首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cholangiocarcinoma (CCA) is a mortal cancer with gradually increasing incidences all over the world, whereas effective diagnosis and treatment for this disease are still lacking. As a classical long noncoding RNA (lncRNA), maternally expressed gene 3 (MEG3) has been reported to exhibit pivotal regulatory roles in the occurrence and development of various digestive system tumors. Nevertheless, the clinical relevance and biological function of MEG3 in CCA remain largely unclear. In this study, MEG3 expression was significantly downregulated in both CCA tissues and cells in comparison with that in nontumor controls, respectively, and this downexpression was prominently associated with advanced TNM stage, lymph node invasion, and poor survival. Moreover, decreased MEG3 was an independent forecaster of poor prognosis for CCA patients. Functionally, MEG3 overexpression inhibited CCA growth in vitro and in vivo. Enhanced MEG3 also suppressed migration and invasion of CCLP-1 and QBC939 cells by reversing epithelial-mesenchymal transition (EMT) process. On the contrary, the proliferation, metastasis, and EMT were facilitated via knocking down MEG3. In addition, the expression of B lymphoma Mo-MLV insertion region 1 (Bmi1) and RING finger protein 2 was impacted by gain or loss of MEG3, furthermore, the malignant processes induced by MEG3 knockdown were rescued by means of silencing Bmi1. These data suggested that MEG3 caused tumor suppressive effects partly through mediating polycomb repressive complex 1. Our findings elucidate that MEG3 exerts critical functions in CCA development and likely acts as a promising tumor indicator or intervention target for CCA.  相似文献   

2.
3.
4.
Increasing studies showed that long noncoding RNAs (lncRNAs) had crucial regulatory roles in various tumors, including gastric cancer (GC). Recent studies demonstrated that lncRNA nicotinamide nucleotide transhydrogenase-antisense RNA1 (NNT-AS1) played an important role in several tumors. However, the role and expression of NNT-AS1 in GC progression remain unknown. In our study, we indicated that NNT-AS1 expression was upregulated in GC samples compared with the nontumor tissues. We also showed that NNT-AS1 expression was upregulated in the GC cell lines. Ectopic expression of NNT-AS1 promoted GC cell line HGC-27 cell proliferation, cell cycle progression, and invasion. In addition, we showed that NNT-AS1 acted as a sponge competing endogenous RNA for microRNA-363 (miR-363), which was downregulated in the GC samples and cell lines. miR-363 expression was negatively related with NNT-AS1 expression in GC samples. Upregulated expression of miR-363 suppressed GC cell growth, cycle, and invasion. Furthermore, we reported that elevated expression of NNT-AS1 promoted GC cell proliferation, cycle, and invasion partly by suppressing miR-363 expression. These results indicated that lncRNA NNT-AS1 acted as an oncogene in the development of GC partly by inhibiting miR-363 expression.  相似文献   

5.
6.
Colorectal cancer (CRC) is one of the leading causes of cancer-related death worldwide. Currently, an increasing evidence showed that circular RNAs (circRNAs) play important roles in tumor progression. However, the effects and underlying mechanisms of circRNAs in CRC progression remain unclear. In the present study, through circRNA high-throughput sequencing and quantitative real-time polymerase chain reaction, we identified that hsa_circ_0136666 was significantly overexpressed in CRC tissues and cell lines. High hsa_circ_0136666 expression was associated with poor overall survival of patients with CRC. In vitro function assays showed that hsa_circ_0136666 inhibition suppressed CRC cell proliferation, migration, invasion, and arrested CRC cells in the G0/G1 phase. Furthermore, we showed that hsa_circ_0136666 inhibition reduced CRC cell growth in vivo. Mechanistically, we revealed that hsa_circ_0136666 could increase SH2B1 expression via competitively binding miR-136 in CRC cells. In addition, SH2B1 overexpression could reverse the effects of hsa_circ_0136666 inhibition on CRC cell progression. In conclusion, our data suggested that hsa_circ_0136666 could promote CRC cell progression via the miR-136/SH2B1 axis, elucidating a novel approach to improve the effectiveness of CRC treatment.  相似文献   

7.
Ubiquitin-like with PHD and ring finger domains 1 (UHRF1) is abnormally overexpressed in multiple cancers and closely correlated with tumor-promoting effects, such as high proliferation. However, how UHRF1 functions in intrahepatic cholangiocarcinoma (ICC) has not yet been determined. Herein, we found that UHRF1 is overexpressed in ICC tissues. Downregulated UHRF1 attenuated the transition of the G1/S cell cycle and then suppressed cell proliferation in vitro and tumor growth in vivo. Moreover, upstream regulators of the UHRF1 expression were predicted, and we found that direct binding of miR-124-3p inhibited the UHRF1 expression. Elevated miR-124-3p suppressed proliferation and led to the arrest of the cell cycle. Furthermore, the expression of UHRF1 was positively correlated with PCNA. Clinically, we showed that elevated UHRF1 was associated with poor prognosis, and served as an independent prognostic factor in ICC patients. Together, these findings demonstrate that UHRF1, regulated by miR-124-3p, acts as a tumor promoter by promoting cell proliferation in ICC.  相似文献   

8.
9.
10.
Evidence, demonstrating long noncoding RNAs (lncRNAs) as critical players in cancer, remains to increase. lncRNA SBF2-AS1 was reported to be involved in several cancers, such as hepatocellular carcinoma. However, the role of SBF2-AS1 in colorectal cancer (CRC) is unknown. We showed lncRNA SBF2-AS1 expression was growing in CRC samples, especially in advanced cases. Accordingly, SBF2-AS1 possesses higher expression in CRC cell lines than in normal cell line. Moreover, SBF2-AS1 high expression indicated a low survival rate. Functionally, SBF2-AS1 knockdown suppressed the proliferation, migration, and invasion of CRC cells. In terms of mechanism, SBF2-AS1 upregulation restrained the activity of miR-619-5p and led to overexpression of HDAC3. Importantly, downregulation of miR-619-5p or HDAC3 overexpression reversed SBF2-AS1-silencing-caused suppression on proliferation and metastasis. Summarily, our findings elucidated a crucial role of SBF2-AS1 as a miR-619-5p sponge, shedding novel light on lncRNA-related prognostics.  相似文献   

11.
Cytosolic sulfotransferase 2B1b (SULT2B1b) catalyzes the sulfation of 3β-hydroxysteroids and functions as a selective cholesterol and oxysterol sulfotransferase. Activation of liver X receptors (LXRs) by oxysterols has been known to be an antiproliferative factor. Overexpression of SULT2B1b impairs LXR's response to oxysterols, by which it regulates lipid metabolism. The aim of this study was to investigate in vivo and in vitro effects of SULT2B1b on liver proliferation and the underlying mechanisms. Primary rat hepatocytes and C57BL/6 mice were infected with adenovirus encoding SULT2B1b. Liver proliferation was determined by measuring the proliferating cell nuclear antigen (PCNA) immunostaining labeling index. The correlation between SULT2B1b and PCNA expression in mouse liver tissues was determined by double immunofluorescence. Gene expressions were evaluated by quantitative real-time PCR and Western blot analysis. SULT2B1b overexpression in mouse liver tissues increased PCNA-positive cells in a dose- and time-dependent manner. The increased expression of PCNA in mouse liver tissues was only observed in the SULT2B1b transgenic cells. Small interference RNA SULT2B1b significantly inhibited cell cycle regulatory gene expressions in primary rat hepatocytes. LXR activation by T0901317 effectively suppressed SULT2B1b-induced gene expression in vivo and in vitro. SULT2B1b may promote hepatocyte proliferation by inactivating oxysterol/LXR signaling.  相似文献   

12.
《Cellular signalling》2014,26(8):1668-1679
Currently, there is no effective treatment for cholangiocarcinoma (CCA), which is the most prevalent in the northeastern part of Thailand. A new molecular target for the treatment of CCA is, therefore, urgently needed. Although L-type amino acid transporter 1 (LAT1) is highly expressed in CCA cells, its role in malignant phenotypes of CCA cells remains unclear. This study aimed to investigate the impact of LAT1 on proliferation, migration, and invasion of KKU-M213 cells, the CCA cells derived from Thai patients with intrahepatic cholangiocarcinoma. Results showed that KKU-M213 cells expressed all LAT isoforms (LAT1, LAT2, LAT3 and LAT4). The expressions of LAT1 and its associated protein 4F2hc were highest whereas those of LAT2 and LAT4 were extremely low. Treatment with 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid (BCH) reduced l-leucine uptake concomitant with an inhibition of cell motility and, to a lesser extent, on cell proliferation. It also induced a time dependent up-regulation of LAT1 and 4F2hc expressions. Similarly, cell migration and invasion, but not proliferation, were reduced in LAT1 knockdown KKU-M213 cells. In addition, silencing of LAT1 inhibited the expressions of 4F2hc mRNA and protein whereas the expression of microRNA-7, the 4F2hc down-regulator, was increased. Furthermore, the phosphorylation levels of ERK1/2 and p70S6K were reduced after LAT1 knockdown. Collectively, these results suggest that suppression of cell invasion and migration in LAT1 knockdown KKU-M213 cells may be partly mediated through the inhibition of the 4F2hc-signaling pathway by the up-regulation of microRNA-7. Based on this finding, LAT1 may be a potential therapeutic target for treating CCA.  相似文献   

13.
14.
15.
As a common malignancy in females with a higher incidence rate, epithelial ovarian cancer (EOC) is a heterogeneous disease with complexity and diversity in histology and therapeutic response. Although great progress has been made in diagnosis and therapeutic strategies, novel therapeutic strategies are required to improve survival. Although the promoting effect of mucin 16 (MUC16) on tumour progression has been reported, the potential mechanisms remain unclear. In our study, we reported that overexpression of MUC16 was significantly related to cell proliferation and disease progression in EOC. Results from clinical specimen analysis and cell experiment support this conclusion. Patients with a high MUC16 expression usually had a worse prognosis that those with a low expression. Cell proliferation ability was significantly decreased in EOC cell lines when the knockdown of MUC16. Further study shows that the function of MUC16 in cell proliferation is based on the regulation of glucose transporter 1 (GLUT1) expression. MUC16 can control glucose uptake by regulating GLUT1 in EOC cells, thereby promoting glycogen synthesis, so that tumour cells produce more energy for proliferation. This conclusion is based on two findings. First, the significant correlation between MUC16 and GLUT1 was verified by clinical specimen and TCGA data analysis. Then, alteration of MUC16 expression levels can affect the expression of GLUT1 and glucose uptake was also verified. Finally, this conclusion is further verified in vivo by tumour-bearing mice model. To summarize, our results suggest that MUC16 promotes EOC proliferation and disease progression by regulating GLUT1 expression.  相似文献   

16.
Osteopontin (OPN) is over-expressed in a variety of cancers, but its role in hepatocellular carcinoma (HCC) progression has not been clarified. In this study, weakly tumorigenic, non-metastastic human HCC cell line SMMC-7721 cells were forced to over-express OPN via stable transfection. A series of functional assays were performed to assess the effects of OPN on tumor cell behaviors and cDNA microarray was used to identify the genes regulated by OPN. The results showed that OPN significantly enhanced the migration and invasion of SMMC-7721 cells in vitro. In addition, CD44v6 antibody could significantly inhibit the invasion of OPN over-expressing SMMC-7721 cells. Moreover, MMP-2 and uPA expressions were significantly up-regulated in OPN over-expressing SMMC-7721 cells. Together, these findings indicate that OPN enhanced HCC cells invasion through interaction with its receptor CD44v6 and increased MMP-2 and uPA expressions, providing at least one mechanism for OPN-mediated HCC progression and metastasis.  相似文献   

17.
Phosphatase of regenerating liver 3 (PRL3) is overexpressed in a variety of tumors, and high levels of PRL3 expression are associated with tumorigenesis and metastasis. Consistent with an oncogenic role for PRL3, we show that ectopic PRL3 expression promotes cell proliferation and invasion. However, little is known about the molecular basis for PRL3 function. Obtaining this knowledge is vital for understanding PRL3-mediated disease processes and for the development of novel anticancer therapies targeted to PRL3. Here we report that up-regulation of PRL3 activates the Src kinase, which initiates a number of signal pathways culminating in the phosphorylation of ERK1/2, STAT3, and p130(Cas). The activation of these pathways likely contributes to the increased cell growth and motility of PRL3 cells. We provide evidence that PRL3 induces Src activation through down-regulation of Csk, a negative regulator of Src. Importantly, Src activation and Csk down-regulation are also observed in colon cancer cells expressing a higher level of PRL3. Thus, we have revealed a biochemical mechanism for the PRL3-mediated cell invasion and proliferation in which elevated PRL3 expression causes a reduction in Csk level, leading to Src activation.  相似文献   

18.
miR-625 has been reported to exhibit abnormal expression in esophageal cancer (EC), but the mechanism and functions of miR-625 in esophageal cancer remain unclear. miR-625 down-regulation and Sox2 up-regulation were validated by qRT-PCR in 158 EC samples. Low expression of miR-625 promotes cell proliferation and invasion, while high expression of miR-625 has the opposite effect. Sox2, a target gene of miR-625, was examined by luciferase assay and western blot. Our data suggest that miR-625 may regulate the biological processes of EC via controlling Sox2 expression.  相似文献   

19.
Spondin 2 (SPON2), a member of the Mindin F‐Spondin family, identifies pathogens, activates congenital immunity and promotes the growth and adhesion of neurons as well as binding to their receptors, but its role in promoting or inhibiting tumour metastasis is controversial. Here, we investigated its expression levels and mechanism of action in gastric cancer (GC). Western blotting and GC tissue arrays were used to determine the expression levels of SPON2. ELISAs were performed to measure the serum levels of SPON2 in patients with GC. Two GC cell lines expressing low levels of SPON2 were used to analyse the effects of regulating SPON2 expression on proliferation, migration, invasion, the cell cycle and apoptosis. The results revealed that SPON2 was highly expressed in GC tissues from patients with relapse or metastasis. The levels of SPON2 in sera of patients with GC were significantly higher compared with those of healthy individuals and patients with atrophic gastritis. Knockdown of SPON2 expression significantly inhibited the proliferation, migration and invasion of GC cells in vitro and in vivo. Down‐regulation of SPON2 arrested the cell cycle in G1/S, accelerated apoptosis through the mitochondrial pathway and inhibited the epithelial‐mesenchymal transition by blocking activation of the ERK1/2 pathway. In summary, this study suggests that SPON2 acts as an oncogene in the development of GC and may serve as a marker for the diagnosing GC as well as a new therapeutic target for GC.  相似文献   

20.
目的:观察miRNA-191对前列腺癌的增殖、迁移和侵袭能力的影响,并探讨其机制。方法:分别检测4种人前列癌细胞系(PC-3、DU-145、LNCa P、22RU1)及人正常前列腺细胞RWPE-2中miRNA-191的表达水平,并选择前列腺癌细胞系PC-3作为实验对象。将PC-3细胞分为3组:空白对照组(不转染)、miRNA-191 NC组(Inhibitor NC转染PC-3细胞)、miRNA-191 Inhibitor组(miRNA-191 Inhibitor转染PC-3细胞),每组设置3个复孔。采用RTq PCR法检测PC-3细胞miRNA-191和PLCD1的mRNA表达水平;采用CCK8法检测PC-3细胞增殖水平;采用划痕实验和侵袭实验分别检测PC-3细胞迁移能力和侵袭能力;通过Targetscan靶基因预测网站,筛选PLCD1作为miRNA-191的靶向蛋白,并用双荧光素酶靶标实验验证;采用Western blot法检测PC-3细胞PLCD1的蛋白表达。结果:与RWPE-2细胞相比,人前列癌细胞中mi NRA-191的表达水平显著升高(P<0.05),且miRNA-1...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号