15.
Chloroplasts were originally established in eukaryotes by the endosymbiosis of a cyanobacterium; they then spread through diversification of the eukaryotic hosts and subsequent engulfment of eukaryotic algae by previously nonphotosynthetic eukaryotes. The continuity of chloroplasts is maintained by division of preexisting chloroplasts. Like their ancestors, chloroplasts use a bacterial division system based on the FtsZ ring and some associated factors, all of which are now encoded in the host nuclear genome. The majority of bacterial division factors are absent from chloroplasts and several new factors have been added by the eukaryotic host. For example, the ftsZ gene has been duplicated and modified, plastid-dividing (PD) rings were most likely added by the eukaryotic host, and a member of the dynamin family of proteins evolved to regulate chloroplast division. The identification of several additional proteins involved in the division process, along with data from diverse lineages of organisms, our current knowledge of mitochondrial division, and the mining of genomic sequence data have enabled us to begin to understand the universality and evolution of the division system. The principal features of the chloroplast division system thus far identified are conserved across several lineages, including those with secondary chloroplasts, and may reflect primeval features of mitochondrial division. Shin-ya Miyagishima is the recipient of the Botanical Society Award for Young Scientists, 2004.  相似文献   

16.
Mitochondria and fatty acids are tightly connected to a multiplicity of cellular processes that go far beyond mitochondrial fatty acid metabolism. In line with this view, there is hardly any common metabolic disorder that is not associated with disturbed mitochondrial lipid handling. Among other aspects of mitochondrial lipid metabolism, apparently all eukaryotes are capable of carrying out de novo fatty acid synthesis (FAS) in this cellular compartment in an acyl carrier protein (ACP)-dependent manner. The dual localization of FAS in eukaryotic cells raises the questions why eukaryotes have maintained the FAS in mitochondria in addition to the “classic” cytoplasmic FAS and what the products are that cannot be substituted by delivery of fatty acids of extramitochondrial origin. The current evidence indicates that mitochondrial FAS is essential for cellular respiration and mitochondrial biogenesis. Although both β-oxidation and FAS utilize thioester chemistry, CoA acts as acyl-group carrier in the breakdown pathway whereas ACP assumes this role in the synthetic direction. This arrangement metabolically separates these two pathways running towards opposite directions and prevents futile cycling. A role of this pathway in mitochondrial metabolic sensing has recently been proposed. This article is part of a Special Issue entitled: Lipids of Mitochondria edited by Guenther Daum.  相似文献   

17.
We present a novel hypothesis for the origin of the eukaryotic cell, or eukaryogenesis, based on a metabolic symbiosis (syntrophy) between a methanogenic archaeon (methanobacterial-like) and a δ-proteobacterium (an ancestral sulfate-reducing myxobacterium). This syntrophic symbiosis was originally mediated by interspecies H2 transfer in anaerobic, possibly moderately thermophilic, environments. During eukaryogenesis, progressive cellular and genomic cointegration of both types of prokaryotic partners occurred. Initially, the establishment of permanent consortia, accompanied by extensive membrane development and close cell–cell interactions, led to a highly evolved symbiotic structure already endowed with some primitive eukaryotic features, such as a complex membrane system defining a protonuclear space (corresponding to the archaeal cytoplasm), and a protoplasmic region (derived from fusion of the surrounding bacterial cells). Simultaneously, bacterial-to-archaeal preferential gene transfer and eventual replacement took place. Bacterial genome extinction was thus accomplished by gradual transfer to the archaeal host, where genes adapted to a new genetic environment. Emerging eukaryotes would have inherited archaeal genome organization and dynamics and, consequently, most DNA-processing information systems. Conversely, primordial genes for social and developmental behavior would have been provided by the ancient myxobacterial symbiont. Metabolism would have been issued mainly from the versatile bacterial organotrophy, and progressively, methanogenesis was lost. Received: 5 January 1998 / Accepted: 18 March 1998  相似文献   

18.
Classical ideas for early eukaryotic evolution often posited a period of anaerobic evolution producing a nucleated phagocytic cell to engulf the mitochondrial endosymbiont, whose presence allowed the host to colonize emerging aerobic environments. This idea was given credence by the existence of contemporary anaerobic eukaryotes that were thought to primitively lack mitochondria, thus providing examples of the type of host cell needed. However, the groups key to this hypothesis have now been shown to contain previously overlooked mitochondrial homologues called hydrogenosomes or mitosomes; organelles that share common ancestry with mitochondria but which do not carry out aerobic respiration. Mapping these data on the unfolding eukaryotic tree reveals that secondary adaptation to anaerobic habitats is a reoccurring theme among eukaryotes. The apparent ubiquity of mitochondrial homologues bears testament to the importance of the mitochondrial endosymbiosis, perhaps as a founding event, in eukaryotic evolution. Comparative study of different mitochondrial homologues is needed to determine their fundamental importance for contemporary eukaryotic cells.  相似文献   

19.
Regulated cell death, or apoptosis, has evolved to fulfil a myriad of functions amongst multicellular organisms. It is now apparent that programmed cell death occurs in unicellular organisms such as yeast. In yeast, as in higher eukaryotes, the actin cytoskeleton is an essential component of a number of cellular activities, and many of the regulatory proteins involved are highly conserved. Recent evidence from diverse eukaryotic systems suggests that the actin cytoskeleton has a role in regulating apoptosis via interactions with the mitochondria. This interaction also appears to have a significant impact on the management of oxidative stress and so cellular ageing. In this mini-review we summarise some of the work, which suggests that actin is a key regulator of apoptosis and ageing in eukaryotic cells.  相似文献   

20.
Ribosome biogenesis in eukaryotes requires coordinated folding and assembly of a pre-rRNA into sequential pre-rRNA-protein complexes in which chemical modifications and RNA cleavages occur. These processes require many small nucleolar RNAs (snoRNAs) and proteins. Rbm19/Mrd1 is one such protein that is built from multiple RNA-binding domains (RBDs). We find that Rbm19/Mrd1 with five RBDs is present in all branches of the eukaryotic phylogenetic tree, except in animals and Choanoflagellates, that instead have a version with six RBDs and Microsporidia which have a minimal Rbm19/Mrd1 protein with four RBDs. Rbm19/Mrd1 therefore evolved as a multi-RBD protein very early in eukaryotes. The linkers between the RBDs have conserved properties; they are disordered, except for linker 3, and position the RBDs at conserved relative distances from each other. All but one of the RBDs have conserved properties for RNA-binding and each RBD has a specific consensus sequence and a conserved position in the protein, suggesting a functionally important modular design. The patterns of evolutionary conservation provide information for experimental analyses of the function of Rbm19/Mrd1. In vivo mutational analysis confirmed that a highly conserved loop 5-β4-strand in RBD6 is essential for function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号