首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Power-frequency electric and magnetic fields are known to exhibit marked temporal variation, yet in the absence of clear biological indications, the most appropriate summary indices for use in epidemiologic studies are unknown. In order to assess the statistical patterns among candidate indices, data on 4383 worker-days for magnetic fields and 2082 worker-days for electric fields collected for the Electric and Magnetic Field Project for Electric Utilities using the EMDEX meter [Bracken (1990): Palo Alto, CA: Electric Power Research Institute] were analyzed. We examined correlations at the individual and job title group levels among indices of exposure to both electric and magnetic fields, including the arithmetic mean, geometric mean, median, 20th and 90th percentiles, time above lower cutoffs of 20 V/m and 0.2 μT, and time above higher cutoffs of 100 V/m and 2.0 μT. For both electric and magnetic fields, the arithmetic mean was highly correlated with the 90th percentile; moderately correlated with the geometric mean, median, and lower and higher cutoff scores; and weakly correlated with the 20th percentile. Electric and magnetic field indices were generally weakly correlated with one another. Rank-order correlation coefficients were consistently greater than product-moment correlation coefficients. Job title group summary scores showed higher correlations among electric field indices and magnetic field indices and between electric and magnetic field indices than was found for individual worker-days, with only the 20th percentile clearly independent of the others. These results suggest that individuals' exposures are adequately characterized by a measure of central tendency for electric and magnetic fields, such as the arithmetic or geometric mean, and an indicator of a lower threshold or cutoff for each field type, such as the 20th percentile or proportion of time above 20 V/m or 0.2 μT. A single measure of central tendency for each type of field appears to be adequate when exposures are assessed at the job title level. © 1994 Wiley-Liss, Inc.  相似文献   

3.
To explore the feasibility of performing an epidemiologic study of female breast cancer and magnetic field (MF) exposures, we chose to study garment workers, who reportedly have some of the highest MF exposures. We collected personal exposure (PE, n = 48) and survey measurements (n = 77) near commercial sewing machines at three garment facilities and conducted a pilot interview among 25 garment workers asking about exposure duration, activities, and machine characteristics. MF levels were higher for older machines with alternating current (AC) than newer machines with direct current (DC) motors. MF levels were comparable for both idling and sewing activities. Most interviewed workers could describe duration of exposure and machine type (automatic/manual), but not other machine characteristics. Measurements were lower than previously reported for garment workers but were higher than exposures to most women. A historical exposure assessment can be conducted by linking duration of exposure with reconstructed exposure measurements but may be limited by the accuracy of work history data.  相似文献   

4.
Occupational magnetic field (MF) exposure is less thoroughly characterized in occupations typically held by women. Our objective was to characterize occupational 50 Hz MF personal exposure (PE) among female sewing machine operators. We measured the full shift PE of 51 seamstresses, who worked in two shifts (6-14 and 14-22 h) according to their normal work routine. Measurements were conducted using EMDEX PAL meters at chest level. The average duration of the measurement periods was 449 min (range 420-470). The average arithmetic mean exposure for all women was 0.76 microT (range 0.06-4.27). The average of maximum values was 4.30 microT (range 0.55-14.80). Women working with older sewing machines experienced higher exposure than women working on newer sewing machines. For women (n = 10) who operated sewing machines produced in 1990 or earlier, the average arithmetic mean exposure was 2.09 microT, and for women (n = 41) who operated sewing machines produced after 1990, the average arithmetic mean was 0.43 microT. We conclude that women working as sewing machine operators experience higher than average occupational MF exposure compared to other working women. Most important determinant of the women's personal MF exposure was the age of the sewing machine the women operated.  相似文献   

5.
Our lack of knowledge about the biological mechanisms of 50 Hz magnetic fields makes it hard to improve exposure assessment. To provide better information about these exposure measures, we use multidimensional analysis techniques to examine the relations between different exposure metrics for a group of subjects. We used a combination of a two stage Principal Component Analysis (PCA) followed by an ascending hierarchical classification (AHC) to identify a set of measures that would capture the characteristics of the total exposure. This analysis gives an indication of the aspects of the exposure that are important to capture to get a complete picture of the magnetic field environment. We calculated 44 metrics of exposure measures from 16 exposed EDF employees and 15 control subjects, containing approximately 20,000 recordings of magnetic field measurements, taken every 30 s for 7 days with an EMDEX II dosimeter. These metrics included parameters used routinely or occasionally and some that were new. To eliminate those that expressed the least variability and that were most highly correlated to one another, we began with an initial Principal Component Analysis (PCA). A second PCA of the remaining 12 metrics enabled us to identify from the foreground 82.7% of the variance: the first component (62.0%) was characterized by central tendency metrics, and the second (20.7%) by dispersion characteristics. We were able to use AHC to divide the entire sample (of individuals) into four groups according to the axes that emerged from the PCA. Finally, discriminant analysis tested the discriminant power of the variables in the exposed/control classification as well as those from the AHC classification. The first showed that two subjects had been incorrectly classified, while no classification error was observed in the second. This exploratory study underscores the need to improve exposure measures by using at least two dimensions: intensity and dispersion. It also indicates the usefulness of constructing a typology of magnetic field exposures.  相似文献   

6.
Occupational, environmental, or domestic exposure of human beings to extremely low-frequency (50- or 60-Hz) electric and magnetic fields varies continuously over time. In epidemiological studies of possible health effects, exposures over long durations must be aggregated in terms of simple summary indices. However, there are many different, biologically plausible, ways of aggregating the data. While awake, each of 20 electric utility personnel and 16 office workers had provided minute-by-minute measures of incident electric (V/m) and magnetic (muT) fields over a 7-day period via personal dosimeters. Once the measures were aggregated as means, medians, peaks, and other indices, intercorrelations between all index pairs were calculated; correlation matrices are presented for the utility and office workers both by group and when pooled. Product-moment coefficients (r) greater that .80 were found between the time-weighted arithmetic mean (TWA) and indices that explicitly emphasize short but highly intense exposures, such as peak values and time above thresholds. Medians and geometric means were less highly correlated with the TWA. Use of only a few indices, perhaps the TWA alone, may sacrifice but little statistical power in most epidemiological studies of utility workers exposed to ELF fields. However, correlations between electric-field strength and magnetic-field density were generally quite weak, as were correlations of either with high-frequency transients; these findings underscore the need to measure each of these variables in epidemiological studies. Indices of exposure incurred outside the workplace were less strongly correlated, which may indicate the need to use several indices in general-population studies.  相似文献   

7.
This study was designed to provide an experimental validation for a statistical model predicting past or future exposures to magnetic fields (MF) from power lines. The model estimates exposure, combining the distribution of ambient MF in the absence of power lines with the distribution of past or future MF produced by power lines. In the study, validation is carried out by comparing exposures predicted by the model with the actual measurements obtained from a large-scale epidemiological study. The comparison was made for a group of 220 women living near a 735 kV power line. Knowing that the individual arithmetic means of MF exposures follow a log-normal distribution, the Pearson correlation between the log-transformed measured means and the calculated ones was determined and found to be 0.77. Predicted values of MF exposures were slightly lower than measured values. The calculated geometric mean of the group was 0.33 microT, compared to 0.38 microT for the measured geometric mean. The present study shows good agreement between the measured MF exposure of an individual inside a house near a 735 kV line and the MF exposure calculated using a statistical model.  相似文献   

8.
Dielectric heaters and sealers present the most common source of occupational exposure to excessive radio frequency (RF) fields. These systems are used industrially to heat or melt dielectric materials. Nowadays, the effects of high frequency electromagnetic (EM) fields on the health have been discussed frequently but there are few health studies done for workers around dielectric heaters and sealers. In this study, the leakage fields around dielectric heaters and sealers (27.12?MHz) were measured in MKE – Mechanical and Chemical Industry Corporation, Gazi Rocket Factory and evaluated in terms of standards. It has been observed that operators exposed to same RF fields with occupational exposure limits. Many workers have health complaints, such as elevated body temperatures in the factory. Safe distances or areas for workers should be recommended in these systems. Protective measures could be implemented to minimize these exposures. Further measurements and occupational exposure studies of RF exposed women and men are needed to demonstrate the levels of exposed Radio Frequency Radiation (RFR). Precautions should therefore be taken either to reduce the leakage fields or minimise the exposed fields.  相似文献   

9.
The 1998 International Commission for Non-Ionising Radiation (ICNIRP) Guidelines for human exposure to radiofrequency (RF) fields contain a recommendation to assess the potential impact of metallic implants in workers exposed up to the allowable occupational field limits. This study provides an example of how numerical electromagnetic (EM) and thermal modelling can be used to determine whether scattered RF fields around metallic implants in workers exposed to allowable occupational ambient field limits will comply with the recommendations of relevant standards and guidelines. A case study is performed for plane wave exposures of a 50 mm diameter titanium cranioplasty plate, implanted around 5-6 mm under the surface of the forehead. The level of exposures was set to the ambient power flux density limits for occupational exposures specified in the 1998 ICNIRP guidelines and the current 1999 IEEE C95.1 standard over the frequency range 100-3000 MHz. Two distinct peak responses were observed. There was a resonant response for the whole implant at 200-300 MHz where the maximum dimension of the implant is around a third of the wavelength of the RF exposure. This, however, resulted in relatively low peak specific energy absorption rate (SAR) levels around the implant at the exposure limits. Between 2100-2800 MHz, a second SAR concentrating mechanism of constructive interference of the wave reflected back and forth between the air-scalp interface and the scalp-plate interface resulted in higher peak SARs that were within the allowable limits for the ICNIRP exposures, but not for the IEEE C95.1 exposures. Moreover, the IEEE peak SAR limits were also exceeded, to a lesser degree, even when the implant was not present. However, thermal modelling indicated that the peak SAR concentrations around the implant did not result in any peak temperature rise above 1 degrees C for occupational exposures recommended in the ICNIRP guidelines, and hence would not pose any significant health risk.  相似文献   

10.
Studies of Swedish railway employees have indicated that railroad engine drivers have an increased cancer morbidity and incidence of chronic lymphatic leukemia. The drivers are exposed to relatively high magnetic fields (MF), ranging from a few to over a hundred microT. Although the possible genotoxic potential of MF is unclear, some earlier studies have indicated that occupational exposure to MF may increase chromosome aberrations in blood lymphocytes. Since an increased level of chromosomal aberrations has been suggested to predict elevated cancer risk, we performed a cytogenetic analysis on cultured (48 h) peripheral lymphocytes of Swedish train engine drivers. A pilot study of 18 engine drivers indicated a significant difference in the frequency of cells with chromosomal aberrations (gaps included or excluded) in comparison with seven concurrent referents (train dispatchers) and a control group of 16 office workers. The engine drivers had about four times higher frequency of cells with chromosome-type aberrations (excluding gaps) than the office workers (P < 0.01) and the dispatchers (P < 0.05). Seventy-eight percent of the engine drivers showed at least one cell per 100 with chromosome-type aberrations compared with 29% among the dispatchers and 31% among the office workers. In a follow-up study, another 30 engine drivers showed an increase (P < 0.05) in the frequency of cells with chromosome-type aberrations (gaps excluded) as compared with 30 referent policemen. Sixty percent of the engine drivers had one or more cells (per 100 cells) with chromosome-type aberrations compared with 30% among the policemen. In conclusion, the results of the two studies support the hypothesis that exposure to MF at mean intensities of 2-15 microT can induce chromosomal damage.  相似文献   

11.
We aimed to provide a systematic evaluation of magnetic field (MF) exposure of staff working in the offices located above or close to transformer stations (TS) and electric enclosures (EE). Occupational short-term “spot” measurements with Narda EFA-300 and isotropic magnetic field probe were carried out in two National Banks and one Industrial Company having more than 500 employees. Extremely low-frequency (ELF) MFs up to several tens of μT were measured in the mentioned working environments. 25% of the measured MFs were found less than 0.3 μT, the background exposure level that staff receive at home, 75% were above 0.3 μT with the highest value of 6.8 μT. The mean and median personal exposures were calculated to be 1.19 μT and 0.56 μT, respectively. Most of the staff (83%) is under risk based on epidemiological studies that reported a statistically significant association between risk of leukemia and averaged magnetic fields of 0.2 μT or over. Results showed that risk evaluation should be considered to minimize the possibility of the workers being harmed due to exposure to work-related electromagnetic sources.  相似文献   

12.
The incomplete understanding of the relation between power-frequency fields and biological responses raises problems in defining an appropriate metric for exposure assessment and epidemiological studies. Based on evidence from biological experiments, one can define alternative metrics or effects functions that embody the relationship between field exposure patterns and hypothetical health effects. In this paper, we explore the application of the “effects function” approach to occupational exposure data. Our analysis provides examples of exposure assessments based on a range of plausible effects functions. An EMDEX time series data set of ELF frequency (40–800 Hz) magnetic field exposure measurements for electric utility workers was analyzed with several statistical measures and effects functions: average field strength, combination of threshold and exposure duration, and field strength changes. Results were compared for eight job categories: electrician, substation operator, machinist, welder, plant operator, lineman/splicer, meter reader, and clerical. Average field strength yields a different ranking for these job categories than the ranks obtained using other biologically plausible effects functions. Whereas the group of electricians has the highest exposure by average field strength, the group of substation operators has the highest ranking for most of the other effects functions. Plant operators rank highest in the total number of field strength changes greater than 1 μT per hour. The clerical group remains at the lowest end for all of these effects functions. Our analysis suggests that, although average field strength could be used as a surrogate of field exposure for simply classifying exposure into “low” and “high,” this summary measure may be misleading in the relative ranking of job categories in which workers are in “high” fields. These results indicate the relevance of metrics other than average field strength in occupational exposure assessment and in the design and analysis of epidemiological studies. Bioelectromagnetics 18:365–375, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

13.
14.
A physically based model for residential magnetic fields from electric transmission and distribution wiring was developed to reanalyze the Los Angeles study of childhood leukemia by London et al. For this exposure model, magnetic field measurements were fitted to a function of wire configuration attributes that was derived from a multipole expansion of the Law of Biot and Savart. The model parameters were determined by nonlinear regression techniques, using wiring data, distances, and the geometric mean of the ELF magnetic field magnitude from 24-h bedroom measurements taken at 288 homes during the epidemiologic study. The best fit to the measurement data was obtained with separate models for the two major utilities serving Los Angeles County. This model's predictions produced a correlation of 0.40 with the measured fields, an improvement on the 0.27 correlation obtained with the Wertheimer-Leeper (WL) wire code. For the leukemia risk analysis in a companion paper, the regression model predicts exposures to the 24-h geometric mean of the ELF magnetic fields in Los Angeles homes where only wiring data and distances have been obtained. Since these input parameters for the exposure model usually do not change for many years, the predicted magnetic fields will be stable over long time periods, just like the WL code. If the geometric mean is not the exposure metric associated with cancer, this regression technique could be used to estimate long-term exposures to temporal variability metrics and other characteristics of the ELF magnetic field which may be cancer risk factors.  相似文献   

15.
In studies investigating adverse reproductive outcomes associated with video display terminal (VDT) usage, amounts of time spent in front of a VDT or magnetic field (MF) levels in front of the VDT are used as surrogate measures of subject's MF exposure. However, the relevance of such surrogates to actual exposures has not been demonstrated, and the validity of the use of such measures as a surrogate for the actual MF exposure is only speculative. This study examines 1) measurements of MFs at frequencies of approximately 30–1000 Hz at a fixed distance from the VDTs, 2) reported hours of VDT use, and 3) reported distance between the VDT and the subject's waist as surrogate measures for the average MF exposure level of a VDT user during one 8 h workday. The results showed a weak correlation between the average exposure level of a VDT user and the MF 46 cm from a VDT (R = 0.52, n = 67, P < 0.001). This study showed no association between self-reported hours of VDT usage, or self-reported distance between waist and VDT, and the average MF exposures. Moreover, individuals' average MF exposures did not seem to be affected by other variables, such as position of a VDT on the desk, hours of desk use, and the VDT type (color vs. monochrome). These findings indicate that VDT exposures within office settings are complex and cannot be easily predicted by surrogates. © 1996 Wiley-Liss, Inc.  相似文献   

16.
Considerable interest has developed during the past ten years regarding the hypothesis that living organisms may respond to temporal variability in ELF magnetic fields to which they are exposed. Consequently, methods to measure various aspects of temporal variability are of interest. In this paper, five measures of temporal variability were examined: Arithmetic means (D(mean)) and rms values (D(rms)) of the first differences (i.e., absolute value of the difference between consecutive measurements) of magnetic field recordings; "standardized" forms of D(rms), denoted RCMS, obtained by dividing D(rms) by the standard deviations of the magnetic field data; and mean (F(mean)) and rms (F(rms)) values of fractional first differences. Theoretical investigations showed that D(mean) and D(rms) are virtually unaffected by long-term systematic trends (changes) in exposure. These measures thus provide rather specific measures of short-term temporal variability. This was also true to a lesser extent for F(mean) and F(rms). In contrast, the RCMS metric was affected by both short-term and long-term exposure variabilities. The metrics were also investigated using a data set consisting of twice-repeated two-calendar-day recordings of bedroom magnetic fields and personal exposures of 203 women residing in the western portion of Washington State. The predominant source of short-term temporal variability in magnetic field exposures arose from the movement of subjects through spatially varying magnetic fields. Spearman correlations between TWA bedroom magnetic fields or TWA personal exposures and five measures of temporal variability were relatively low. Weak to moderate levels of correlation were observed between temporal variability measured during two different sessions separated in time by 3 or 6 months. We conclude that first difference and fractional difference metrics provide specific and fairly independent measures of short-term temporal variability. The RCMS metric does not provide an easily interpreted measure of short-term or long-term temporal variability. This last result raises uncertainties about the interpretation of published studies that use the RCMS metric.  相似文献   

17.
The primary sensory neurons of the olfactory system are chronically exposed to the ambient environment and may therefore be susceptible to damage from occupational exposure to many volatile chemicals. To investigate whether occupational exposure to styrene was associated with olfactory impairment, we examined olfactory function in 2 groups: workers in a German reinforced-plastics boat-manufacturing facility having a minimum of 2 years of styrene exposure (15-25 ppm as calculated from urinary metabolite concentrations, with historical exposures up to 85 ppm) and a group of age-matched workers from the same facility with lower styrene exposures. The results were also compared with normative data previously collected from healthy, unexposed individuals. Multiple measures of olfactory function were evaluated using a standardized battery of clinical assessments from the Monell-Jefferson Chemosensory Clinical Research Center that included tests of threshold sensitivity for phenylethyl alcohol (PEA) and odor identification ability. Thresholds for styrene were also obtained as a measure of occupational olfactory adaptation. Styrene exposure history was calculated through the use of past biological monitoring results for urinary metabolites of styrene (mandelic acid [MA], phenylglyoxylic acid [PGA]); current exposure was determined for each individual using passive air sampling for styrene and biological monitoring for styrene urinary metabolites. Current mean effective styrene exposure during the day of olfactory testing for the group of workers who worked directly with styrene resins was 18 ppm styrene (standard deviation [SD] = 14), 371 g/g creatinine MA + PGA (SD = 289) and that of the group of workers with lower exposures was 4.8 ppm (SD = 5.2), 93 g/g creatinine MA+PGA (SD = 100). Historic annual average exposures for all workers were greater by a factor of up to 6x. No differences unequivocally attributable to exposure status were observed between the Exposed and Comparison groups or between performance of either group and normative population values on thresholds for PEA or odor identification. Although odor identification performance was lower among workers with higher ongoing exposures, performance on this test is not a pure measure of olfactory ability and is influenced by familiarity with the stimuli and their sources. Consistent with exposure-induced sensory adaptation, however, elevated styrene thresholds were significantly associated with higher occupational exposures to styrene. In summary, the present study found no evidence among a cross-section of reinforced-plastics workers that current or historical exposure to styrene was associated with a general impairment of olfactory function. When taken together with prior studies of styrene-exposed workers, these results suggest that styrene is not a significant olfactory toxicant in humans at current exposure levels.  相似文献   

18.
Despite a low overall incidence (1% of all malignant neoplasms), testicular cancer is the most common malignancy among young men. Over the last 40 years, this incidence rate has substantially risen in most industrialised countries. However, the aetiology of testicular cancer remains largely unknown. Only cryptorchidism, and to a lesser extent a family history of testicular cancer, may be considered to be well established risk factors. Numerous attempts have been made to assess the potential role of occupational exposures in adult life as a risk factor for TC, but no clear hypotheses have yet emerged from previous studies in this field. A major limitation of all occupational studies is that no single toxic substance has been clearly identified, and consequently the significant association observed between some job titles and risk of testicular cancer must be interpreted very carefully. In this respect, comparative occupational studies of exposed and non-exposed workers including rigorous and valid job-matrix exposure assessment are needed to study potential relationships between certain occupational exposures and testicular cancer.  相似文献   

19.
The use of molecular biomarkers in epidemiologic studies has been advancedas a way to improve risk assessments for occupational and environmental exposuresto toxic agents. We have used the detection of two cancer-related, molecular biomarkers of vinyl chloride exposure (mutant ras-p21 and mutant p53) to examine workers with equivalent cumulative exposures that would be above or below the current permissible workplace exposure limit for vinyl chloride for differences in the presence of these biomarkers. Workers with cumulative exposures above the current permissible exposure limit (equivalent of > 40 ppm-years) have a statistically significantly increased occurrence of both biomarkers in comparison to unexposed controls (p < 10?3). Although workers with cumulative exposures of < 10 ppm-years, i.e., well below the current limit, do not have a statistically significantly increased occurrence of these biomarkers (p > 0.05), workers with cumulative exposures of 10 to 40 ppm-years, i.e., still below the current limit, are found to have a statistically significant increase (p < 0.05). This suggests that the current exposure limit may not be adequately protective and illustrates the potential utility of molecular biomarkers in the refinement of risk assessments for toxic exposures.  相似文献   

20.
In situ electromagnetic field exposure of workers and the general public due to non-directional beacons (NDB) for air traffic control is assessed and characterized. For occupational exposure, the maximal measured electric field value is 881.6 V/m and the maximal magnetic field value is 9.1 A/m. The maximum electric fields exceed the International Commission on Non-Ionizing Radiation Protection (ICNIRP) reference levels at all seven NDB sites, and the magnetic fields at two of the seven NDB sites (occupational exposure). Recommendations and compliance distances for workers and the general public are provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号