首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In ciliates, unicellular representatives of the bikont branch of evolution, inter‐ and intracellular signalling pathways have been analysed mainly in Paramecium tetraurelia, Paramecium multimicronucleatum and Tetrahymena thermophila and in part also in Euplotes raikovi. Electrophysiology of ciliary activity in Paramecium spp. is a most successful example. Established signalling mechanisms include plasmalemmal ion channels, recently established intracellular Ca2+‐release channels, as well as signalling by cyclic nucleotides and Ca2+. Ca2+‐binding proteins (calmodulin, centrin) and Ca2+‐activated enzymes (kinases, phosphatases) are involved. Many organelles are endowed with specific molecules cooperating in signalling for intracellular transport and targeted delivery. Among them are recently specified soluble N‐ethylmaleimide‐sensitive factor attachment protein receptors (SNAREs), monomeric GTPases, H+‐ATPase/pump, actin, etc. Little specification is available for some key signal transducers including mechanosensitive Ca2+‐channels, exocyst complexes and Ca2+‐sensor proteins for vesicle–vesicle/membrane interactions. The existence of heterotrimeric G‐proteins and of G‐protein‐coupled receptors is still under considerable debate. Serine/threonine kinases dominate by far over tyrosine kinases (some predicted by phosphoproteomic analyses). Besides short‐range signalling, long‐range signalling also exists, e.g. as firmly installed microtubular transport rails within epigenetically determined patterns, thus facilitating targeted vesicle delivery. By envisaging widely different phenomena of signalling and subcellular dynamics, it will be shown (i) that important pathways of signalling and cellular dynamics are established already in ciliates, (ii) that some mechanisms diverge from higher eukaryotes and (iii) that considerable uncertainties still exist about some essential aspects of signalling.  相似文献   

2.
Signal transduction gRABs attention   总被引:7,自引:0,他引:7  
Rab proteins are small GTPases involved in the regulation of vesicular membrane traffic. Research done in the past years has demonstrated that some of these proteins are under the control of signal transduction pathways. Still, several recent papers point out to a new unexpected role for this family of Ras-related proteins, as potential regulators of intracellular signaling pathways. In particular, several evidence indicate that members of the Rab family of small GTPases, through their effectors, are key molecules participating to the regulation of numerous signal transduction pathways profoundly influencing cell proliferation, cell nutrition, innate immune response, fragmentation of compartments during mitosis and apoptosis. Even more surprisingly, direct involvement of Rab proteins in signaling to the nucleus has been demonstrated. This review will focus on aspects of Rab proteins function connected to signal transduction and, in particular, connections between membrane traffic and other cell pathways will be examined.  相似文献   

3.
Generation of PA (phosphatidic acid) by PLD (phospholipase D)-catalysed hydrolysis of phosphatidylcholine plays a pivotal role in cellular signalling pathways that regulate organization of the actin cytoskeleton, vesicular transport and exocytosis and stimulation of cell growth and survival. PLD regulation and function are intimately linked with phosphoinositide metabolism. Phosphatidyl 4-phosphate 5-kinase is stimulated by PA in vitro and this enzyme is the downstream effector of a significant subset of PLD signalling pathways. Yeast and mammalian PLDs are potently and specifically activated by the product of this kinase, PtdIns(4,5)P2, through interactions mediated by a polybasic motif within the catalytic core of the enzyme. Integrity of this motif is critical for agonist activation of mammalian PLD and for PLD function in secretion, sporulation and exocytosis in vivo. Although dispensable for catalysis in vitro, these PLD enzymes also contain N-terminal PH (pleckstrin) and PX (phox) homology domains. Binding studies using recombinantly expressed PLD fragments indicate that the PH and PX domains also interact specifically with distinct phosphoinositide ligands. Both the PX and PH domains are important for PLD function by controlling the dynamic association of the enzyme with the plasma membrane and its intracellular trafficking by the endocytic pathway. These results identify two distinct modes of regulation of PLD by phosphoinositides: stimulation of catalysis mediated by the polybasic domain and dynamic regulation of membrane targeting mediated primarily by the PH and PX domains.  相似文献   

4.
Tight junction: a co-ordinator of cell signalling and membrane trafficking   总被引:16,自引:0,他引:16  
Increasing evidence indicates that the tight junction plays a role in membrane transport. Various signalling and trafficking molecules localize to the sites of cell-cell junctions in epithelial cells, including Rab proteins, a family of small GTPases that regulate different steps of vesicular transport along the endocytic and exocytic pathways. We have recently shown that Rab13 controls protein kinase A activity, demonstrating a clear biochemical and functional link between Rab13 and protein kinase A signalling during tight junction assembly in epithelial cells. The present article focuses on how protein kinase A signalling and protein trafficking events could be integrated at tight junctions in epithelial cells.  相似文献   

5.
The intracellular pathogenic bacterium Salmonella enterica serovar typhimurium (Salmonella) relies on acidification of the Salmonella‐containing vacuole (SCV) for survival inside host cells. The transport and fusion of membrane‐bound compartments in a cell is regulated by small GTPases, including Rac and members of the Rab GTPase family, and their effector proteins. However, the role of these components in survival of intracellular pathogens is not completely understood. Here, we identify Nischarin as a novel dual effector that can interact with members of Rac and Rab GTPase (Rab4, Rab14 and Rab9) families at different endosomal compartments. Nischarin interacts with GTP‐bound Rab14 and PI(3)P to direct the maturation of early endosomes to Rab9/CD63‐containing late endosomes. Nischarin is recruited to the SCV in a Rab14‐dependent manner and enhances acidification of the SCV. Depletion of Nischarin or the Nischarin binding partners—Rac1, Rab14 and Rab9 GTPases—reduced the intracellular growth of Salmonella. Thus, interaction of Nischarin with GTPases may regulate maturation and subsequent acidification of vacuoles produced after phagocytosis of pathogens.  相似文献   

6.
Rho GTPase signaling in Dictyostelium discoideum: Insights from the genome   总被引:1,自引:0,他引:1  
Rho GTPases are ubiquitously expressed across the eukaryotes where they act as molecular switches participating in the regulation of many cellular processes. We present an inventory of proteins involved in Rho-regulated signaling pathways in Dictyostelium discoideum that have been identified in the completed genome sequence. In Dictyostelium the Rho family is encoded by 18 genes and one pseudogene. Some of the Rho GTPases (Rac1a/b/c, RacF1/F2 and RacB) are members of the Rac subfamily, and one, RacA, belongs to the RhoBTB subfamily. The Cdc42 and Rho subfamilies, characteristic of metazoa and fungi, are absent. The activities of these GTPases are regulated by two members of the RhoGDI family, by eight members of the Dock180/zizimin family and by a surprisingly large number of proteins carrying RhoGEF (42 genes) or RhoGAP (43 genes) domains or both (three genes). Most of these show domain compositions not found in other organisms, although some have clear homologs in metazoa and/or fungi. Among the (in many cases putative) effectors found in Dictyostelium are the CRIB domain proteins (WASP and two related proteins, eight PAK kinases and a novel gelsolin-related protein), components of the Scar/WAVE complex, 10 formins, four IQGAPs, two members of the PCH family, numerous lipid kinases and phospholipases, and components of the NADPH oxidase and the exocyst complexes. In general, the repertoire of Rho signaling components of Dictyostelium is similar to that of metazoa and fungi.  相似文献   

7.
The discovery that Arf GTPases, mediators of membrane traffic, activate phospholipase D (PLD) raised the possibility that Arfs could facilitate membrane traffic by altering membrane lipid composition. PLD hydrolyzes phosphatidylcholine to generate phosphatidic acid (PA), a lipid that favors membranes with negative curvature and thus can facilitate both membrane fission and fusion. This review examines studies that have reported a role for PLD in endocytosis and membrane recycling from endocytic pathways.  相似文献   

8.
The Rho family of small GTPases act as intracellular molecular switches that transduce signals from extracellular stimuli to the actin cytoskeleton and the nucleus. Recent evidence implicates Rho GTPases in the regulation of neuronal morphogenesis, including migration, polarity, axon growth and guidance, dendrite elaboration and plasticity, and synapse formation. Signalling pathways from membrane receptors to Rho GTPases and from Rho GTPases to the actin cytoskeleton are beginning to be discovered. Mutations in these signalling pathways have been reported in human neurological diseases, which underscores their importance in the development and function of the nervous system.  相似文献   

9.

Background  

Rab GTPases function as modulators in intracellular transport. Rab5a, a member of the Rab subfamily of small GTPases, is an important regulator of vesicle traffic from the plasma membrane to early endosomes. Recent findings have reported that Rab5a gene was involved in the progression of cancer. In the present study, we investigated the effect of Rab5a on cervical cancer invasion and metastasis and the molecular mechanism underlying the involvement of Rab5a.  相似文献   

10.

Background  

Phospholipase D (PLD) is involved in many signaling pathways. In most systems, the activity of PLD is primarily regulated by the members of the ADP-Ribosylation Factor (ARF) family of GTPases, but the mechanism of activation of PLD and ARF by extracellular signals has not been fully established. Here we tested the hypothesis that ARF-guanine nucleotide exchange factors (ARF-GEFs) of the cytohesin/ARNO family mediate the activation of ARF and PLD by insulin.  相似文献   

11.
Phosphatidic acid (PA), an important signalling and metabolic phospholipid, is predominantly localized in the subapical plasma membrane (PM) of growing pollen tubes. PA can be produced from structural phospholipids by phospholipase D (PLD), but the isoforms responsible for production of PM PA were not identified yet and their functional roles remain unknown. Following genome‐wide bioinformatic analysis of the PLD family in tobacco, we focused on the pollen‐overrepresented PLDδ class. Combining live‐cell imaging, gene overexpression, lipid‐binding and structural bioinformatics, we characterized five NtPLDδ isoforms. Distinct PLDδ isoforms preferentially localize to the cytoplasm or subapical PM. Using fluorescence recovery after photobleaching, domain deletion and swapping analyses we show that membrane‐bound PLDδs are tightly bound to PM, primarily via the central catalytic domain. Overexpression analyses suggested isoform PLDδ3 as the most important member of the PLDδ subfamily active in pollen tubes. Moreover, only PLDδ3 shows significant constitutive PLD activity in vivo and, in turn, PA promotes binding of PLDδ3 to the PM. This forms a positive feedback loop leading to PA accumulation and the formation of massive PM invaginations. Tightly controlled production of PA generated by PLDδ3 at the PM is important for maintaining the balance between various membrane trafficking processes that are crucial for plant cell tip growth.  相似文献   

12.
Phospholipase D (PLD) catalyzes the conversion of the membrane phospholipid phosphatidylcholine to choline and phosphatidic acid (PA). PLD's mission in the cell is two-fold: phospholipid turnover with maintenance of the structural integrity of cellular/intracellular membranes and cell signaling through PA and its metabolites. Precisely, through its product of the reaction, PA, PLD has been implicated in a variety of physiological cellular functions, such as intracellular protein trafficking, cytoskeletal dynamics, chemotaxis of leukocytes and cell proliferation. The catalytic (HKD) and regulatory (PH and PX) domains were studied in detail in the PLD1 isoform, but PLD2 was traditionally studied in lesser detail and much less was known about its regulation. Our laboratory has been focusing on the study of PLD2 regulation in mammalian cells. Over the past few years, we have reported, in regards to the catalytic action of PLD, that PA is a chemoattractant agent that binds to and signals inside the cell through the ribosomal S6 kinases (S6K). Regarding the regulatory domains of PLD2, we have reported the discovery of the PLD2 interaction with Grb2 via Y169 in the PX domain, and further association to Sos, which results in an increase of de novo DNA synthesis and an interaction (also with Grb2) via the adjacent residue Y179, leading to the regulation of cell ruffling, chemotaxis and phagocytosis of leukocytes. We also present the complex regulation by tyrosine phosphorylation by epidermal growth factor receptor (EGF-R), Janus Kinase 3 (JAK3) and Src and the role of phosphatases. Recently, there is evidence supporting a new level of regulation of PLD2 at the PH domain, by the discovery of CRIB domains and a Rac2-PLD2 interaction that leads to a dual (positive and negative) effect on its enzymatic activity. Lastly, we review the surprising finding of PLD2 acting as a GEF. A phospholipase such as PLD that exists already in the cell membrane that acts directly on Rac allows a quick response of the cell without intermediary signaling molecules. This provides only the latest level of PLD2 regulation in a field that promises newer and exciting advances in the next few years.  相似文献   

13.
The intracellular movement and positioning of organelles and vesicles is mediated by the cytoskeleton and molecular motors. Small GTPases like Rab and Arf proteins are main regulators of intracellular transport by connecting membranes to cytoskeleton motors or adaptors. However, it is becoming clear that interactions between these small GTPases and the cytoskeleton are important not only for the regulation of membrane transport. In this review, we will cover our current understanding of the mechanisms underlying the connection between Rab and Arf GTPases and the cytoskeleton, with special emphasis on the double role of these interactions, not only in membrane trafficking but also in membrane and cytoskeleton remodeling. Furthermore, we will highlight the most recent findings about the fine control mechanisms of crosstalk between different members of Rab, Arf, and Rho families of small GTPases in the regulation of cytoskeleton organization.  相似文献   

14.
Intracellular bacterial pathogens deploy virulence factors termed effectors to inhibit degradation by host cells and to establish intracellular niches where growth and differentiation take place. Here, we describe mechanisms by which human bacterial pathogens (including Chlamydiae; Coxiella burnetii; Helicobacter pylori; Legionella pneumophila; Listeria monocytogenes; Mycobacteria; Pseudomonas aeruginosa, Salmonella enterica) modulate endocytic and exocytic Rab GTPases in order to thrive in host cells. Host cell Rab GTPases are critical for intracellular transport following pathogen phagocytosis or endocytosis. At the molecular level bacterial effectors hijack Rab protein function to: evade degradation, direct transport to particular intracellular locations and monopolize host vesicles carrying molecules that are needed for a stable niche and/or bacterial growth and differentiation. Bacterial effectors may serve as specific receptors for Rab GTPases or as enzymes that post‐translationally modify Rab proteins or endosomal membrane lipids required for Rab function. Emerging data indicate that bacterial effector expression is temporally and spatially regulated and multiple virulence factors may act concertedly to usurp Rab GTPase function, alter signaling and ensure niche establishment and intracellular bacterial growth, making this field an exciting area for further study.   相似文献   

15.
rho family GTPases link extracellular signals to changes in the organization of cytoskeletal actin. Serum stimulation of quiescent Swiss 3T3 fibroblasts leads to rho-dependent actin stress fibre formation and focal adhesions, whilst several growth factors initiate signalling pathways leading to rac-dependent actin polymerization at the plasma membrane, and membrane ruffling. The product of the breakpoint cluster region gene bcr, rho GTPase accelerating protein (rhoGAP) and rasGAP-associated p190 share structurally related rho GAP domains, and possess GAP activity for rho family members in vitro. We have directly compared the activities of the isolated GAP domains of these three proteins in regulating different rho family GTPases, both by in vitro assays and by microinjection, to address their possible physiologic functions. We show that bcr accelerates the GTPase activity of rac, but not rho in vitro, and inhibits rac-mediated membrane ruffling, but not rho-mediated stress fibre formation, after microinjection into Swiss 3T3 fibroblasts. In vitro, rhoGAP has a striking preference for G25K as a substrate, whilst p190GAP has marked preferential activity for rho. Furthermore, p190 preferentially inhibits rho-mediated stress fibre formation in vivo. Our data suggest that p190, rhoGAP and bcr play distinct roles in signalling pathways mediated through different rho family GTPases.  相似文献   

16.
Emerging from the Pak: the p21-activated protein kinase family   总被引:23,自引:0,他引:23  
The p21-activated protein kinases (PAKs) are members of a growing family of regulatory enzymes that may play roles in diverse phenomena such as cellular morphogenesis, the stress response and the pathogenesis of AIDS. PAKs were initially discovered as binding partners for small (21 kDa) GTPases that regulate actin polymerization, and recent evidence has shown that some members of the PAK family may be effectors for related GTPases that are involved in intracellular vesicle trafficking. Because the downstream signalling pathways for all such GTPases are poorly understood, intense studies are under way to discern the role of PAK and its cousins. In this review, the authors highlight some of the established properties of the extended PAK family and discuss current controversies regarding their possible roles as GTPase effectors.  相似文献   

17.
The ADP-ribosylation factor (ARF) subfamily of small GTPases regulates intracellular transport. Although much is known about how ARF1 regulates transport in the secretory pathways, regulation of the endocytic pathways by ARF6 remains less understood. In particular, whereas cycling of ARF1 between membrane and cytosol represents a major mechanism of regulating its function, this regulation has been questioned for ARF6. In this study, we found that ARF6 is distributed both on membranes and in the cytosol. Cytosolic ARF6 is recruited to membranes in a GTP-dependent manner that is fundamentally similar to ARF1. However, unlike ARF1, release of membrane-bound ARF6 to the cytosol requires hydrolysis of GTP that is sensitive to the level of magnesium. These findings suggest that the GTPase cycle of ARF6 also regulates its distribution between membrane and cytosol and that this form of regulation will also likely be important for the function of ARF6. Moreover, as ARF6 has little intrinsic ability to hydrolyze GTP, magnesium concentration most likely affects the release of membrane-bound ARF6 by altering the activity of its GTPase-activating protein.  相似文献   

18.
The activation of Ras by the guanine nucleotide-exchange factor Son of sevenless (Sos) constitutes the rate-limiting step in the transduction process that links receptor tyrosine kinases to Ras-triggered intracellular signalling pathways. A prerequisite for the function of Sos in this context is its ligand-dependent membrane recruitment, and the prevailing model implicates both the Sos carboxy-terminal proline-rich motifs and amino-terminal pleckstrin homology (PH) domain in this process. Here, we describe a previously unrecognized pathway for the PH domain-dependent membrane recruitment of Sos that is initiated by the growth factor-induced generation of phosphatidic acid via the signalling enzyme phospholipase D2 (PLD2). Phosphatidic acid interacts with a defined site in the Sos PH domain with high affinity and specificity. This interaction is essential for epidermal growth factor (EGF)-induced Sos membrane recruitment and Ras activation. Our findings establish a crucial role for PLD2 in the coupling of extracellular signals to Sos-mediated Ras activation, and provide new insights into the spatial coordination of this activation event.  相似文献   

19.
Non-conducting functions of voltage-gated ion channels   总被引:1,自引:0,他引:1  
Various studies, mostly in the past 5 years, have demonstrated that, in addition to their well-described function in regulating electrical excitability, voltage-dependent ion channels participate in intracellular signalling pathways. Channels can directly activate enzymes linked to cellular signalling pathways, serve as cell adhesion molecules or components of the cytoskeleton, and their activity can alter the expression of specific genes. Here, I review these findings and discuss the extent to which the molecular mechanisms of such signalling are understood.  相似文献   

20.
The genomes of the three principle experimental-model species of Kinetoplastida -Trypanosoma brucei brucei, Trypanosoma cruzi and Leishmania major - are now complete, providing both a milestone for trypanosome biology and an opportunity to consider a multitude of questions at the genome level. Of the >40 members of the Ras-like GTPase family in T. brucei, at least 30 are involved in intracellular transport, whereas fewer than eight are likely to have a classical role in signal transduction. There are no true members of the Ras or Rho subfamilies but divergent Ras- or Rho-like GTPases are present, suggesting that signalling mechanisms in trypanosomatids are highly unusual. Comparisons of T. brucei with T. cruzi and L. major indicate a high degree of conservation among the species. These analyses provide a framework for the functional investigation of small-GTPase-mediated signalling processes in trypanosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号